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Extended proton-neutron quasiparticle random-phase approximation
in a boson expansion method
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The proton-neutron quasiparticle random phase approximation ~pn-QRPA! is extended to include next to
leading order terms of the QRPA harmonic expansion. The procedure is tested for the case of a separable
Hamiltonian in the SO~5! symmetry representation. The pn-QRPA equation of motion is solved by using a
boson expansion technique adapted to the treatment of proton-neutron correlations. The resulting wave func-
tions are used to calculate the matrix elements of double-Fermi transitions. @S0556-2813~99!03107-6#

PACS number~s!: 21.60.Fw, 21.60.Jz, 23.40.Hc
I. INTRODUCTION

The use of the proton-neutron quasiparticle random phase
approximation ~pn-QRPA! in the treatment of proton-
neutron excitations and in the description of charge-
exchange and beta-decay observables is by now a well-
known technique @1#. Among the various versions of the
procedure, which was originally proposed by Baranger @2#
and by Hableib and Sorensen @3#, one can mention the intro-
duction of renormalized particle-particle interactions by Vo-
gel and others @4,5#. The agreement between earlier shell
model and QRPA results, particularly in the field of double-
beta-decay studies @6#, was improved by the addition of the
particle-particle terms of the proton-neutron interaction in
the pn-QRPA equations and their use has motivated a con-
siderable amount of work on the extension of the pn-QRPA
method itself. We shall avoid the task of going into details
about the several variations to the pn-QRPA approach exist-
ing in the literature, which have been reviewed recently @7#,
and we shall rather start the present discussion by referring to
the work of Muto @8#. The work of Ref. @8# belongs to the
group of theoretical works where the emphasis is put on the
validity of the pn-QRPA beyond the level of the quasiboson
approximation @9,10#. In Ref. @8# occupation numbers of the
single-quasiparticle proton and neutron states are introduced
in the equations of motion to account for density fluctuations
different from the pure particle-hole ones. We think that the
validity of this approximation, and the subsequent self-
consistency requirement imposed at the quasiparticle level of
approximation can be further investigated. We want to com-
pare it with results obtained by performing a boson expan-
sion method. In order to assess the validity of the method of
Ref. @8# we have adopted a schematic but nontrivial Hamil-
tonian which belongs to the SO~5! representation and which
has been shown to produce good results when compared with
realistic interactions @11#. We have performed a boson ex-
pansion of this Hamiltonian by introducing a generalization
of the boson expansion method developed by Evans and
Krauss @12#. The use of boson expansions, in the context of
proton-neutron interactions, is a relatively unexplored do-
main of the known applications of the boson expansion
methods @13#. We have found that it is also a very useful
technique in dealing with charge-dependent interactions, as
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we shall show next. The formalism is explained in Sec. II.
The use of the present formalism to calculate the pn-QRPA
eigenfunctions and eigenvectors and the behavior of the pn-
QRPA near the phase transition point @14# is shown in Sec.
III and the results are discussed in terms of the expectation
value of the boson number operator. The pn-QRPA wave
functions are used to calculate the matrix elements corre-
sponding to double-beta-decay Fermi transitions. Conclu-
sions about the effects due to the inclusion of the next-to-
leading order terms in the proton-neutron QRPA are drawn
in the last section.

II. FORMALISM

Since we are interested in the treatment of proton-neutron
interactions we have adopted for the present study the sche-
matic Hamiltonian which has been proposed by Kuz’min and
Soloviev @15# and lately used in Refs. @16# and @11# in deal-
ing with double-beta-decay calculations. The Hamiltonian
includes a single-particle term, a separable monopole pairing
interaction for protons and neutrons and a schematic charge-
dependent residual interaction with both particle-hole and
particle-particle proton~p!-neutron~n! channels @16#. It is
written as

H5epNp2GpSp
†Sp1enNn

2GnSn
†Sn12xb2b122kP2P1, ~1!
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are the number operator, the monopole pair operator, the
particle-hole and the particle-particle creation operators, re-
spectively. These definitions are restricted to the same
single-j state for protons and neutrons ~single-shell limit!
and the summations run over the m projection of the shell
angular momentum j. Proton and neutron single particle or-
bits are denoted by the subindexes ~p! and ~n! and ap

†
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5ajpmp
† is a particle creation operator and ap̄

†

5(2) j p2mpa jp2mp
† its time reversal.

By performing the transformation of the particle creation
and annihilation operators of the Hamiltonian ~1! to the qua-
siparticle representation, by using the Bogoliubov transfor-
mations for protons and neutrons separately @1#, the resulting
Hamiltonian can be written

Hqp5EpNp1EnNn1l1A†A1l2~A†A†1AA !

2l3~A†B1B†A !2l4~A†B†1BA !1l5B†B

1l6~B†B†1BB !, ~3!

where Ep ,En are the quasiparticle energies and the operators
and matrix elements of the above equation are defined by
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following the notation of @11#, with V5 j11/2. The quasi-
particle energies Eq and the occupation probabilities vp

2 and
vn

2 are determined from the gap equation and the particle
number conservation conditions.

The operator A†(A) which creates ~annihilates! a pair of
unlike ~proton-neutron!-quasiparticles and the ones corre-
sponding to pairs of identical quasiparticles together with the
charge-exchange operators B†, B, and the number operators
Np , Nn are the generators of the SO~5! algebra. The details
about the solutions of this Hamiltonian in the SO~5! repre-
sentation have been discussed in @11#.

An alternative to the approximate diagonalization per-
formed in @11#, where the reference state is known to have an
undetermined number of quasiparticles, consists on the bo-
son expansion of the generators of the SO~5! algebra by ap-
plying a transformation which preserves the algebra of this
group. The boson mapping proposed by Evans and Krauss
@12# can be adapted to describe proton-neutron operators. We
have obtained the following expressions for each of the op-
erators defined above in terms of bosons, namely:

Ap
†5bp

†~V2np2n f !
1/2,

Ap5~Ap
†!†,
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with

F~n f !5F ~2V122n f !

~V112n f !~V2n f !
G1/2

. ~6!

To leading order in the previous mapping the Hamiltonian
~3! reads
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2V D np1S 2En1
l5
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The linearized version of this Hamiltonian is obtained by
introducing the phonon operator

G†5X fb f
†2Y fb f , ~8!

and by diagonalizing the Hamiltonian in the QRPA phonon
basis. The QRPA equation of motion is written

@H~B !,G†#5vG†, ~9!

and the amplitudes X and Y and the energy v are readily
determined by solving the dispersion relation

~E f2v!X12l2Y50,
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2l2X1~E f1v!Y50, ~10!

with solutions

v5AE f
22~2l2!2, ~11!

for the energy and

X52AE f1v

2v
, Y5AE f2v

2v
, ~12!

for the amplitudes. In the above equations

E f5Ep1En1
l5

2V
1l1 , ~13!

and it shows that the effect of the 1/V terms is basically
reflected upon the unperturbed quasiparticle-pair energy and
it is quite similar to the exchange term of the QRPA ladder
diagram @9#, as expected. The addition of terms proportional
to the couplings l3 and l4, which are of the order 1/AV and
which are usually referred to as scattering terms, would re-
quire a nonzero number of f bosons in the ground state and
then it is not allowed by the present approach @17,18#. In the
following section we shall present and discuss the results of
the calculations which we have performed using the above
introduced formalism.

III. RESULTS AND DISCUSSIONS

We have solved the pn-QRPA equations in the boson
mapping representation and for two sets of model param-
eters. They are V510, Np52 protons, and Nn58 neutrons
~set 1! and V520, Np56, and Nn514 ~set 2!. These values
are taken from Ref. @11# in order to allow for a comparison
between present results and the ones obtained in the SO~5!
representation. Excited proton-neutron two-quasiparticle
states in these model spaces represent states of the double-
odd mass system built upon the initial double-even mass one.
In order to determine the effects due to the inclusion of terms
of the order of 1/V in the pn-QRPA solutions we have di-
agonalized the pn-QRPA equations in the boson basis. The
results corresponding to the energy of the one-phonon state
are shown in Fig. 1, for the two sets of parameters described
in the text. The results are given as functions of the coupling
constant of the attractive proton-neutron particle-particle
channels, k , which is measured in units of the strength of the
pairing interaction G.

It is evident from the results shown in Fig. 1 that the
collapse of the energy of the first excited state is not avoided
by the inclusion of terms of the order of 1/V and that the
relative contribution of these terms decreases for larger val-
ues of the shell degeneracy, as expected. In this respect, the
present results are at variance with the results of Ref. @8#
since the inclusion of the new terms does not shift the point
of collapse to larger values of the coupling constant associ-
ated to attractive particle-particle channels but to smaller val-
ues, instead. The difference can be explained by saying that
in the present approach the order of the contributions, in
terms of the expansion in powers of 1/V , is controlled by the
02430
boson expansion while in Ref. @8# it should be a strong mix-
ing of orders due to the diagonalization.

The overgrowing contribution of ground state correlations
near the point of collapse, which in Ref. @8# is demostrated
by the behavior of the number of quasiparticle in the final
state, is shown here by the number of pn bosons in the
ground state, which diverges at the point of collapse, as is
shown by the curves of Fig. 2.

Finally, in order to demostrate the effects due to the treat-
ment of the Hamiltonian beyond the leading QRPA terms,
we have calculated the matrix elements

M 2n5(
n

^ f uut2uun&^nuut2uui&
En1E0

, ~14!

corresponding to double-Fermi transitions connecting the
initial state (N ,Z) with a final state (N22,Z12), as is done
in nuclear structure calculations of double-beta-decay transi-
tions @7#. The results are shown in Fig. 3. As is well known
@4,5,7,8#, the second order matrix element M 2n vanishes, as a
function of the coupling strength k and the inclusion of
terms of the order of 1/V does not prevent this trend. Similar
results are obtained in Ref. @8# in spite of the fact that the
corrections added to the pn-QRPA matrix have for the
present case and for the case of Ref. @8# different origin. For
the sake of completeness we have included in Figs. 1 and 3
the exact results obtained in the SO~5! representation, as
done in Ref. @11#.

FIG. 1. Excitation energy as a function of 4k/G . In insets ~a!
and ~b! are displayed results for V510, Np52, Nn58, and for x
50.0 and x50.04, respectively. Results shown in insets ~c! and ~d!
correspond to V520, Np56, Nn514, for x50.0 and x50.025,
respectively. Solid lines correspond to the exact solution of the
Hamiltonian in the SO~5! representation ~see Ref. @11#!, long-
dashed lines represent the usual pn-QRPA and short-dashed lines
correspond to the results obtained by including corrections of order
1/V in the boson expansion of the pn-QRPA.
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IV. CONCLUSIONS

In the present work we have adapted the boson mapping
of Ref. @12# to the case of proton-neutron correlations. We
have solved proton-neutron QRPA equations in the boson
basis and shown that the inclusion of terms of the order of
1/V does not prevent the collapse of the pn-QRPA induced
by attractive proton-neutron, isospin dependent, interactions.
The case is demostrated for a Hamiltonian belonging to the
SO~5! group, which includes monopole isovector pairing in-
teractions and isospin dependent two body interactions. The
results obtained by using the proposed boson expansion
method have been compared with the ones obtained by in-
cluding density dependent corrections in the QRPA equa-

FIG. 2. Average number of quasiparticles as a function of
4k/G . The notation is the same as the one given in the caption to
Fig. 1.
02430
tions. It is found that both methods lead to basically the same
conclusion about the collapse of the pn-QRPA, although the
boson expansion method has the advantage of controlling the
expansion in terms of the shell degeneracy. As for previously
reported studies these conclusions, which are based on a
schematic Hamiltonian, can be of some use in understanding
the overall trend of more realistic calculations, as the ones
reported in @7#.
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FIG. 3. Matrix element M 2n as a function of 4k/G . The nota-
tion is explained in the caption to Fig. 1.
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