notas de matemática

TWO SIDED IDEALS OF OPERATORS
Horacio Porta

N° 5

UNIVERSIDAD NACIONAL DE LA PLATA

FACULTAD DE CIENCIAS EXACTAS - DEPARTAMENTO DE MATEMATICA

TWO SIDED IDEALS OF OPERATORS

Horacio Porta

UNIVERSIDAD NACIONAL DE LA PLATA Facultad de Ciencias Exactas Departamento de Matemática

Serie 0.I., nº 2

Setiembre 1968

§ 1. Let X be a Banach space, and B(X) the Banach algebra of all bounded linear operators in X. The closed two sided ideals of B(X) (actually, of any Banach algebra) form a complete lattice L(X). Aside from very concrete cases, L(X) has not yet been determined; for instance, when $X = \ell^p$, $1 \le p < \infty$, L(X) is a chain (i.e., totally ordered) with three elements: $\{0\}$, B(X) and the ideal C(X) of compact operators (see (3)). On the other hand, it is known ((2), 5.23) that for $X = L^p$, 1 , the lattice L(X) is not a chain. A treatment for X a Hilbert space of arbitrary dimension can be found in (4). We aim to exhibit here a Banach space X such that L(X) is both "long" and "wide".

Precisely, we have:

PROPOSITION: There exists a real Banach space X with the properties:

- i) x is separable, isometric to its dual x^* , and reflexive;
- ii) it is possible to assign a closed two sided ideal $a(F) \subset B(X)$ to each finite set of positive integers F, in such a way that the mapping $F \longrightarrow a(F)$ is injective and inclusion preserving in both directions: $F \subseteq G$ if and only if $a(F) \subseteq a(G)$.

The example is described below, in § 3.

In the sequel, all Banach spaces are real (the complex case can be dealt with similarly). If X, Y are Banach spaces, m(Y,X) denotes the set of operators $T \in B(X)$ that can be factorized through Y, i.e., such that T = SQ for suitable bounded linear operators $Q: X \longrightarrow Y$, $S: Y \longrightarrow X$. If Y is isomorphic (as a Banach space) to its square $Y \times Y$ (\times means cartesian product), then (see (6), Prop.1.2 or (2), Th.5.13) m(Y,X) is a two sided ideal of B(X).

a(Y,X) will denote the (uniform) closure of m(Y,X); thus, if Y is isomorphic to $Y \times Y$, a(Y,X) is a closed two sided ideal of B(X).

In all that follows, subspace means closed lineal subspace; a subspace Y of a Banach space X is complemented if X = Y + Z for some subspace Z satisfying $X \cap Z = \{0\}$.

We shall need the following generalization of Th.5.20, in (2). LEMMA 1: Let X be a Banach space, and Y a complemented subspace of X, isomorphic to its square $Y \times Y$. Then, for an arbitrary Banach space Z, the following conditions are equivalent:

- i) $m(Y,X) \subset a(Z,X)$
- Proof: Let P ϵ B(X) be a projection on Y (i.e., P² = P , PX = Y), I:Y \longrightarrow Y the identity and J:Y \longrightarrow X the canonical injection; it is clear that P ϵ m(Y,X). Let ϵ be a positive real number such that ϵ ||P|| < 1 . Suppose now that m(Y,X) \subset a(Z,X) . There exist thus S:Z \longrightarrow X , Q:X \longrightarrow Z such that ||P SQ|| < ϵ . Consider the operator U ϵ B(Y) defined by U = I PSQJ; since I = PJ , we see that U = PJ PSQJ = P(P SQ)J , and therefore

Hence PSQJ: Y \longrightarrow Y is invertible, that is, there exists $T \in B(Y)$ such that I = TPSQJ = VW, where $V = TPS : Z \longrightarrow Y$ and $W = QJ : Y \longrightarrow Z$. This means that $I \in m(Z,Y)$, and from (6), Lemme 1.I (or (2), 5.12), we conclude that Y is isomorphic to a complemented subspace of Z, as desired. The converse is obvious: if Y' is a complemented subspace of Z, then $m(Y,X) = m(Y',X) \subset m(Z,X) \subset a(Z,X)$.

 $||U|| \le ||P|| \quad ||P - SQ|| \quad ||J|| \le ||P|| \quad \epsilon < 1$.

LEMMA 2: Assume that x, Y_1 , Y_2 ,..., Y_n are Banach spaces such that Y_j is isomorphic to $Y_j \times Y_j$ for $j=1,2,\ldots,n$. Then $m(Y_1,X)+m(Y_2,X)+\ldots+m(Y_n,X)=m(Y_1\times\ldots\times Y_n,X)$.

Proof: An inductive argument reduces the proof to the case n=2, which is disposed of as follows. Since Y_1 and Y_2 are (isomorphic to) complemented subspaces of $Y_1 \times Y_2$, it is clear that $m(Y_1,X) \subset m(Y_1 \times Y_2,X)$ and $m(Y_2,X) \subset m(Y_1 \times Y_2,X)$, whence

$$m(Y_1,X) + m(Y_2,X) \subset m(Y_1 \times Y_2, X)$$
.

Conversely, if $T = SQ \in m(Y_1 \times Y_2, X)$, where $S : Y_1 \times Y_2 \longrightarrow X$ and $Q : X \longrightarrow Y_1 \times Y_2$ with $Q(x) = (Q_1(x), Q_2(x))$, then we define $S_1 : Y_1 \longrightarrow X$, $S_2 : Y_2 \longrightarrow X$ as

$$S_1(y) = S(y,0), S_2(y) = S(0,y);$$

finally, let T_1 , $T_2 \in B(X)$ be the operators $T_1 = S_1Q_1$, $T_2 = S_2Q_2$. Clearly $T_1 + T_2 = T$ with $T_j \in m(Y_j, X)$, j = 1, 2, and therefore $T \in m(Y_1, X) + m(Y_2, X)$; the lemma follows.

Also, from (6), Lemme 1.I (or (2), 5.12) and (1), Th.7,p.205, we obtain that for $p \neq q$, $p \geq 1$, $q \geq 1$, the ideal $m(\ell^q, \ell^p)$ is not the whole of $B(\ell^p)$. Since the ideal $C(\ell^p)$ of compact operator is the largest proper two sided ideal of $B(\ell^p)$ (see (3)), it follows that:

LEMMA 3. If $p,q \ge 1$, $p \ne q$, then $m(\ell^q,\ell^p) \subset C(\ell^p)$.

§ 3. Let P be a countable set of real numbers $p \geq 1$; define Y as the product $Y = \mathbb{H}\{\ell^p; p \in P\}$, where ℓ^p is the ordinary (real) sequence space. We denote by |x| the norm of an element $x \in \ell^p$, for all p. Consider now the set $\ell(P)$ of all families $\{x_p \in \ell^p; p \in P\}$ of $\{x_p \in P\}$ of $\{x_p \in P\}$ of all families $\{x_p \in \ell^p; p \in P\}$ of $\{x_p \in P\}$ of all families $\{x_p \in \ell^p; p \in P\}$ of $\{x_p \in P\}$ of all families $\{x_p \in \ell^p; p \in P\}$ of all families $\{x_p \in \ell^p; p \in P\}$ of $\{x_p \in P\}$ is a linear subspace of $\{x_p \in P\}$ and that the norm $\{x_p \in P\}$ is finite, $\{x_p \in P\}$ makes $\{x_p \in P\}$. It is clear that for each subset $\{x_p \in P\}$, the space $\{x_p \in \ell(Q)\}$ can be identified to a

complemented subspace of $\ell(P)$. Moreover, $\ell(P)$ is always isomorphic to its square $\ell(P) \times \ell(P)$ (see for instance (5), Prop.3,b). The dual $(\ell(P))^*$ of $\ell(P)$ can be identified to $\ell(P^*)$, where P^* is the set of conjugates p^* of elements $p \in P$, i.e., $\ell(P) = 1$. In particular, if $1 \notin P$, then $\ell(P)$ is reflexive, and furthermore, if $P = P^*$, then $\ell(P)$ is isometric to its dual. Therefore, such $\ell(P)$ satisfy condition $\ell(P)$ in the Proposition above.

Let P be a fixed countably infinite set of real numbers p > 1 such that $P = P^*$, and let X denote the space $X = \ell(P)$. For each finite subset $F \subseteq P$, let $a(F) \subseteq B(X)$ be the ideal $a(F) = a(\ell(F), X)$. Since $\ell(F)$ is (isomorphic to) a complemented subspace of $\ell(G)$, whenever $F \subseteq G$ it is clear (Lemma 1) that the mapping $F \longrightarrow a(F)$ is inclusion preserving. On the other hand, suppose that $a(F) \subseteq a(G)$, or, equivalently, $m(\ell(F), X) \subseteq a(\ell(G), X)$.

By Lemma 2, this inequality is equivalent to:

$$m(\ell^{P},X) \subset a(\ell(G),X)$$
 , for all $p \in F$.

Lemma 1 applies, and we conclude that for $p \in F$, ℓ^p is isomorphic to a complemented subspace of $\ell(G)$. By (6), Lemma 1.I (or (2), 5.12) this amounts to

$$m(\ell(G), \ell^p) = B(\ell^p)$$
.

But, again from Lemma 2,

$$m(\ell(G), \ell^P) = \sum \{ m(\ell^Q, \ell^P) ; q \in G \}$$
.

Now, if $p \notin G$, from Lemma 3 follows that $m(\ell^q, \ell^p) \subseteq C(\ell^p)$ for all $q \in G$, or $B(\ell^p) = m(\ell(G), \ell^p) \subseteq C(\ell^p)$, absurd. Then $p \in G$ for all $p \in F$, and this means that $F \subseteq G$. Therefore it was shown that $F \subseteq G$ if and only if $a(F) \subseteq a(G)$. This implies that $F \longrightarrow a(F)$ is one-to-one, and the Proposition is probed.

REFERENCES

- (1) S. Banach, "Théorie de opérations linéaires", Mon.Math.nº1, Warszawa, 1932.
- (2) E. Berkson & H.Porta, "Representations of B(X)", to appear in J.Funct.Analysis.
- (3) I.A.Feldman, I.C.Gohberg & A.S.Markus, "Normally solvable operators, and ideals associated with them", Izv.Moldavsk Fil.Akad.Nauk SSSR, 10, n°76 (1960) pp.51-69 (Russian).
- (4) B. Gramsch, "Eine Idealstruktur Banachscher Operatoralgebren", J.reine u.angew.Math., v.225 (1967) pp. 97-115.
- (5) A. Pelczyński, "Projections in certain Banach spaces", Studia Math., v.19 (1960) pp. 209-228.
- (6) H. Porta, "Idéaux bilatères de transformations linéaires contunues", C.R.Acad.Sci.Paris, t.264 (1967), pp. 95-96.

* * * * * *