of the
ROYAL ASTRONOMICAL SOCIETY

MNRAS 526, 895-902 (2023)
Advance Access publication 2023 September 18

https://doi.org/10.1093/mnras/stad2831

Estimation of the diffusion time in a triaxial galactic potential

P. M. Cincotta “ * and C. M. Giordano*

Grupo de Caos en Sistemas Hamiltonianos, Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata and Instituto de Astrofisica de
La Plata (CONICET-UNLP), La Plata, BI9OOFWA, Argentina

Accepted 2023 September 13. Received 2023 September 8; in original form 2023 August 14

ABSTRACT

In this work we apply the Shannon entropy based method to derive a diffusion or instability time in a triaxial model resembling an
elliptical galaxy. We succeed in getting an accurate time-scale for diffusion using this novel technique after adopting a particular
initial starting space, the one defined by the unperturbed integrals of the system. Comparisons with other standard techniques,
such as a least-squares fit on the variance evolution of the integrals and the straight numerical integrations of the equations of
motion, are included. The physical results provided in this effort reveal that the role of chaotic motion in triaxial galactic models

is almost irrelevant in galactic time-scales, in agreement with previous qualitative approaches to this issue.

Key words: chaos —diffusion — galaxies: kinematics and dynamics.

1 INTRODUCTION

The Solar System as well as almost all the discovered exoplanetary
systems are chaotic as it was shown in Laskar (1990), Gayon,
Marzari & Scholl (2008), Deck et al. (2012), Barnes et al. (2015),
Batygin, Deck & Holman (2015), Gajdo$ & Vanko (2023) among
many others.

In Galactic Dynamics, the presence of chaotic motion was already
pointed out in the early works of Contopoulos (see Contopulos
2002 for a collection). Merritt & Friedman (1996), Merritt & Valluri
(1996), and Merritt (1999) studied the dynamics of a triaxial elliptical
galactic model, focusing on the resonant structure, the orbital
families, the chaotic mixing, and the diffusion, while similar issues
were addressed in Papaphilippou & Laskar (1998) and Wachlin &
Ferraz-Mello (1998). In Bountis, Manos & Antonopoulos (2012),
Katsanikas, Patsis & Contopoulos (2013), and Katsanikas & Patsis
(2022) the authors investigated the stability analysis of periodic
orbits, stickiness phenomena, and diffusion in 3D rotating galactic
models.

Though chaos implies exponential divergence of nearby orbits,
i.e. a positive maximum Lyapunov exponent, it should be stressed
that this locally unstable property does not imply macroscopical
instabilities, the so-called stable chaos, first reported in Milani &
Nobili (1992) is an illustrative example, also observed in several
later works. Thus a relevant issue is whether chaos could lead to
large variations of the orbital parameters.

The drift of the unperturbed integrals (or orbital parameters)
induced by chaos is known as chaotic diffusion. This instability is
easily understood in the framework of near-integrable Hamiltonian
systems with more than two degrees of freedom. By near-integrable
we mean a system whose Hamiltonian could be written as H = Hy +
eV, where Hy is an N-dimensional integrable Hamiltonian with the
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full set of independent prime integrals or actions, I;, i = 1, ..., N,
and ¢V is as small perturbation.

In such a system with ¢ # 0, the unperturbed integrals /; could
change and, within a connected chaotic region of the phase space,
the variations could be rather large. The time-scale of the action’s
drift is known as diffusion time, Tp. On the other hand for ¢ = 0, the
phase space of the system is foliated by invariant tori, the latter being
defined by the complete set of integrals, so actions do not change
with time and T is unbounded.

The diffusion time is a relevant time-scale in real dynamical
systems, since it yields the physical time-scale over which the chaotic
diffusion could operate erasing the signatures of the initial state of
the system.

Any dynamical system has a characteristic time-scale, Ty, thus if
Tp K Tys, chaos would be effective in driving the system to a nearly
stochastic one, while if Tp > Ty, regular motion prevails and chaos
becomes irrelevant. In dynamical astronomy, an upper bound to Ty
is provided by the Hubble time Ty.

For instance, in Maffione et al. (2015, 2018) it was shown, in a
qualitatively way, that only at rather large motion times chaos could
be efficient to mix halo orbits in a neighbourhood of the Sun. On
the other hand, the literature suggesting an active role of the chaotic
diffusion in the dynamical evolution of different planetary systems
is huge.

Analytical estimates of T could only be obtained for quite small
perturbations and therefore they are valid in unrealistic physical
models.

Numerical determinations of the diffusion time usually rest on
the computation of the variance evolution of the integrals or actions
under the assumption of a nearly normal diffusion process, when
the action’s variance increases almost linearly with time as Var(/)
A 2Dt, being D the diffusion coefficient and therefore T, ~ D!,
This approach is followed to investigate diffusion processes in quite
different dynamical systems, as for instance in Lega, Guzzo &
Froeschlé (2003), Froeschlé, Guzzo & Lega (2005), Froeschlé,
Lega & Guzzo (2006), Guzzo, Lega & Froechlé (2005), Lega,
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Froeschlé & Guzzo (2008), Efthymiopoulos & Harsoula (2013),
Miguel, Simé & Vieiro (2015), Guillery & Meiss (2017), and Meiss
et al. (2018). Estimates obtained through an anomalous diffusion
approach, with Var(I) ~ 2Dt”, can be found in Koviri et al. (2023)
when applied to the dynamics in the trans-Neptunian region of the
Solar System.

Alternatively, the diffusion time could be derived from plain
numerical simulations, as the required motion time after which
chaotic transport operates and drives the motion beyond a given
domain of the phase space as it was done in Tsiganis, Varvoglis &
Dvorak (2005), Cincotta et al. (2021a, b), Alvez Silva et al. (2021),
Cincotta, Giordano & Shevchenko (2022), and Cincotta & Giordano
(2023) in planetary dynamics, symplectic maps, and relatively simple
Hamiltonian models.

In Cincotta et al. (2019) and Giordano & Cincotta (2018), it was
discussed that the assumption of a nearly normal diffusion process
is in general not well sustained, at least for moderate motion times.
In general the evolution of the variance could be rather noisy and
its time evolution could hide any slow secular growth. Nevertheless,
it could be improved if, instead of the original action variables,
new optimal ones are used. The latter arise from a normal form
construction that allows us to eliminate the deformation effect due
to oscillations, as for instance it is discussed in Giorgilli (1990),
Efthymiopoulos (2012), and Cincotta et al. (2014). On the other
hand stickiness effects, that are always present in near-integrable
Hamiltonian systems, could prevent the free diffusion leading to
anomalous diffusion. In Cincotta & Giordano (2023) the anomalous
diffusion is also addressed showing that this alternative approach
does not lead to successful results.

Therefore the standard approach of following the variance evolu-
tion of the integrals to derive the diffusion coefficient does not yield
a good estimate of 7p. In these lines, Giordano & Cincotta (2018)
introduced another technique to get the time-scale for diffusion
through a Shannon entropy approach. Later on it was successfully
applied to different dynamical systems, from relatively simple
multidimensional symplectic maps and Hamiltonians to planetary
dynamics, as in Cincotta et al. (2021a, b), Alvez Silva et al. (2021),
Kovari, Erdi & Sandor (2022), and Cincotta & Giordano (2023).

In this effort we show how to apply the entropy approach to
estimate the diffusion time in a triaxial model resembling an elliptical
galaxy and compare the obtained results with those derived from the
variance evolution and, moreover, with the actual diffusion time
arising from the direct numerical integration of the equations of
motion.

This work is organized as follows: in Section 2 the entropy
formulation is summarized; in Section 3 the triaxial galactic potential
model is presented and the appropriate starting space to apply this
technique, the angular momentum starting space, is introduced;
in Section 4 the diffusion process is discussed as well as the
estimation of the diffusion coefficient under different transport laws;
in Section 5, the estimations of the diffusion time by means of the
entropy approach are presented. Finally, in Section 6 we summarize
the main conclusions of this research.

2 THE FORMULATION OF THE SHANNON
ENTROPY APPROACH TO DIFFUSION

In this section we summarize the main theoretical results given
in Giordano & Cincotta (2018), Cincotta et al. (2021a, b), and
Cincotta & Giordano (2023) regarding the Shannon entropy as an
efficient technique to estimate the diffusion time in multidimensional
dynamical systems. For a global background about the Shannon
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entropy theory we refer to Shannon & Weaver (1949), Lesne (2014),
and Arnold & Avez (1989).

2.1 The Shannon entropy diffusion coefficient

Let us consider a nearly integrable Hamiltonian dynamical system
defined through action angle variables (/y, ..., In, 94, ..., 9y), and
focus on a given pair of action variables. For example, in a three
degrees of freedom autonomous Hamiltonian, since the energy is
preserved, the remaining unperturbed integrals would be such a pair
of variables, say (I;, I;) and consider a given section S : {#; =
90, % = 99}. If N > 3 the dynamics could be analysed considering
suitable pairs of action variables (and their conjugate angles) as it
was shown in Cincotta et al. (2021a, b), Alvez Silva et al. (2021),
and Kovari et al. (2022).

Setting initial conditions (1,(0), I>(0), ®#?, ¥9) and a motion time
T, the corresponding finite orbit y would intersect N, > 1 times the
section S. Let G be the bounded domain of the action plane which
includes the N, crossings.

Introduce then a partition o = {oy, k=1,...,¢9} on G, ie. a
collection of ¢ disjoint bidimensional cells covering G. Denoting
with 7 the number of intersections of y with S restricted to the cell
oy, the measure of this element of the partition is P (o) = ny/Ns.

The entropy of y for the partition o reads

q 1 &
Sly,a)=— Ploy) InP(ay) = Ny — — ng Inny, 1
(7. ) ;m (o) SNX;k ‘ (1
where 1 < go < g denotes the non-empty elements of the partition.
Certainly, the empty elements do not contribute to the sum in (1).

For the adopted partition and any orbit y, the entropy is always
bounded, 0 < S(y, ) <In go, the minimum arises when y is confined
to a single element of the partition, i.e. motion on a torus, while its
maximum is reached when all the non-empty elements have the very
same measure, P(ox) = 1/qo, i.e. ergodic motion.

The last sum in (1) has a simple result when assuming random
motion, since n; follows a Poisson distribution with mean value (and
variance) N,/qo, and the entropy for any orbit y” reduces to (Cincotta
et al. 2021a)

r _ r A~ q0
S"(e) = S(y", o) ~ Ingy N’ )
and thus, under the assumption of N; > ¢y, the entropy for random
motion can be well approximated by

§' () ~ Ingo. 3)
In the case of a strong chaotic trajectory y, the above approxima-
tion partially holds and the entropy of y results

S(y,a) ®Ingo — B C))

2N’
where f is a bounded constant close to 1 so S(y, o) ~ §"(«) ~ In go.
Therefore the time dependence of the entropy for any chaotic orbit
y (1) is S(y (1)) =~ Inqo(t), being go(r) the number of cells visited by
y after a time z.
The time-rate of S over a finite but small time interval At < T
reduces to
AS 1 Agqo
Ar qot) At

Changes in the number of occupied cells in the interval At are
caused by the transport process. Assuming that the mean square
displacements of the actions in (¢, t + Af), (Allz(t)), and (Alzz(t)),
yield a measure of Ago(?), then Ago(t) o (AIZ (1)) + (AL}(1)).

&)
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If X is the area of G (where the partition of the g cells is defined)
then it follows

Aqo(t) ~ % ((AL2(0)) + (AIZ(1))) - 6)

Assuming a local normal diffusion approximation, the mean
square displacement in each direction reads

(AI}D) ~ 2DV At, (AI(t)) ~ 2DP At, @)

where D,(i) is a local diffusion coefficient, when the trajectory is

restricted to the domain (Z,(¢), (1)) x (I;(t + At), I,(t + At)) and

thus

Ago(1) 841Dt,
At D)
Therefore, from the above derivations, an entropy-like diffusion

coefficient in the interval (¢, f + At) can be defined as

1
D=3 (D + D?). ®)

Ds(y (1)) := Lx () AS(t) )
sy =3 7 q0 A
If L = [T/ At] is the number of intervals where Dg(y (7)) is computed,
then a global diffusion coefficient for y is provided by the average
over the L intervals,

| X
Ds(y) = 7 ; Dy(y (1)) = (Ds(y (1)), (10)
and an instability time can be defined as
AZ
Tinst = K—, 11
! Dy (11

where A” denotes a given mean square displacement, the squared
distance between the initial and some boundary values of the actions,
K being a numerical factor of the order of 1 that takes into account
the anisotropic character of the diffusion.

Even though the entropy depends on the partition, a discussion
about a suitable selection is given in Cincotta et al. (2021b) and
Cincotta & Giordano (2023). On the other hand, therein it is shown
that Ds(y(¢)) depends on the partition in a quite smooth way and,
in the case of a nearly continuous distribution of the ny, it becomes
independent of the partition.

3 THE TRIAXIAL MODEL

In order to illustrate the application of the Shannon entropy approach
to a triaxial galactic model, we take the quadrupolar potential
introduced in Muzzio, Carpintero & Wachlin (2005)

(r) = — folpo(r) = felp(r)? = y*) = f(p: () = yP),
12)

being p; a softened radius defined as pj = r? + €2 while p? = p2 =
r? + 2e, where the softening parameter is set as € = 0.01.

The functions f;(p;) were derived after frozen an N-body simula-
tion and fitted according to the following laws,

Cj
k; k1Ll
[,0]-’ +qj./]

where the coefficients are given in Table 1.

Fig. 1 shows the behaviour of the functions f;’s with r, being
f: <0, fo, fr >0, and f; > |f;| for all values of r while for r >
0.331itis fy > fi.

The model reproduces several dynamical properties of elliptical
galaxies, such as mass distribution, flattening, triaxiality, and rotation

fi= i=0,x,z (13)

Diffusion time in a triaxial galactic potential ~ 897

Table 1. Coefficients of f; given by equation (13).

J G kj qj L

0 0.92012657 1.15 0.1340 1.03766579

x 0.08526504 0.97 0.1283 461571581

z —0.05871011 1.05 0.1239 4.42030943
10 F fo

Figure 1. Dependence of the f; given by equation (13) with r.

(Muzzio 2006). The potential is triaxial with semi-axes X, Y, Z
satisfying X > Y > Z. The minimum of the potential is ®(0, 0,
0)~ —7.

The global dynamics of this model has already been investigated in
Cincotta, Giordano & Muzzio (2006) and Maffione et al. (2011), and
herein we summarize the main theoretical aspects already discussed
in the first one.

If we adopt spherical coordinates (r, 6, ¢) the potential

V(. 0,0) =2, 0,8), y(r.0,¢),2(r,0)),
takes the form
V(r,0,¢) = Vo(r)+ Vi(r)cos2¢ + V,(r)cos 20
+ V3(r) cos 2(0 + ¢) + Va(r)cos 2(6 — ¢), (14)
where

- 1 -
Vo(r) = — fo(r) — Zrzfz(r) <0,

r2

Vi =-= (ﬂ(r) + %fz(r)) <0,

Va(r) = —Zrzfzm =3 (Vo(r) + for)) >0,

Vs(r) = Va(r) = —%vm >0, (15)
and

i) = filp;(r);

The dependence of the coefficients with respect to V| against r
is presented in Fig. 2, where it becomes clear that for r 2 1, Vy
dominates the dynamics and thus the system is close to a spherical
one.

Due to the smallness of V;/Vy, j =1, ..., 3, the Hamiltonian in
spherical variables can be written as a near-integrable one,

j=0,x,z2.

H(p,r) = Ho(p.r,0) + V(r), (16)

MNRAS 526, 895-902 (2023)
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Figure 2. Coefficients of V(r, 0, ¢) given in (14) relative to Vo (r).

where

2 2 2

Pr p@ p¢
Hy=—4+—+—7—7—4+ Vo), 17
0=t 32t g2gmg T 0 an
and

V = Vi(r)cos2¢ + Va(r)cos 260 + Vs3(r)cos2(0 + ¢)
+ V4(r) cos 20 — ¢). (18)

Since Hy is an integrable Hamiltonian, then

Hy=h, L, = ps, L? = p; + p,csc’6, (19)

are the three unperturbed action-like integrals, while V' could be
considered a perturbation. Instead of L? as an unperturbed integral
we take L = |L]|.

The above integrals apply in the case of tube families, those that
circulate around either the x or z axis.

In Schwarzschild (1993) and Papaphilippou & Laskar (1998)
different starting spaces including the most relevant orbital families
are introduced, such as the (x, z) space where the remainder variables
are set to 0 except for p, which results from the energy preservation.
In Maffione et al. (2011) the authors provide the global dynamical
picture of this model adopting such starting spaces and estimate
the amount of chaos using different dynamical indicators and for
energies ranging from 7 = —0.7 to h = —0.1. For box orbits, that are
well displayed in the linear momentum starting space, about 65 per
cent of the orbit sample are chaotic while for the tube family, this
fraction falls below 20 per cent. Therefore it could be expected that
the unstable chaotic motion could play a central role in the dynamics
of this system.

3.1 Global dynamics in angular momentum space

Herein we adopt a different approach to display the global dynamics
of the model. After fixing the energy, we use the unperturbed integral
(L, L,) starting plane restricted to a given position of the configuration
space.

In what follows we adopt # = —0.5 and in order to get a time-scale
of the model at this energy level, let us mention that the period of the
circular orbit leading to the long-axis tube family is about 7 in the
given units of the system. A similar period applies for the circular
orbit that parents the short-axis tube family.

In all the numerical experiments the integrations were carried out
with a Runge—Kutta 7/8th-order integrator, the so-called DOPRI8
routine (Hairer, Norsett & Wanner 1987), Prince & Dormand (1981),
where the local tolerance was set to 10715,

MNRAS 526, 895-902 (2023)

0.8

086 [

04}

02

Log (MEGNO)

oz 0.8

04|
0.6
06|
0.4

08

Figure 3. MEGNO contour plot, in logarithmic scale, for # = —0.5, xo = 0,
yo = 0.9, zo = 0 in the (L, L) starting space. The dark colours denote stable
and nearly stable motion while dark and light yellow correspond to chaotic
and strong chaotic motion (recall that log 2 ~ 0.3).

Fig. 3 displays a contour plot of the MEGNO! values computed
after a time-span of 1500 time units for a large sample of orbits, the
initial conditions being xo = 0, yo = 0.9, z0 = 0,0 < L < 0.83, —L
< L. <Lwithastep AL= AL, =1073.

The MEGNO is a fast dynamical indicator that provides in
an efficient way the maximum Lyapunov exponent (mLE) of an
orbit (see Cincotta & Sim6 2000; Cincotta, Giordano & Simé
2003; Cincotta & Giordano 2016 for a general description and
applications). Its computation requires the integration of both the
equations of motion and the first variational ones as for the mLE. For
stable motion the MEGNO takes the asymptotic value 2, while for a
chaotic orbit with mLE p > 0, it grows linearly with time as (@/2)z.

This particular behaviour of the MEGNO with time implies that,
for short times, its value allows us to separate regular and chaotic
motion and thus the size of the chaotic regions revealed by this
indicator is almost independent of the motion time considered. We
adopt a comparatively large time-span (1500 units of time) in order
to obtain simultaneously confident values of the finite-time mLE
computed in the usual way.

In the figure, dark colours denote stable motion (resonant or quasi-
periodic), while yellow indicates highly chaotic dynamics. A cut-off
value of the indicator was adopted, MEGNO <100. As a reference,
the largest values of the finite-time mLE are about 0.38 in the
most chaotic regions while the smaller ones are close to 6 x 1073,
consistent with the In #/¢ law for quasi-periodic motion.

Notice that in the region 0 < L < 0.48 chaotic motion reveals
different degrees of dynamical hyperbolicity, while for L 2> 0.48,
most of the action plane looks like stable. In this starting angular
momentum space the short-axis tube orbits (that rotate around the z
axis) lie in the narrow strips close to L, ~ %L, the separatrix lines
set apart the long-axis and the short-axis tube families. Within the
long-axis tube family, the separatrix that cross L, = 0 near L ~
0.60 divides the inner and outer ones. Clearly the outer tube orbits
appear at large L with L, < L. On the other hand, the box family
only shows up around the origin. Some other filamentary structures
can be observed in the figure which correspond to resonant motion
within the tube families.

'Mean Exponential Growth factor of Nearby Orbits.
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Figure 4. Orbit for initial conditions 7 = —0.5, xo = 0, yo = 0.9, z9 = 0,
L =038, L, = 10~* after r = 300 units of time.
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Figure 5. An initial ensemble indicated as a green point at L = 0.38, L, =
10~* is followed onto a MEGNO grey scale contour plot. The concomitant
trajectories for the initial ensemble that intersect the section |x| 4 |y — 0.9] +
|z] < 0.1 are depicted in magenta. A similar initial ensemble, located at L =
0.44, L, = 1074, is also followed up to 7 = 1.5 x 10° and its crossings with
the section are plotted in cyan. The small segment in dark-green at L, = 10~*
with 0.33 < L < 0.404 represents a set of initial conditions adopted for the
subsequent experiments regarding the diffusion time, defined as the required
time for the motion to leave the window depicted in green (see the text for
details).

4 DIFFUSION

Let us investigate the diffusion within the chaotic component of the
angular momentum space shown in Fig. 3. To this end, we set again
h=-0.5,x =0,y =0.9, zo = 0 and take an ensemble of n, = 500
random initial conditions centred at L = 0.38, L, = 10~*, and of size
107°. The orbit with initial conditions at the centre of the ensemble
is represented in Fig. 4 after 300 time units and, while chaotic, it
looks like an inner long-axis tube orbit.

Each initial condition in the ensemble is integrated up to 1.5 x 10°
time units with a time-step 0.1. Such a small time-step is adopted
in order to look for the intersection of the orbits with the slice or
section S : x|+ |y — 0.9] + |z] < 0.1.

Fig. 5 shows in magenta the diffusion of the initial ensemble
(indicated as a green point) onto a grey scale MEGNO contour plot
similar to the one shown in Fig. 3.

Notice that the diffusion spreads over the chaotic component but
remains most of the time in the vicinity of the initial ensemble.
Nevertheless the region at 0.41 < L < 0.46, —0.1 < L, < 0.1 is not
explored, a barrier seems to prevent the free diffusion over the full
chaotic domain. A similar initial ensemble but centred at L = 0.44,
L, = 107*is also followed onto the section S up to = 1.5 x 10°, the
corresponding diffusion is shown in cyan in Fig. 5 revealing that, for

Diffusion time in a triaxial galactic potential ~ 899

the considered motion times, both chaotic regions are not connected.
However, further numerical experiments show that only for much
larger motion times could both regions be connected, i.e. an example
of stickiness phenomena.

4.1 On the nature of the diffusion

In this section, we address some relevant aspects regarding the nature
of the diffusion. In a recent work (Kovari et al. 2023), the role
of anomalous diffusion in the trans-Neptunian region of the Solar
System was discussed. In this work the authors assume that the
variance evolution of a given fast action, say I, related with the
semi-axis, eccentricity, and inclination elements, evolves following
a diffusion-like process such that

Var(I(1)) = 2D;1°, (20)

where b is known as the Hurst exponent (Hurst 1951) and D is a
diffusion-like coefficient. Indeed, the dimensions of D; depends on
the exponent b while in the case of b = 1, D; = D, is the classical
diffusion coefficient with its standard dimensions.

Following the above-mentioned work (as well as others like
Cincotta et al. 2014), the natural way to characterize the diffusion
rests on the relation (20) in logarithmic scale, such that log Var(I(?)))
has a linear dependence on log () with slope b. If b ~ 1 the diffusion
is normal, while if b # 1 it is anomalous, b < 1 subdiffusion and b
> 1 superdiffusion.

While theoretically this approach is well sustained, this is not the
case from the numerical approach. Let us provide simple examples
which help us to illustrate this issue.

Consider the diffusion experiment shown in Fig. 5, corresponding
to an initial ensemble centred at L = 0.38, L. = 10~* as well as
another similar one but centred at L = 0.40, L, = 10~* (not shown
in the figure), where the diffusion is much more confined than in the
given example.

Define J? = L* 4+ L2 which encompasses the diffusion in both L
and L., as usual in the literature. The ensemble variance of J,

1 &
Var(J (1)) = . Z(J(t) — J(0)) (21

Pz

is then computed (the section on the configuration space is not
required) after a motion time 10°.

We look for the evolution, in logarithmic scale, of Var(J(¢)) and de-
termine by a least-squares fit the exponent b and the coefficient D ac-
cording to the linear relation log(Var(J(t))) = log(2D;) + blog(z).
In order to reduce any noise introduced by possible oscillations at
short times, the fit was done in the interval [3 x 10, 10°].

The results are unexpected, the exponent yields b = 0.61 for L =
0.38 while b ~ 0.09 in the case of L = 0.40 revealing a subdiffusive
process and the corresponding diffusion-like coefficients are D; ~
4.1 x 107® and 4.4 x 107*, respectively. The errors in all these
estimation are less or about 7 per cent. The evolution of the variances
and the corresponding fits, restricted to the fitting interval, are shown
in Fig. 6. At first glance, the fit follows quite well the variance
evolution in logarithmic scale at large times.

On the other hand, if a normal diffusion law is assumed,

Var(J (1)) = 2Dt + ¢, (22)

where the constant ¢ # 0 takes into account that the least-squares fit is
performed over large motion times, in this case [10*, 10°], the fitting
values, in linear scale, are D; &~ 3.2 x 1078, ¢ &~ 0.0025 for L = 0.38,
and D; ~ 1.8 x 107, ¢ =~ 0.0021 for L = 0.40, with a maximum
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Figure 6. Evolution of the variances Var(J(¢)) in logarithmic scale for the
ensembles located at L = 0.38, L, = 10™*, and L = 0.40, L, = 10~*. The
grey and black lines correspond to the least-squares fit of both variances,
log(Var(J(t))) = log(2D) + blog(t), with Dy ~ 4.1 x 107, b ~ 0.61 for
L = 0.38 while Dy ~ 4.4 x 10~*, b~ 0.09 in case of L = 0.40. The
dotted green line corresponds to a straight line of unitary slope included
for comparison.
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Figure 7. Evolution Var(J(¢)) in linear scale for the ensembles at L = 0.38,
L, =10"* and L = 040, L, = 10~*. As in Fig. 6, the black and grey
lines correspond to the least-squares fit of Var(J(¢)) = 2Dt + ¢, with D; ~
3.2 x 1073, ¢ 22 0.0025 for L = 0.38 while D; ~ 1.8 x 10~%, ¢ ~ 0.0021 in
case of L = 0.40.

error of about 4 per cent. The results are presented in Fig. 7. As in
the previous case, the fit seems to agree with the variance evolution
in linear scale.

The results of this section are in some sense awkward, since it is
not possible to decide if the diffusion is normal or not, and moreover,
what is the value of the macroscopical instability time. In case of
the normal assumption, the diffusion time-scale is D' while in
the anomalous scenario it is l~)J_'/ 1t is simple to check, for the
examples given above, that both time-scales differ in several orders
of magnitude. Next section will help us to elucidate this point.

5 ENTROPY APPROACH

In order to illustrate the entropy formulation and to compare with the
variance approach, let us consider both experiments discussed above.
For the same initial ensembles we compute the time evolution of Dg
given in (9) for T = 10°, At = 400, and a partition of ¢ = 750 x 750
equal-sized cells defined in G = (Linins Limax) X (Lzmins Lzmax) = (0,
0.83) x (— 0.83,0.83) on S. The results are almost independent of
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Figure 8. Dg, Var(J)/(2¢) (in logarithmic scale) as a function of time. The
top panel corresponds to an initial ensemble located at L = 0.38, L, = 10~*
while the bottom panel to the one at L = 0.40, L. = 10~%. The green curve
corresponds to a least-squares fit of the form Var(J) = 2D, + ¢ divided by
2t with Dy ~ 1.84 x 107 and ¢ ~ 0.002.

q provided that it lies in the suitable interval suggested in Cincotta
et al. (2021b) and Cincotta & Giordano (2023).

Fig. 8 (top panel) presents the results for the ensemble at L = 0.38,
L, = 107" where the evolution of Ds is drawn in red. Notice that
for t &~ 4 x 10* it reaches an asymptotic value close to 7.25 x 1078
while the ensemble variance of J divided by ¢, depicted in blue, is
still decreasing but at t = 10° both provide a diffusion coefficient of
a comparable order of magnitude. Indeed, the least-squares fit in the
normal approximation leads to D; ~ 3.2 x 1078, half of the value
attained by Ds.

None the less, considering the initial ensemble at L = 0.40, L, =
1074, the rate of the variance displays a quite different behaviour as
Fig. 8 (bottom panel) shows. In this case Dg approaches to a nearly
constant value of 1.3 x 107% after &~ 2 x 10* while Var(J)/(2f)
decreases as ~1/t. Using the same least-squares fit as before (for
the normal case) for Var(J), D, ~ 1.84 x 107, ¢ ~ 0.002, the fit
of Var(J)/(2¢) is drawn in green. Notice that over the full time-span
c/(2t) > Dy revealing the nearly 1/t law. The computed diffusion
coefficients for this experiment differ in one order of magnitude.

In any case, the entropy formulation provides an estimate of the dif-
fusion or instability time despite the nature of the diffusion process.
Indeed, for the given examples, Ds converges to asymptotic values
at relatively short motion times while, in the variance approach,
the results are rather different if a normal or anomalous law for
the diffusion is assumed. Although the normal character seems to
provide better estimates than the anomalous one, large motion times
are required to obtain confident values of D;. Notice, that in the case
of very slow diffusion, Dy is about one order of magnitude larger that
D J.

It remains unclear if ~ Dg' or ~ D! provide the right diffusion
time-scale, issue that will be discussed in the forthcoming section.
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Figure 9. Tp, Tinst, and Ty, against the initial value of L. The dotted line at
1.5 x 10° indicates the total motion time considered in the plain numerical
simulations to get Tp.

Let us point out that the main difference between the entropy
approach and the normal diffusion approximation over the full time-
span rests in equation (7); in the entropy formulation the normal
character of the transport process is assumed locally, in each interval
At. This is in fact the main advantage of the entropy formulation
with respect to the variance evolution approach.

5.1 Macroscopical instability times

Now we proceed to investigate the diffusion for several initial
ensembles, also of n, = 500, taken along a segment on L. According
to the results shown in Fig. 5, we set 0.33 < L < 0404, L, = 1074,
in order to avoid the quite restricted diffusion corresponding to L >
0.41.

First we compute a diffusion time, Tp, through the straight
integration of the equations of motion up to ¢ = 1.5 x 10°. In this
experiment, we have defined T}, as the required motion time for the
orbits starting at the initial ensemble to cross any of the boundaries
L, =031,L,=045,L; =—0.16, L, = 0.16 shown in Fig. 5 on the
section S. Actually, in order to reduce stickiness effects, the diffusion
time is defined as the average value over the n,, initial conditions in
the ensemble.

Later on, the instability time Ti, given in (11) is computed for
the same set of initial ensembles, with A = (I, — L)/2 =0.07, K =
1, and a motion time T = 10° with Az = 400, so L = 250. However
as Fig. 8 shows, the average is performed over the last 230 intervals
to skip the initial transient. In all the experiments the partition is
fixed, the same as the one adopted in the experiments addressed in
the previous section.

As an additional estimate, we also derive a diffusion or instability
time provided by the variance evolution in the normal approximation,
Tyar, defined in a similar way as Tj,g in (11),

AZ
T =K D, (23)
where D, is the diffusion coefficient derived from the variance
evolution also through a least-squares fit, and K is the same constant
as in Ty, For consistency we set K = 1 as above.

The results are presented in Fig. 9, T in blue, Tiy in red, and T,,
in magenta, as a function of the central value of L in each ensemble.

Recall that the diffusion time presents a saturation value given
by the total motion time considered, 1.5 x 10°. Notice however that
since Tp is the average over the ensemble, those values of T, close to

Diffusion time in a triaxial galactic potential ~ 901

the saturation one reveal that many of the trajectories in the ensemble
do not escape. All orbits in ensembles with L < 0.392 escape, the
diffusion time ranging from 2 x 10* up to 1.3 x 10° while for L >
0.392 the trajectories remain close to the initial ensemble.

On the other hand, T, follows a similar trend as Tp, quite close
to the latter whenever L < 0.392 but, for larger values of the angular
momentum, it raises up to 3 x 10° revealing that the diffusion is quite
slow when L > 0.392 and T,y seems to provide the actual value of
the diffusion time.

The estimation of the diffusion time given by T, leads to
somewhat larger values than Tp in the range 0.33 < L < 0.38, the
estimates could be improved if we adopt K = 1/2. In this interval
T,a shows a slight decreasing trend while both, T, and Ty, exhibit
a slow increase with L. For L > 0.38, T,,, takes quite large values in
comparison with 7p and Tjpg.

From these results it turns out that in this triaxial model, the better
approximation to the actual diffusion time, i.e. the one obtained
through the straight numerical simulations, is provided by the entropy
formulation T, . On the other hand, the variance approach, as already
discussed, does not yield confident values of the time-scales for
macroscopical instabilities. This conclusion is fully consistent with
previous results regarding simple multidimensional dynamical sys-
tems of discrete and continuous time as well as different exoplanetary
systems (Alvez Silva et al. 2021; Cincotta et al. 2021a, b; Cincotta &
Giordano 2023).

From the physical point of view and recalling that the largest
estimation of the Hubble time in this model is Ty ~ 600 (Muzzio
2006), it becomes clear that diffusion processes are irrelevant since
the faster ones require diffusion times larger than 2 x 10* to produce a
small change in the unperturbed integrals. This is in accordance with
the qualitatively discussion given in Maffione et al. (2015, 2018)
regarding the inability of chaotic diffusion to erase the trace of
ordered motion in a neighbourhood of the Sun.

While the amount of chaotic motion could be relevant in a given
triaxial galactic model, the above results suggest that any macro-
scopical instability i.e. the chaotic diffusion is almost negligible in
the dynamical evolution of, at least, a triaxial galactic model.

6 CONCLUSIONS

In this paper we apply the Shannon entropy approach to derive a
diffusion coefficient in a triaxial galactic model. We show that the
computed instability times agree quite well with those obtained by a
plain numerical simulation that yield the right physical time-scales
for a macroscopical instability.

The numerical computation of the Shannon entropy diffusion
coefficient does not require the integration of the first variational
equations and only involves a counting box scheme while integrating
the equations of motion of the system. The computational effort is
similar to the one to estimate the diffusion coefficient through the
evolution of the action’s variances over an ensemble average after
performing the appropriate fitting.

The entropy-like diffusion coefficient provides the actual diffusion
time when the transport process is slow. Indeed, the one obtained by
numerical simulations is always restricted to an upper bound, the total
motion time considered. On the other hand, the time-scales obtained
by the entropy approach are much more accurate than those from the
evolution of the variance in the normal diffusion approximation. If
instead, the anomalous regime is assumed, the estimates are quite far
from the realistic diffusion times, at least in this particular system.

The results here presented for an autonomous Hamiltonian model
resembling an elliptical galaxy reveal once again that the chaotic
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diffusion is almost negligible in most galactic systems since the
smaller diffusion times are beyond the Hubble time. Therefore, in the
line of Binney (see for instance Binney 2018 and references therein)
it could be assumed that most of the phase space of a galactic system
would be foliated by invariant tori.
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