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Working within the path-integral framework we first establish a duality between the partition functions 
of two U (1) gauge theories with a theta term in d = 4 space-time dimensions. Then, after a dimensional 
reduction to d = 3 dimensions we arrive to the partition function of a U (1) gauge theory coupled to 
a scalar field with an action that exhibits a Dirac monopole solution. A subsequent reduction to d = 2
dimensions leads to the partition function of a theory in which the gauge field decouples from two 
scalars which have non-trivial vortex-like solutions. Finally this d = 2 partition function can be related to 
the bosonized version of the two-dimensional QED2 (Schwinger) model.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The notion of dualities has been a source of relevant developments in the context of field theories both in high energy and condensed 
matter physics. In the case of gauge theories, electromagnetic duality, already identified in the absence of sources by Faraday and Maxwell, 
was at the root of Dirac proposal of the possible existence of magnetic monopoles.

The next step in this context was the Montonen-Olive conjecture [1] regarding the existence of two “dual equivalent” field formulations 
of the same theory in which electric (Noether) and magnetic (topological) quantum numbers exchange roles. This duality was then 
recognized as just one example of the so-called S-duality which plays a central role in supersymmetric quantum field theories and also 
in string theories (see for example [2] and references therein).

Concerning condensed matter physics, there has been a growing interest in applications of boson-fermion dualities to the study of the 
quantum Hall regime, U (1) spin liquids, topological insulators and quantum phase transitions (see for example [3] and references therein).

Inspired by the duality established in Ref. [4] relating d = 4 dimensional Maxwell actions with a topological θ -term, we shall first 
rederive such connection, now in the framework of the path-integral formulation of quantum field theory starting from an interpolating 
partition function which allows to connect two Maxwell-θ term partition functions Z Mθ [e, θ] and Z Mθ̃ [ẽ, θ̃ ) related through the S-duality 
group S L(2, Z). We then proceed to a series of dimensional reductions from d = 4 to d = 3 dimensions and from d = 3 to d = 2 discussing 
the resulting partition functions, field equations and their solutions.

2. The interpolating partition function approach

Following the approach developed in Refs. [5,6], we start by introducing an interpolating partition function Z I [e, θ] associated to an 
action S(4)

I [A, B, C; e, θ] in d = 4 euclidean space, which includes three Abelian gauge fields, one of them playing the role of a Lagrange 
multiplier. Within the path-integral approach we shall prove the duality discussed by Chatzistavrakidis et al. [4] at the level of classical 
actions, now for the quantum partition functions.

The action S(4)
I [A, B, C; e, θ] reads

S(4)
I [A, B, C; e, θ] = 1

4e2

Z µ
Fμν [A] − i

2
²μναβ Fαβ [B]

¶µ
Fμν [A] − i

2
²μναβ Fαβ [B]

¶
d4x
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+ i
θ

32π2

Z µ
Fμν [A] − i

2
²μναβ Fαβ [B]

¶µ
1

2
²μναβ Fαβ [A] − i Fμν [B]

¶
d4x

+ i
a

2

Z µ
1

2
²μναβ Fαβ [A] − i Fμν [B]

¶
Fμν [C]d4x (1)

where Fμν [A] = ∂μ Aν − ∂ν Aμ and a is up to now, an arbitrary constant.
The interpolating partition function associated to action (1) is then defined as

Z (4)
I [e, θ] =

Z
D AD B DC exp

³
−S(4)

I [A, B, C; e, θ]
´

(2)

Depending on which two fields one integrates out, Z I will become the partition function for a theory with an action for the remaining 
one.

Integrating over Cμ leads to a delta function, δ[(δμν2 − ∂μ∂ν)Bν ], imposing Bμ to vanish (up to a pure gauge). Then, integration over 
Bμ becomes trivial and one ends with the partition function for a Maxwell-θ -term theory

Z (4)
I =

Z
D A exp

½
−

Z µ
1

4e2
Fμν [A]Fμν [A] + i

θ

64π2
²μναβ Fμν [A]Fαβ [A]

¶
d4x

¾

≡ Z (4)
Mθ [e, θ] (3)

We shall now proceed to obtain a dual action for the field Cμ by integrating over Aμ and Bμ . To that end we complete squares in the 
interpolating action S(4)

I [A, B, C; e, θ], eq. (1). In fact, we can write

S(4)
I [A, B, C; e, θ] =S(I I)[A, B, C] + 32a2e2π4

64π4 + e4θ2

Z
Fμν [C]Fμν [C]d4x

− i
4a2e4π2θ

64π4 + e4θ2

Z
²μναβ Fμν [C]Fαβ [C]d4x (4)

where

S(I I)[A, B, C] = d1

4

Z
²μναβ

¡
Fμν [A] − Fμν [B] + uFμν [C]¢ ¡

Fαβ [A] − Fαβ [B] + uFαβ [C]¢d4x

+ d2

2

Z ¡
Fμν [A] − Fμν [B] + uFμν [C]¢ ¡

Fμν [A] − Fμν [B] + uFμν [C]¢d4x

+ d3

4

Z
²μναβ

¡
Fμν [A] + Fμν [B] + v Fμν [C]¢ ¡

Fαβ [A] + Fαβ [B] + v Fαβ [C]¢d4x

+ d4

2

Z ¡
Fμν [A] + Fμν [B] + v Fμν [C]¢ ¡

Fμν [A] + Fμν [B] + v Fμν [C]¢d4x (5)

with

d1 = d2 = 1

4e2
+ i

θ

32π2
, d3 = −d4 = −d∗

1

u = ia

4

1

d1
, v = −u∗ (6)

Now, changing variables in the interpolating partition function (2),

Aμ → A0
μ = Aμ − Bμ + uCμ , B 0

μ = Bμ + Aμ + vCμ (7)

S(4)
I [A, B, C; e, θ] becomes

S(4)
I [A, B, C; e, θ] =S(I I)[A0, B 0] + 32a2e2π4

64π4 + e4θ2

Z
Fμν [C]Fμν [C]d4x

− i
4a2e4π2θ

64π4 + e4θ2

Z
²μναβ Fμν [C]Fαβ [C]d4x (8)

The terms in S(I I)[A0, B 0] are completely decoupled from C and integration over A0
μ and B 0

μ just gives an irrelevant constant N so that 
one ends with

Z (4)
I [e, θ] = N

Z
DC exp

½
− 32a2e2π4

64π4 + e4θ2

Z
Fμν [C]Fμν [C]d4x

+i
4a2e4π2θ

64π4 + e4θ2

Z
²μναβ Fμν [C]Fαβ [C]d4x

¾
(9)

Now, choosing a = 1/4π we get
2
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Z (4)
I [e, θ] =

Z
DC exp

(
− 1

4ẽ2

Z
Fμν [C]Fμν [C]d4x + i

ẽθ̃

64π2
²μναβ Fμν [C]Fαβ [C]d4x

)

= Z (4)
Mθ [ẽ, θ̃ ] (10)

with

ẽ2 = 64π4 + e4θ2

4e2π2
, θ̃ = − 4π2e4

64π4 + e4θ2
(11)

Then, in view of eq. (3) one has

Z (4)
Mθ [e, θ] = Z (4)

Mθ [ẽ, θ̃ ] (12)

One can see that, working at the level of the interpolating partition function for a theory with action S I introduced in (1), we have 
established a duality between two models with parameters (e, θ) and (ẽ, θ̃ ) related by eq. (11). Such result was found in Ref. [4] by 
relating the classical actions. Finally, after a Wick rotation to 4-d Minkowski space, defining as usual

τ = θ

2π
+ i

4π

e2
(13)

and using relations (11) one gets the standard duality τ̄ = −1/τ which, together with θ periodicity generates the S L(2, Z) group.

3. Dimensional reductions

As it is well known, Yang-Mills self-dual instanton equations in Euclidean space become, after dimensional reduction, the first order 
d = 3 BPS monopole equations when the A4 gauge field is identified with the Higgs field and time dependence is wiped out from all 
fields [7–9]. In this way, the instanton solution [10] can be connected with the ’t Hooft-Polyakov monopole [11]. Also, second dimensional 
reduction to d = 2 dimensions can be seen to led to the first order vortex equations of the Abelian Higgs model [12,13]. We shall here 
proceed to a series of dimensional reductions of the model we discussed above with the idea of finding solutions of the reduced field 
equations and also discuss the resulting partition functions.

We now start to discuss dimensional reductions of the models discussed above. Let us consider the Maxwell-theta term action S(4)
Mθ

associated to the partition function Z (4)
Mθ defined in eq. (3)

S(4)
Mθ [A; e, θ] =

Z
d4x

µ
1

4e2
Fμν [A]Fμν [A] + i

θ

64π2
εμναβ Fμν [A]Fαβ [A]

¶
(14)

with μ = {1, 2, 3, 4}. In order to dimensional reduce the Lagrangian from d = 4 to d = 3 dimensions one proceeds as follows: (i) the field 
dependence is restricted to spatial coordinates xi , ({i = 1, 2, 3}), and (ii) the A4 gauge field component is identified with a scalar field φ,

Ai(x j; x4) → Ai(x j) i, j = 1,2,3

A4(x j; x4) → φ(x j) (15)

With this the (Euclidean) interpolating partition function of the resulting reduced theory is given by

Z (3)
I [e, θ] = exp

Z
D Ai Dφ exp(−S(3)

Mθ [A, φ; e, θ]) (16)

with

S(3)
Mθ [A, φ; e, θ] =

Z
d3x

µ
1

2e2
(∂iφ)2 + 1

4e2
Fij[A]Fij[A] − i

θ

16π2
∂iφεi jk F jk

¶
(17)

Following [8], we can find solutions to this euclidean 3d model as static solutions of 4d Minkowski model. Notice that this requires to absorb 
the imaginary unit “i” in the constant θ (as the Minkowski version of the θ -term does not contain i). We will do something more general 
considering the θ parameter a complex constant and find complex field solutions. Since the equations are linear, we can always isolate 
the real part at the end, if necessary. Therefore, from now on, we will write the action as

S(3)
Mθ [A, φ; e, θ] =

Z
d3x

µ
1

2e2
(∂iφ)2 + 1

4e2
Fij[A]Fij[A] − θ

16π2
∂iφεi jk F jk

¶
(18)

with θ complex.
As we shall see, we will find a Dirac monopole solution of the resulting partition function which can be seen, following Polyakov’s idea 

to analyze confinement in compact QED3, as instantons in the Euclidean theory [14].
In order to see that Dirac monopoles can also arise as classical solutions of the field equations of action S(3)

Mθ , we start by integrating 
by parts the last term in S(3)

Mθ . One has

− θ

16π2

Z
d3x∂iφεi jk F jk = θ

8π2

Z
d3xφ∂i Bi . (19)

where Bi = 1
2 εi jk F jk and the surface term vanishes. Then, for the case of Dirac monopole configurations, this term in the action cannot be 

neglected and the resulting field equation for φ takes the form
3
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∇2φ = e2θ

8π2
∂i Bi (20)

The magnetic field Bi of a monopole including the Dirac string along the z direction reads

EB(Ex) = g

r2
ř − g2(−z)δ(x)δ(y)ǩ (21)

so that the field equation for φ takes the form

∇2φ = e2θ g

8π2
δ(3)(Er) (22)

where we have used eg = 2nπ . From this result we see that φ is given by

φn(Ex) = − neθ

16π2

1

r
(23)

Since the Dirac monopole satisfies Ampère’s law (there is no electric current in the model) and εi jk∂i∂ j(1/r) = 0, eqs. (21) and (23) for 
the magnetic and scalar fields provide a consistent solution for the system with action (17). Note that in contrast with the BPS monopole 
solution in which the scalar has asymptotically a hedgehog behavior, in the present case φ behaves as a Coulomb potential with a charge 
neθ/(4π).
The field equations are linear, so we can also have multi-monopole configurations, with monopole located at positions Exi ,

Bmulti-m(Ex) =
X

i

B(Ex − Exi) , φmulti-m(Ex) =
X

i

Eφni (Ex − Exi) (24)

We now proceed to a second dimensional reduction of the partition function Z (3)
I from the d = 3 to d = 2 dimensions. In this case we 

shall identify A3 with a second scalar ψ and all fields will depend just on xa , a = 1, 2. Now, before this identification it will be convenient 
to fix the gauge in a way such that the resulting scalar ψ is massive. To this end we shall consider a gauge fixing à la ’t Hooft-Feynman 
inserting in the path integral (18) the condition

exp

µ
−1

2
μ2

Z
d3xA2

3

¶
(25)

with μ a parameter with dimensions [μ] = 1 since in d = 2 dimensions the fields Aμ, φ and ψ should be dimensionless, [Aμ] = [φ] =
[ψ] = 0. Note that limit μ2 → ∞ corresponds to fixing the gauge to A3 = 0 while the “Feynman gauge” can be obtained for μ2 = 2.

We are now ready to identify A3 with a scalar field ψ and dimensionally reduce partition function (18). The resulting d = 2 partition 
function Z (2)

I takes the form

Z (2)
I [e, θ] =

Z
D Aa DφDψ exp

³
−S(2)

Mθ [A, φ,ψ; e, θ]
´

(26)

where

S(2)
Mθ [A, φ,ψ; e, θ] =

Z
d2x

µ
1

2
(∂aφ)2 + 1

2
(∂aψ)2 + μ2

2
ψ2 + 1

4
Fab[A]Fab[A] − e2θ

8π2
∂aφεab∂bψ

¶
(27)

Since the gauge field Ai decouples from the scalars its field equations read

∂a Fab = 0 (28)

while the scalar fields satisfy the coupled equations

∇2φ = e2θ

8π2
εab∂a∂bψ³

∇2 − μ2
´

ψ = − e2θ

8π2
εab∂a∂bφ (29)

As in the d = 3 dimensions, we can find classical solutions, in this case scalar global vortex-like solutions to these equations in terms of 
Green’s functions of the operators ∇2 − μ2, and εab∂a∂b ,³

∇2 − μ2
´

Gr,μ(x) = 2πδ(2)(Ex) , εab∂a∂bGφ(Ex) = 2πδ(2)(Ex) (30)

where

Gr,μ(Ex) = −K0(μr) (31)

Gϕ(Ex) = arctan(y/x) (32)

with r =
q

(x2
1 + x2

2), ϕ is the polar angle, and K0 is the modified Bessel function. In terms of these Green’s functions a solution to (29)

can be written as
4
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φ = A Gϕ(Ex)

ψ = − e2θ

8π2
A Gr,μ(Ex) (33)

with A an arbitrary constant. Again, due to the linearity of the field equations, we can consider global multi-vortex configurations

φ =
X

i

Ai Gϕ(Ex − Exi)

ψ = − e2θ

8π2

X
i

Ai Gr,μ(Ex − Exi) (34)

As a side note, if μ = 0 the vortex-like solutions have a richer structure,

φ = A Gϕ(Ex) + e2θ

8π2
B ln(r)

ψ = − e2θ

8π2
A Gr,μ(Ex) + B Gϕ(Ex) (35)

with B another arbitrary constant.
We will show that the model described by action (27) is dual, in the large μ limit, to a 2d massive vector field. In what follows, all the 

operations are assumed to be done to the partition function Z = R
D fields e−S , however, for conciseness, we will only record the changes 

in the action.
The action (27) can be written as

S =
Z

d2x

µ
1

2
(∂aφ)2 + 1

2
(∂aψ)2 + μ2

2
ψ2 + 1

4
Fab[A]Fab[A] − e2θ

8π2 Ba∂aφ

¶

+ i

Z
d2xλa (Ba − ²ab∂bψ) (36)

where λa is a vector (Lagrange-multiplier) field enforcing the condition

Ba = ²ab∂bψ (37)

We can then re-write action (36) as

S =
Z

d2x

µ
1

2
(∂aφ)2 + 1

2
ψ2

³
−∇2 + μ2

´
ψ − i²ab∂aλbψ + iBa

µ
λa + i

e2θ

8π2
∂aφ

¶¶
+ SA (38)

where SA = 1
4

R
d2x Fab[A]Fab[A]. We shall now integrate the field ψ in the partition function with action S , leading to the following 

effective action

S =
Z

d2x

µ
1

2
(∂aφ)2 + 1

2
(²ab∂aλb)

³
−∇2 + μ2

´−1
(²ab∂aλb) + iBa

µ
λa + i

e2θ

8π2
∂aφ

¶¶
+ SA (39)

In the large μ limit, we have³
−∇2 + μ2

´−1 = 1

μ2
+ 1

μ4
∇2 + · · · (40)

Keeping the leading order, we get

S =
Z

d2x

µ
1

2
(∂aφ)2 + 1

4μ2
Fab[λ]2 + iBa

µ
λa + i

e2θ

8π2
∂aφ

¶¶
+ SA (41)

where we have used that, in two dimensions,

(²ab∂aλb)
2 = 1

2
(∂aλb − ∂bλa)

2 = 1

2
Fab[λ]2

Finally, we integrate the field Bi which enforces the condition

∂φa = −i
8π2

e2θ
λa

so we get

S =
Z

d2x

µ
1

4μ2
Fab[λ]2 − 1

2

µ
8π2

e2θ

¶
λ2

a

¶
+ SA (42)

which correspond to a massive vector field λa (together with a regular gauge field Aa).
We see that action S can be identified with a Proca action for a massive (spin 1) vector field in d = 2 dimensions which is precisely 

the bosonized version of the QED2 Schwinger model [15] in which the 2-d fermion 9 with electric charge eS M is coupled to a gauge field 
which after bosonization acquires a mass m such that m2 = e2

S M/π thus closing the series of dimensional reduction models that we have 
presented ending with a fermion-gauge field model.
5
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4. Summary and Discussion

Working within the path-integral framework we have established a series of dualities at the level of the partition functions. We have 
also proceed to a series of dimensional reductions from d = 4 dimensions to d = 3 and then to d = 2 and discussed the solutions of the 
classical field equations of the resulting theories.

Starting from the interpolating partition function Z (4)
I [A, B, C; θ] in d = 4 dimensions introduced in eq. (2) and alternatively integrating 

over Bμ, Cμ or Bμ, Aμ we proved the duality between partition functions, Z (4)
Mθ [A; e, θ] and Z (4)

Mθ̃
[C; ̃e, θ̃] with parameters (e, θ) and ẽ, θ̃ ), 

related according to eq. (11) which can be seen corresponds to the standard duality τ̄ = −1/τ duality so that this, together with θ
periodicity generates the S L(2; Z) modular group.

We then proceeded to a dimensional reduction from d = 4 to d = 3 and then from d = 3 to d = 2 obtaining actions of bosonic models 
and founding classical solutions of their field equations. In the former case we found a Dirac monopole solution for the gauge field and a 
1/r (Coulomb potential) behavior for the scalar arising from the A4 = φ identification, to be compared with the BPS solution for the non-
Abelian case which corresponds to a ’t Hooft-Polyakov monopole with a hedgehog-like scalar. Concerning the d = 3 → d = 2 reduction we 
ended with a Aa gauge field (a = 1, 2) and two scalars φ and ψ with a partition function with action (39). We also solved the associated 
field equations finding non-trivial scalar solutions which correspond to global vortex-like solutions. Moreover, by integrating the scalars 
fields we ended with a Proca action which, via bosonization, can be finally connected between the bosonic model and QED2.

The results described above are summarized in the following graph:

Z (4)
Mθ [A; e, θ]

Z (4)
Mθ [A, B, C; e, θ] Z (3)

Mθ [A, φ; θ, e] Z (2)
Mθ [A, θ, e] Z (2)

Q E D2
[9, A; eS M ]

Z (4)

Mθ̃
[C; ẽ, θ̃ ]

R
dBdC

R
dBdA

4→3 3→2 →ψ

We expect to discuss applications of the dualities that we have discussed here to problems in quantum field theory as well as in 
condensed matter.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgements

We would like to thank Carlos Núñez for helpful comments and suggestions. F.A.S. is financially supported by PIP-CONICET (grant 
PIP688) and UNLP (grant X910).

References

[1] C. Montonen, D.I. Olive, Magnetic monopoles as gauge particles?, Phys. Lett. B 72 (1977) 117.
[2] L. Alvarez-Gaume, F. Zamora, Duality in quantum field theory and string theory, AIP Conf. Proc. 423 (1) (1998) 46.
[3] T. Senthil, DamT̃hanh Son ChongW̃ang, Cenke X̃u, Duality between (2 + 1) d quantum critical points, Phys. Rep. 827 (2019) 1.
[4] A. Chatzistavrakidis, G. Karagiannis, A. Ranjbar, Duality and higher Buscher rules in p-form gauge theory and linearized gravity, Fortschr. Phys. 69 (2021) 2000135.
[5] E.H. Fradkin, F.A. Schaposnik, The fermion-boson mapping in three-dimensional quantum field theory, Phys. Lett. B 338 (1994) 253.
[6] J.C. Le Guillou, E.F. Moreno, C. Nunez, F.A. Schaposnik, Duality between topologically massive and selfdual models, Mod. Phys. Lett. A 12 (1997) 2707.
[7] J.M. Cervero, Exact Monopole Solution and Euclidean Yang-Mills Field, HUTP-77/A011, 1977.
[8] M.A. Lohe, Two-dimensional and three-dimensional instantons, Phys. Lett. B 70 (1977) 325.
[9] N.S. Manton, Complex structure of monopoles, Nucl. Phys. B 135 (1978) 319, https://doi .org /10 .1016 /0550 -3213(78 )90135 -9.

[10] A.A. Belavin, A.M. Polyakov, A.S. Schwartz, Y.S. Tyupkin, Pseudoparticle solutions of the Yang-Mills equations, Phys. Lett. B 59 (1975) 85.
[11] G. ’t Hooft, Magnetic monopoles in unified gauge theories, Nucl. Phys. B 79 (1974) 276;

A.M. Polyakov, Particle spectrum in the quantum field theory, JETP Lett. 20 (1974) 194.
[12] E.B. Bogomolny, Stability of classical solutions, Sov. J. Nucl. Phys. 24 (1976) 449.
[13] H.J. de Vega, F.A. Schaposnik, A classical vortex solution of the Abelian Higgs model, Phys. Rev. D 14 (1976) 1100, https://doi .org /10 .1103 /PhysRevD .14 .1100.
[14] A.M. Polyakov, Quark confinement and topology of gauge groups, Nucl. Phys. B 120 (1977) 429.
[15] R. Roskies, F. Schaposnik, Comment on Fujikawa’s analysis applied to the Schwinger model, Phys. Rev. D 23 (1981) 558.
6

http://refhub.elsevier.com/S0370-2693(21)00560-8/bib112F92C23210234B361BA9E87FD618B9s1
http://refhub.elsevier.com/S0370-2693(21)00560-8/bibBE9135706C00F12FD628807FE7972AD1s1
http://refhub.elsevier.com/S0370-2693(21)00560-8/bibDFCC533BD1335F67A8A6598DA8E9B402s1
http://refhub.elsevier.com/S0370-2693(21)00560-8/bibA87FF679A2F3E71D9181A67B7542122Cs1
http://refhub.elsevier.com/S0370-2693(21)00560-8/bib2C9B682412689D6723E3B31653B5774Cs1
http://refhub.elsevier.com/S0370-2693(21)00560-8/bib6515F66056B8CBCAA61CA9E02EFB3698s1
http://refhub.elsevier.com/S0370-2693(21)00560-8/bib44D38A9F275F99ED1F3BE3E044CAB30Cs1
http://refhub.elsevier.com/S0370-2693(21)00560-8/bib0F44D78D9AE82F2035BE15BC7FCEFD3Fs1
https://doi.org/10.1016/0550-3213(78)90135-9
http://refhub.elsevier.com/S0370-2693(21)00560-8/bibCEFBAC18C5A1CAADCD2301EB99AE1F58s1
http://refhub.elsevier.com/S0370-2693(21)00560-8/bibE6FC8CE107F2BDF0955F021A391514CEs1
http://refhub.elsevier.com/S0370-2693(21)00560-8/bibE6FC8CE107F2BDF0955F021A391514CEs2
http://refhub.elsevier.com/S0370-2693(21)00560-8/bibE0B7867F17B3246E9E53B9D1CD3DE093s1
https://doi.org/10.1103/PhysRevD.14.1100
http://refhub.elsevier.com/S0370-2693(21)00560-8/bib8FB30A66C1B757F56AF89282F18D6F30s1
http://refhub.elsevier.com/S0370-2693(21)00560-8/bib8CEE5050EEB7C783E8BFAA73003CED3As1

	Dualities and models in various dimensions
	1 Introduction
	2 The interpolating partition function approach
	3 Dimensional reductions
	4 Summary and Discussion
	Declaration of competing interest
	Acknowledgements
	References


