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Extended quasiparticle random phase approximation at finite temperatures: Calculation of single
b-decay Fermi transitions
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The formalism of the quasiparticle random phase approximation, extended to include scattering terms in the
equation of motion, is used to describe allowed single b-decay transitions of Fermi type at finite temperatures.
The calculations were performed by using a realistic single particle basis and a separable two body interaction
in the proton-neutron channel. The behavior of the Ikeda sum rule is studied and it is found that this sum rule
is strictly conserved in the presence of particle-particle and hole-hole correlations. As an example on the
validity of the formalism the case of Fermi transitions in 76Ge is considered.

PACS number~s!: 21.60.Jz, 21.60.Ev, 23.40.2s, 27.50.1e
I. INTRODUCTION

An element of astrophysical interest is the calculation of
single b-decay rates in stellar conditions @1#. The conven-
tional procedure consists of large scale shell model ~SM!
and/or quasiparticle random phase approximation ~QRPA!
calculations, depending on the considered mass region, see
Ref. @1#, and references therein. These calculations describe
single b-decay transitions feeding known sequences of
b-stable nuclei or decay sequences leading to neutron or
proton rich nuclei. A large number of uncertainties are intro-
duced in the calculations due to several reasons, among
them: ~a! the low-energy spectrum of the participant nuclei
are poorly known, ~b! the parameters used in the calculations
are fixed globally, and not on a case by case analysis; and ~c!
zero temperature strength distributions are used to compute
decay rates at finite temperatures. For a recent compilation of
results, see Ref. @1#. Large scale calculations of single b
decay rates at finite temperatures can be performed by using
the finite temperature QRPA formalism @2#. The use of this
technique has the advantage that thermal occupation factors,
excitation energies, and decay rates can be calculated as
functions of the nuclear temperature. Previous experience
with the finite temperature QRPA ~FTQRPA! @3# indicates
that complete expressions of the transition operators should
be used to compensate for thermal blocking effects affecting
transitions near the Fermi surface, that is to say that one
should include particle-particle and hole-hole transitions in
addition to transitions across the Fermi surface. Concerning
the inclusion of particle-particle correlations it is known @4#
that they are responsible for the hindrance of charge depen-
dent transitions @5#. Furthermore these particle-particle cor-
relations can induce instabilities of the QRPA vacuum and
eventually be the source of the QRPA breakdown @6#. An
undesired consequence of the presence of particle-particle
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correlations, in the QRPA wave functions near the break-
down, is the violation of sum rules. In this paper we aim at
the description of single b-decay rates at finite temperature
by using the FTQRPA and by including particle-particle and
hole-hole terms in the proton-neutron interactions. We are
also keeping all terms which appear in the expression of the
transition operator to study the effect of thermal and particle
correlations on the corresponding sum rule. We shall show
that the strength distributions obtained by using the present
formalism strictly obey the sum rule associated to the tran-
sition operator. Similar motivations about the use of an ex-
tended version of the QRPA to deal with all type of excita-
tions around the Fermi surface can be found in Ref. @7#,
where a schematic interaction is treated in an extreme single
particle model space. In the present work we are presenting a
more general formalism without imposing restrictions on the
configuration space and for the case of a separable interac-
tion. As an example about the use of the formalism we have
applied it to the calculation of single b-decay transitions of
the Fermi type. As will be discussed in the text, in spite of
the schematic structure of the interaction and of the relatively
simple form of the transition matrix elements, the formalism
illustrates the effect of small components of the wave func-
tions upon the transition strength. We have taken the case of
allowed Fermi transitions (DJ50,Dp50,DTz561), as a
test case bearing in mind that more realistic calculations are
needed in astrophysical applications @1#. The formalism is
presented in Sec. II and the results of the calculations corre-
sponding to Fermi transitions in a nucleus with A576 are
presented and discussed in Sec. III. Conclusions are drawn in
Sec. IV.

II. FORMALISM

In this section we shall present the steps which we have
followed in order to calculate wave functions and matrix
elements of the Fermi operator (b65t6) connecting the
ground state of an even-even mass nucleus with Jp501 ex-
cited states of a odd-odd mass nucleus. Since we aim at the
study of the validity of the QRPA at finite temperature we
have chosen the case of Fermi transitions as a test case, for
convenience, but this choice does not introduce any signifi-
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cant restriction in the formalism or in the conclusions about
its use. To start with let us introduce the Hamiltonian, which
is the one proposed by Kuz’min and Soloviev @8# and more
recently used in Refs. @9,10# in dealing with the calculations
of double b-decay observables. The Hamiltonian includes a
single-particle term, a separable monopole pairing interac-
tion and a charge-dependent separable residual interaction
with both particle-hole and particle-particle ~hole-hole!
proton(p)-neutron(n) channels. It is written as

H5(
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are the number operator, the monopole pair operator, and the
particle-hole and particle-particle creation operators, respec-
tively. Proton and neutron single particle orbits, of angular
momentum j and projection m, are denoted by the subindices
~p! and ~n! and aq jm

† is a particle creation operator and
aq jm

†
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By transforming the Hamiltonian of Eq. ~1! to the quasi-

particle representation @11# one obtains
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In the above expression Eq j are the quasiparticle energies
and, for simplicity, the index j indicates single particle states.
The operators and matrix elements appearing in the same
equation are defined by
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The creation and annihilation of quasiparticles are repre-
sented by the operators aq jm

† and aq jm , respectively, uq j ,
and vq j are BCS occupations factors and all radial overlaps
are taken as unity.

The QRPA method @12# prescribes that the Hamiltonian H
can be diagonalized in the phonon basis (Gk ,Gk

†). Usually,
only the pair creation and pair annihilation operators A j

† and
A j are included in the definition of the QRPA phonons. In
the following we have generalized the standard QRPA to
include the operators B j

† and B j in the definition of the pho-
nons, as done in Ref. @2#. In the present case of proton-
neutron excitations the extended QRPA phonon is written

Gk
†5(

j
@Xk jA j

†2Y k jA j1Zk jB j
†2Z̄k jB j# , ~6!

where extra terms Zk jB j
†2Z̄k jB j , are added to the conven-

tional definition of the phonon operator. As shown in Ref.
@2# vacuum expectation values can be replaced by thermal
averages in order to account for temperature dependent ef-
fects. The resulting QRPA matrix equation can be written as

S Ã B̃

B̃* Ã*D 5vS S̃ 0

0 2 S̃
D S X̃

Ỹ
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The forward (Ã) and backward (B̃) matrices, the metric
matrix ( S̃), and the amplitudes (X̃ and Ỹ ) are defined as

Ã5S A C
E G D ,

B̃5S B D
F H D ,
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S̃5S S 0
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The corresponding matrix elements, in the basis of
quasiproton-quasineutron pairs, of the above matrices are
written
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The explicit expressions of these matrix elements, in
terms of quasiparticle energies, quasiparticle occupation fac-
tors, and matrix elements of the residual interaction, are ob-
tained after evaluation of the commutators and double com-
mutators. They are given by
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Ti j5d i j2V j~ f n j2 f p j!, ~10!

where f q j are thermal occupations factors

f q j5@11exp Eq j /T#21. ~11!

The expectation values which appear in Eq. ~9! have been
calculated at finite temperature and the quantity T, which
appears in the quasiparticle occupation factor of Eq. ~11!,
represents the nuclear temperature in units of energy.

The normalization condition for the phonons is
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where the sum runs over proton-neutron two quasiparticle
configurations. Next, we shall write the transition operators
b6, which are the isospin rising and lowering operators, in
the quasiparticle basis. The explicit expressions are
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†1 p̄ jB j!,
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Using inversion formulas one can express these transition
operators in the QRPA phonon basis. They are written as
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The amplitudes ak and bk
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are the thermal expectation values of the commutator of the
transition operators with the QRPA phonons. These ampli-
tudes can be written in terms of the quasiparticle pair and
scattering amplitudes of the QRPA phonons, namely,
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Explicit expressions of the pair and scattering contributions
entering in the ak and bk amplitudes are
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In the present version of the QRPA eigenvalue problem
the transition strength is defined by

S65(
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u^Gkb
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and the Ikeda sum rule is given by the difference S22S1,
i.e.,
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This sum rule can also be written in terms of quasiparticle
pair and scattering amplitudes @see Eq. ~16!# and the result is

FIG. 1. Energy distribution of the Ikeda sum rule, Eq. ~20!. The
contribution to the quantity S22S1, for each phonon of energy v ,
is shown as a function of the phonon energy. The calculations were
performed for the temperature T50.0 MeV and for the particle-
hole coupling interaction x50.3 MeV. Cases ~a! and ~b! corre-
spond to values of k50.0 MeV, cases ~c! and ~d! correspond to
values of k50.025 MeV, and cases ~e! and ~f! correspond to val-
ues of k50.05 MeV. The insets ~a!, ~c!, and ~e! show the results
obtained when the scattering terms are not included, while the in-
sets ~b!, ~d!, and ~f! show the results obtained with scattering terms
included.
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This result should be compared with the conventional one
which contains only pair contributions. The cancellation of
the interference between scattering and pair terms @the last
term of Eq. ~20!# is guaranteed by the orthonormalization of
the QRPA phonons.

Before ending this section, we would like to make a few
comments on the scope of the above presented formalism. In
spite of its schematic structure, the Hamiltonian of Eq. ~1!
describes a good amount of the correlations which are spe-
cific of charge-exchange Jp501 channels. It illustrates the
main mechanism leading to the hindrance of low-energy
charge-exchange transitions, namely, the repulsion induced
by particle-hole (x), and the attraction induced by pairing
(Gp and Gn) and particle-particle (k) interactions. Natu-
rally, a more realistic treatment would require the use of an
effective two-body interaction, but the formalism is able to
deal with such a force. Concerning the use of thermal aver-
ages, we have so far described the case of excited final states
belonging to the double-odd mass nucleus, assuming that the
initial nucleus is in its ground state and that the thermal
occupancies are the ground state ~BCS! ones @see Eq. ~11!#.
As explained before we have proceeded in this manner be-
cause we wanted to study the distribution and conservation
of the transition strength in ground state to excited state tran-
sitions. One can also consider the case of decays from ex-
cited states of the initial nucleus by performing a finite tem-
perature QRPA calculation for all Jp states of the even-even
mass nucleus, as described in Ref. @2#. One can then connect
the ground and excited states of the initial double-even mass

FIG. 2. Same as Fig. 1 for the temperature T50.5 MeV.
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nucleus with all states of the final double-odd mass nuclei
which are allowed by the transition rules of the b-decay
operator. The expressions corresponding to the transition
matrix elements are more involved but still they can be com-
puted in the same way as the ground state to excited state
transitions.

III. RESULTS AND DISCUSSION

As an application of the previously introduced formalism
we have calculated allowed Fermi transitions in the mass
region A576. The single particle basis includes all single
particle states of the Nosc53 and 4 mayor harmonic oscilla-
tors shells and the l55 levels from Nosc55, both for protons
and neutrons ~where Nosc is the oscillator principal quantum
number!. The single particle energies around the Fermi sur-
face have been shifted, respect to their harmonic oscillator
values @13#, to reproduce observed low-energy levels belong-
ing to the spectra of odd-even ~even-odd! mass nuclei around
76Ge. The pairing coupling constants, for neutrons (Gn) and
for protons (Gp), were fixed at the values 19/A MeV and
21/A MeV, respectively. The BCS equations @11# were
solved by taking N5Z520 as shell closure, for protons and
neutrons, respectively. The obtained proton and neutron gaps
and quasiparticle energies, calculated at T50 MeV, were
found to be in reasonable agreement with data. Temperature
dependent BCS equations @14# were solved by varying the
temperature in the interval 0 MeV<T<0.5 MeV. The
critical temperatures, associated to the collapse of the proton

FIG. 3. Strength distributions S2 and S1. Insets ~a! and ~b!
show the behavior of the strength function S2, as a function of the
coupling constant k for x50.3 MeV and for different values of the
temperature T given on the curves. Insets ~c! and ~d! show the
strength function S1. Cases ~a! and ~c! show the results obtained
when the scattering terms are not included while ~b! and ~d! show
the results obtained by taken into account scattering terms in the
QRPA equation of motion and in the transition operator.
05431
and neutron gaps, were obtained at values of the order of 0.7
and 0.8 MeV, respectively. Excited Jp501 states of the
double odd mass nucleus 76As were described as QRPA one
phonon states. The QRPA equations, Eq. ~7!, were solved as
functions of the temperature T and by taking the strength
parameter k as a free parameter. The parameter x of the
Hamiltonian of Eq. ~1! was fixed at the value x
50.3 MeV, as indicated in Ref. @15#. The contributions to
the Ikeda sum rule, for each phonon, are shown in Figs. 1

FIG. 4. Ikeda sum rule as a function of the coupling constant k ,
for x50.3 MeV and for different values of the temperature T. Case
~a! corresponds to the results obtained without including scattering
terms. Case ~b! corresponds to the results obtained with the inclu-
sion of scattering terms.

FIG. 5. Partial contributions to the sum rule of Eq. ~20!, and its
total value, as a function of the temperature T. These are the results
obtained by using the extended QRPA method. The permanence of
the total value of the strength sum, Ikeda sum rule ~ISR!, is verified
for all values of k below collapse (k<0.06 MeV).
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and 2. The strength distributions of Fig. 1, which corre-
sponds to the case of zero temperature, show the effect of
particle-particle correlations for increasing values of the cou-
pling constant k . The influence of scattering terms, at T
50 MeV, is a minor one. Figure 2 shows the results corre-
sponding to T50.5 MeV. While the effects due to increas-
ing particle-particle interactions @insets ~a!, ~c!, and ~e! of
Fig. 2# are very much the same, as compared to the T50
results, the effects of the scattering terms are noticeable par-
ticularly in the low-energy region of the spectrum. In Fig. 3
the values of S2 and S1, of Eq. ~18!, are shown as functions
of the temperature and of the coupling constant k without
@insets ~a! and ~c!# and with @insets ~b! and ~d!# the inclusion
of scattering terms in the QRPA phonons and transition op-
erators. From the results shown in Fig. 3 it is clearly seen
that the contributions coming from scattering terms tends to
compensate the decrease of particle-hole transitions due to
thermal blocking. The main effect is obviously reflected on
the dependence of S2 upon T @inset ~a! and ~b! of Fig. 3#.
The curves shown in Fig. 3 illustrate the main trend of the
results, concerning symmetry cancellations and thermal ef-
fects. The global symmetry of the Hamiltonian of Eq. ~1!, as
a function of the coupling constant k , was discussed in Refs.
@16,17#. The suppression of the S1 strength at T50, for k
>0.06 MeV is a consequence of the isospin symmetry res-
toration. The isospin violation which is inherent to mean
field BCS calculations reflects upon the small values of the
strength S1, as compared to the values of the strength S2,
for values of k which are smaller than the symmetry one
(k’0.06 MeV). In consequence, for the present case, the
nonvanishing values of S1 for Fermi b1 transitions from the
ground state of 76Ge is a consequence of the use of the BCS
mean field, which moderates the complete suppression of the
decay branch due to the Pauli principle. Figure 4 shows total
values of the Ikeda sum rule, Eq. ~20!, as functions of the
temperature T and of the coupling constant k , without @inset
~a!# and with @inset ~b!# the inclusion of the scattering terms.
It is evident that the inclusion of the scattering terms plays a
crucial role in preserving the value of the sum rule at finite
temperature and in the presence of particle particle correla-
05431
tions. Finally, in Fig. 5, we show the contributions of pair
and scattering terms to the Ikeda sum rule. It is seen that the
decrease of the pair contribution is balanced by the increase
of the particle-hole ones. In the standard QRPA treatment of
the interaction the decrease of the pair contributions to the
sum rule cannot be avoided by the renormalization of the
strength k , which is itself a source of manifest violations of
the sum rule.

IV. CONCLUSIONS

In this work we have presented an extended version of the
QRPA equations which incorporates scattering terms in the
definition of the QRPA phonons. The effect of these terms
becomes particularly significant when finite temperature
QRPA equations are solved. As an example of these effects
we have calculated strength distributions and the Ikeda
sum rule for single b-decay transitions of the Fermi type
in the mass region A576; i.e., 76Ge(01g.s.)
→b2→76As(01exc). We found that the sum rule is pre-
serve only if the B† and B terms ~scattering terms! of the
operator and phonons are accounted for in the QRPA equa-
tions. The results reported above about the temperature de-
pendence of the transition strength may be significant in the
context of the calculation of b-decay rates in stellar condi-
tions @1#. The results concerning the inclusion of scattering
terms in the QRPA equation of motion, described in the pre-
vious sections, are in agreement with recently reported re-
sults by other authors @7#. Although the results presented in
this paper have been obtained by using a schematic interac-
tion they illustrate rather well the effects of small compo-
nents of the wave functions upon the sum rules at finite
temperatures. Work is in progress @18# concerning the use of
this technique in the systematic calculation of single b-decay
rates of astrophysical interest @1#.
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