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The effects of the cyclic and collective pitch variations on a rotating blade decelerator 

(pararotor) wind-tunnel behavior are studied. The dynamics and aerodynamics effects of the 

cyclic pitch variations were studied. Starting from the Newton Euler equations, a dynamic 

model of the main axis dynamics is obtained. The results confirm that the cyclic pitch 

variations of the blades are an effective way to modify the net force and torque on the 

pararotor, and consequently, could be used to control pararotors with low aspect ratio 

blades.

I. Introduction

A pararotor is a rotary wing decelerator that operates in the autorotation regime. During the trimed 

autorotation phase, both the descent velocity and rotation velocity are constant and the net spin axis

aerodynamic torque is zero. The autorotation regime has been well studied in previous works, that have
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contributed to establish the fundamentals of the dynamic and aerodynamic behavior of the devices that 

operate in this regime: Shpund and Levin [1] studied rotating parachutes; Karlsen et. al. [2] worked on 

winged bodies for submunition applications. Rosen and Seter [3], [4] studied the flight of samara wings. 

Crimi [5] studied a rotating body with only one wing for submunition applications.

Pararotor devices were developed for atmospheric characterization, atmospherical re-entry systems or 

projectile guidance and control, and the dynamic and aerodynamic model with a constant collective pitch 

were well studied [6], [7], [8],

In the present work, the effect of the cyclic pitch on the aerodynamic force on the pararotor is studied. In 

the present section, the design parameters of the pararotor and the reference systems are defined, in order 

to obtain a dynamic model for the forces and moments acting on the pararotor by means of the Newton- 

Euler equations. In section II a theoretical model of the pararotor operating in the wind tunnel is presented. 

Conclusions are presented in section III, where the main insights are discussed.

Model description

The studied pararotor (see Fig. 1) is modeled as a rigid multibody system composed of a cilindrycal body 

(indicated with the letter H), and two rigid blades (indicated with b=l and 2) that can pitch an angle 9b 

around their span axis, xMb‘-

Fig. 1 Pararotor model.



The main rotation axis of the pararotor body is coincident with the main cylinder symmetry axis. The 

joint between the blade axis and the cilindier is indicated as E&. The point Pb represents the center of 

pressure of the blade.

The mass characterization of the body and blades is made by means of their mass MH and inertial 

tensor.

The inertial tensor of each element is ly for the pararotor body and I6 for the blades. Each Izz element of 

the tensor IH is indicated as ly, with j=l,2,3. The diagonal elements of Ib are tagged individualy as IxB, I^b 

and I-B.

II. Theoretical model of the pararotor behavior on the wind tunnel

The Newton-Euler equations for the three mentioned rigid bodies are developed, after considering as 

external actions: the aerodynamic ones, the gravity one and the coupling forces among the three bodies. 

Each of the bodies is characterized by its mass, center of mass location and its inertia tensor with respect 

to axis fixed to the corresponding body. The kinematics of each of the three rigid bodies is characterized 

by the velocity of the corresponding center of mass and and the angular velocity of the corresponding 

body.

The Newton-Euler equations give rise to an ordinary differential equation (ODE) system which is 

presented in the subsection II.B. The ODE system is numerically solved to obtain the angular velocity and 

a resultant force obtained by a linear combination of the lateral force and the yaw moment in fixed axes 

generated by the model at the hub reference point.

A. Reference systems

An important issue for the development of the pararotor dynamic equations is to track down the spatial 

position and attitude of the pararotor. It implies the use of several reference systems, and for the wind

tunnel model we are going to define just those which allows us set up the equation system for this

particular case.



Two reference systems fixed to the pararotor body [xib,yib,Zibl are defined with their xAib axis being

coincident with the pitch axis of blade b, the zAib axis being aligned with the main cylinder symmetry axis, 

and the y^ii axis forming a right hand defined trihedral. Observe that the rotation plane is defined by axis 

xt,7.t or xxb,y\b and that axis x\b forms an angle f/z + (b-V)K with axis -gp. Finally, two blade reference 

systems fixed to each blade, respectively, VxBb>yBb>z.BbA, with b = 1, 2, are obtained by rotating the 

corresponding fixed cylinder reference system [x1b,yib,ZibA an angle 6b around it axis xAlb. Fig. (2 shows 

the body related reference systems. The superscripts are used to indicate the nature and the point where 

the actions are applied, and the subscripts denotes the reference system used to express the magnitude. For 

instance. V^6 is the air velocity with respect to point Pb (superscript) in the direction x of the reference 

system Bb (subscript).

Fig. 2 Scheme of the A and All reference systems

¡Error! No se encuentra el origen de la referencia, shows a blade and the forces and moments acting 

on it. The aerodynamic force Fb is considered to be applied on the center of pressure of the rectangular 

blade, Pb. The coordinates of this point are indicated by [z/%,y/%,0] in the Bb reference system. The weight 

of the blade Mbg, is applied on the center of mass (GB/, in the ¡Error! No se encuentra el origen de la



referenda.), and the reaction force and moment that the cylinder exerts on the connection point Eb, are F¿

and M^6, respectively.

The velocity of the center of mass of the pararotor body is VG = 0 and its angular velocity is co = QkA.

The absolute velocity of each blade center of mass is VGBfc, b = 1, 2 and (Ob is its angular velocity. The 

aerodynamic force on the blade b is decomposed in drag, Db and lift, Lb components.

The aerodynamic velocity of the pressure center is:

Va,P6 = _(VE6 + ^ a ^pj + Uw + v¡> (1)

where

VEb = VG + u> A GE„, (2)

and GEb is the vector that joins the pararotor body mass center, G, and the blade linkage point Eb.

In Equation (¡Error! No se encuentra el origen de la referencia.), the Uw and v,- are the wind tunnel 

flow velocity and the induced velocity, respectively. The air velocity at each blade center of pressure Pb

can be expressed in terms of its components in the blade reference system as:

V».Pb — v“'Pbi 4- Va,Pbi 4- I/“'P6kV - ^b6 1Bb + VyBb )Bb + VZBb KBb, (3)

and is it possible define the angle of attack and the slip angle as:

(4)

and

Pb = tan 1
rvaP»]

XBb 
va'Pb 

iyBb

respectively.

The drag and the lift forces are estimated as:



Lb = ^pCL(«b,pb)\Ur\2 

1 „
Db = -pSCD(ab,pb)\Ur\2,

where CL is the blade lift coefficient and CD the blade drag coefficient. Ur= |Va,P61 is the magnitude of the 

relative velocity of the air stream to point P6.

The aerodynamic force, expressed in a wind reference system is defined as:

F“= DbiBb+LbkBb. (7)

B. Differential equation system

In the present subsection the mechanical constrains are setted, and the forces acting on the model are 

analyzed. With those actions a differential equation is obtained.

The wind flow velocity is Uw= -UzkA. where Uz is the wind tunnel flow velocity.

The sum of forces and moments transmitted from both blades to the cyilinder are represented as M' A 

and F' in Fig. 3. The force F' is obtained by adding the aerodynamic, gravitational and inertial forces on 

the blades, and M'A is the moment that results from translating all the forces generated by the blades to 

point A. It is important to get in mind that each blade presents a pitch angle wich evolves with the azimuth 

angle y as:

QbW = 0q(O + 6ic(t) cos[^(t) + (b - 1)tt] + 6is(t) sin^Ct) + (b - 1)tt] (8)

where V^CO = V^CO + (h — l)7^ with b=l,2. In equation (8), 60 is the collective pitch angle, and 91C 

and 61S the longitudinal and lateral cyclic pitch angles.

The Newton-Euler equations for the blades are:

dVGB» (9)
F“ + F; + Mhg = Mb^^,

aB. rE„ dh6 dVE" (10)m«,e6 + m,.e6 + ^M b + A
° ° at

From equations (9) and (10) it is possible to obtain expressions for the transmitted forces and moments

from each blade to the body as F¿ = — F^ and M^6 = — M^6, respectively.



The aerodynamic loads (applied on the point F) exerted by the flow on the pararotor body, F^’f and

M^' , repectively, are assumed null on a first approach [9]

Fig. 3 Forces on the wind tunnel pararotor model.

Observe that in equation (9) and (10) the sum of forces on the pararrotor body is equal to 0. since the 

center of mass of the pararotor body is fixed in the wind tunnel, and the angular momentum is simply h// = 

/T2ki.

The projection of Equation (10) on the kA axis gives the rotational dynamics equation of the model in 

the wind tunnel:

dn (IE
ZA 3 dt 

which must be solved simultaneously with the equation

(12)

where the term M^ depends on the azimuth angle (//.

Equations (11) and (12) shows a nonlinear dependence of several variables. In order to gain insight 

into the dynamic system formed by latter equations, they are linearized and nondimensionalized.

These considerations lead to obtain a second type Abel differential equation, by replacing the 

expressions and the Taylor expansion on the system formed by equations (11) and (12):

[d(l - cos i/^2) Sis + d0Q - 1 - |}wd WO^r2 + [2d(cos^ sin^)0iS -X^M^to^y - (13)
^MC^W) + ^XcpM(CLa - ^) = 0,



Equation (17) is the second order Taylor dimensionless expression, and due to it has no analytical 

solution [10], it is obtained by means of a numerical implementation on the solver ode45 of MatLab. With 

the solution of the angular velocity it is possible to obtain the theoretical evolution of Mt,A from equation 

¡Error! No se encuentra el origen de la referencia., which is useful for the comparison with the 

experimental results.

For a fixed collective and cyclic pitch angles configuration, a numerical solution of Equation (13) is 

obtained. As an example, Table 1 shows the general parameters applied for the analysis:

Table 1 Configuration parameters

Parameter Value
Qa 0.3 1/rad
Cd 1.44
So 6°
6is 0°
Uz -5 m/s
U 19.15 . 10"4kgm2
^zB 3.64.10"4kgm2
IyB 3.25.10"4kgm2

"oi 2

As it is showed in Fig. 4, the solution for the complete model (the system formed by equations (11) and 

(12)¡Error! No se encuentra el origen de la referencia.) and the solution for the Taylor series model 

(equation (13)) present minor differences in the angular velocity (in the order of 4%), principally

attributed to the second order effects that are not included in the simplified model.



Fig. 4 Angular velocity solution for the case study indicated in table 3.

III. Conclusions

A theoretical model that allows the calculation of the moments produced by a blade cyclic pitch 

variation on a pararotor mounted inside a wind tunnel was developed from the Newton-Euler equations is 

obtained..

The theoretical model was developed based on a wind-tunnel model of the behavior of the pararotor. 

From this model, a Taylor expansion around an equilibrium point and a dimensionless change of variables 

were applied to obtain a simplified model. This simplified model constitutes an analytical tool to describe 

the pararotor behavior.

The differences between the complete and simplified models are attributed to the second order effects, 

which were neglected on the simplified model.

These partial conclusions allow to specify that:

• the cyclic pitch angle variation is a valid strategy to control the moment on the pararotor, 

giving a way to control the trajectory of the device on free flight, and

• the collective pitch angle has influence on the spin axis dynamics, which is a well known result 

from the autorotation regime.

Further works would be intended to complete the whole model, without the wind-tunnel restrictions, 

and validate the model with experimental tests.
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