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Abstract 

The spreading dynamics of an initially small damage is studied for the two-dimensional Ising model at criticality using 
the Glauber dynamics. The number of damaged sites, N&t), the survival probability of the damage, P(t), and the mean 
square distance over which the damage spreads, R2(t), obey a simple power law behavior with critical exponents 
77 = 1.11 f 0.03, 6 = 0.58 f 0.03 and z * = 1.19 + 0.03, respectively. It is found that the scaling relation d, = 277/z * gives 
the fractal dimension of the Ising droplets. 

Damage spreading is a very useful method for 

extracting thermal properties from Monte Carlo sim- 
ulations of Ising magnets (see Refs. [l-11], for a 
review see also Ref. [12]). Furthermore this numeri- 

cal technique has very recently been employed for 
the study of irreversible phase transitions in reaction 

systems 113-151. 
The damage spreading problem consists, first, in 

taking a steady state configuration of the system, 

{(T *}, and to create, at t = 0, an initial damage D(O) 
in that configuration (this procedure gives a second 
configuration (aB}). Then, one investigates the time 

evolution of both configurations using the same dy- 
namics calculating their Hamming distance, defined 

by 

n(r)=;,5 Iu,*(q-qB(qI, 
1=1 

(1) 

where N is the number of sites of the system. 
Physically D(t) measures the fraction of sites for 

which both configurations are different. Starting with 

a small D(O) value, D(t) will go asymptotically to 
zero in the “frozen phase”, whereas it will tend to a 
finite value different from zero in the “chaotic 

phase”. 
The aim of this work is to report results obtained 

studying the dynamics of damage spreading in the 

2D Ising model using the Glauber dynamics. 
The 2D Ising model is simulated in a square 

lattice of side L assuming periodic boundary condi- 
tions. The spin ai associated to the node i of the 
lattice takes either of the two values + 1. Interactions 
between spins are described through the Hamiltonian 

H given by 

H= -J c uiuii’ (2) 
(i. j) 

where (i, j) indicates nearest neighbor nodes and 
J > 0 is the coupling constant of the ferromagnet. 
The model is simulated using the Glauber dynamics, 
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so a randomly selected spin is flipped with a proba- 

bility P(flip) given by [12] 

P(flip) = exp( -PAH)/[l + exp( -PAH)], 

(3) 

where AH is the difference between the energy of 
the would-be new configuration and the old configu- 

ration. Reported results are obtained at the critical 

temperature T,, so p = l/kT,. 
In order to study the dynamics of damage spread- 

ing an equilibrium configuration {er A) is generated 
and replicated identically in a second system {(T B}, 

except for the central spin which takes opposite 
directions in both configurations. Then according to 

Eq. (1) the initial damage is D(O) = l/L’. Then the 
Monte Carlo procedure is implemented in the stan- 
dard sequential manner but equivalent sites in both 
configurations are visited randomly at the same time 
and the same random number is employed in order 

to update the systems according to Eq. (3). This 
procedure assures that the configurations oA and 

aB undergo the same dynamics. The Monte Carlo 
time unit involves L2 trials. Runs are performed 

using a multitransputer system with five T-805 pro- 
cessors working in parallel. Results are averaged 
over 2 X lo5 (2 X 104) different configurations for 

L = 13 (L = loo), respectively. The data shown for 
L = 100 only have required about one month of CPU 
time. 

Starting from a damaged spin localized at the 
center of the sample at t = 0, the following dynamic 

properties are evaluated: the survival probability of 
the damage {P(r)}, the average number of damaged 

spins per lattice site {N,(t)}, and the mean square 
distance over which the damage spreads {R’(t)}. 

Both N,(t) and R2(t) are evaluated only for those 
samples having a nonvanishing damage at time r. 

It is expected that at criticality, the measured 
properties would exhibit power law behavior accord- 
ing to 

NJ t> a t”, (4a) 

P(t) a t-‘, (4b) 

and 

R2 a t”, 

where 7, 6 and a* are critical exponents. 

(4c) 

Fig. 1. Log-log plot of &(t) versus t for lattices of different 

sizes. (0) L=12, (0) L=25, (V) L=50, (7) L=75, (0) 
L = 100. 

Fig. 1 shows log-log plots of Nd versus t ob- 
tained using lattices of different sizes. It is observed 
that Nd grows from the initial value N,(O) = l/L2 
and then reaches a plateau N&t 2 T) = 1, where at 

time r one has the maximum (unitary) damage. The 
obtained unitary damage for t > r implies that the 

reference configuration gA is the mirror image of 
the initially damaged configuration qB. This is a 

dramatic evidence of a macroscopic effect that can 
be caused by a microscopical initial damage. This 
effect can be understood considering that for finite 

lattices the order parameter assumes a finite value 
even at criticality (i.e. the spontaneous magnetization 
takes a value 1 M,,(L) 1 > 0 for T = T,). For a finite 
system, there is always a nonzero probability that the 
system may pass from a state near + I M,,(L) I to a 
state near - I M,,(L) 1, as well in the opposite direc- 

tion. So, for T > T, the order parameter probability 
distribution can be described by a single peaked 
Gaussian, while for T < T, one has a double peaked 
Gaussian at & 1 M,,(L) I. At criticality both peaks 
approach each other and stay at a distance of the 
order of L - B/v [16]. Accordingly the initial damage 
may induce the damaged configuration u B to evolve 
towards the mirror image of the reference configura- 
tion ffA. After that the damage remains unitary due 
the symmetry of the Glauber dynamics given by Eq. 
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(3). Obviously, this behavior cannot be observed 

using other dynamics, e.g. the heat bath dynamics. 
The ergodic time 7 necessary to observe the 

excursion of the order parameter from a state near 
+ I M,,(L) ( to a state near - I M,,(L) I, as well as in 
the opposite direction behaves as [17] 

7a~2aIl-~/TCI-yZ, (5) 

where ,$a I -T/T, I-” is the correlation length, v 

the correlation length exponent and z the standard 
dynamic exponent. However, just at criticality and in 

a finite system the correlation length is of the order 
of the lattice size L, so 5 = L and from Eq. (5) it 

follows that 

7aL’. (6) 

This behavior agrees qualitatively with results shown 

in Fig. 1. In fact the time required for a complete 
inversion of the spins in both configurations depends 
on L. Furthermore, a log-log plot of T versus L 
(Fig. 2) shows that the obtained data is consistent 
with Eq. (6) and z = 2.16 f 0.02 [18]. Note that in 
Fig. 2 we have also included the L-dependent times 

at which the damage spreads over half of the lattice 
sites. 

Based on the already discussed results one may 

expect that log-log plots of Nd versus the scaled time 

10 ,- -1 

10’ 

IO2 
IO’ 10' 

L 
Fig. 2. Log-log plot of 7 versus L. (@), (0) correspond to the 

times required for the damage to spread over half and the whole 

lattice, respectively. The straight line has slope z = 2.16 and has 

been drawn for comparison. 

IO-- 

Fig. 3. Log-log plot of N,(t) versus the scaled time t/L’ for the 

same lattices as shown in Fig. 1. 

t/T would exhibit data collapsing. In fact this be- 
havior is nicely observed in Fig. 3. A least-squares 

fit of the observed straight line for t < T according 
to Eq. (4a) gives 77 2: 1.11 f 0.03. 

Fig. 4a shows log-log plots of the survival proba- 

bility of the damage versus t. In agreement with the 
behavior already discussed for N,(t) versus t, one 
has that at early times P(t) decreases and for t > T 

reaches a constant value (P,(t + w>) independent of 
t since mirror configurations will remain so forever. 
A least-squares fit of the data for t -=x T gives 6 = 
0.58 + 0.03. As it follows from Fig. 4a P, depends 
on the lattice size. This behavior is shown in Fig. 4b, 
where a simple power law dependence of the type 
P, a L-“, with x = 0.93 + 0.05, is found. 

Since Nd gives the damage of the surviving sam- 
ples, the average damage of all samples (D(t)) can 

be written as D(t) = N,(t)P(t) and therefore D(t) 
increases according to a power law behavior given 

by t”, with y = 77 - S = 0.53 f 0.06. This results 

shows that at criticality one has damage spreading. 
In contrast, we have observed damage healing slightly 
below T,. 

Fig. 5 shows log-log plots of R2 versus t. The 
observed plateau for t > T is consistent with the 
already discussed inversion of the spins. A least- 
squares fit of the data for t < T gives z * = 1.19 f 
0.03. 
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The fractal dimension of the damaged cloud (d,) 
can be defined as 

Nd(t) aRdf (7) 

so using Eqs. (4a) and (4~) one has d, = 27/z * . 
Now replacing the obtained values of the exponents 

it follows that d, = 1.87. This figure is in agreement, 
within error bars, with the fractal dimension of Ising 

droplets at criticality given by d, = d - p/u = 15/8 
= 1.875. Note that Ising droplets are made putting 

bonds between neighboring spins of the same do- 
main with probability P(T) = 1 - exp(2J/kT) [19]. 

100 

a 

10-l 

lo-: 

1o-3 

lo3 10’ IO2 10" IO4 

Fig. 4. (a). Log-log plots of P(t) versus t for lattices of different 

sizes. (0) L = 25, ( v ) L = 75, ( 0) L = 100. (b) Log-log plot of 

P, versus L. The straight line has slope x = 0.93. 

I p’ 

Fig. 5. Log-log plots of R2 versus t for lattices of different sizes 

(olL=12,(~)L=25,tv)L=50,(O)L=75,(0)L=100. 

The numerical determination of the fractal dimension 

of the damaged cloud in the 2D Ising ferromagnet at 
T, has given a value d, = 1.87 + 0.02 [3], in good 
agreement with the present result. 

To conclude, the dynamics of damage spreading 
has been studied in the two-dimensional Ising mag- 
net at criticality. The number of damaged sites, the 

survival probability of the damage and the average 
square distance over which the damage spreads obey 
a simple power law behavior with dynamic critical 

exponents 77 = 1.11 + 0.03, 6 = 0.58 + 0.03 and z * 

= 1.19 _t 0.03, respectively. By means of the scaling 
relation d, = 271/z * the fractal dimension of the 
Ising droplets given by d, = d - p/v is obtained, 

within error bars. These results lead us to conjectur- 
ing the following relationship, 

d(l-q/z*)=P/u, d=2, 

which relates the static critical exponents p and v 
with the dynamic critical exponents q and z* char- 
acteristic of the damage spreading process. 

A microscopic damage due to a single flipped 
spin could induce a complete inversion of the dam- 
aged lattice with respect to the reference one. 
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