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Abstract. The treatment of the separable pairing interaction in the context of the BRST formalism and
in the Dyson boson expansion method is discussed. The approach is based on the use of the vacuum
expectation value of the boson number operator to define a suitable mean field.

PACS. 21.60.-n Nuclear-structure models and methods – 21.60.Jz Hartree-Fock and random-phase ap-
proximations – 21.60.Ev Collective models

1 Introduction

The use of the BRST method in constructing solutions
of non-trivial nuclear many-body Hamiltonians, has been
advanced in a series of papers written by D.R. Bes and co-
workers [1–5]. For a comprehensive review of the subject
the reader is kindly referred to the textbook of ref. [1].
The case of the separable monopole-pairing interaction
has been discussed in [3,4]. The use of the same tech-
nique for the case of nuclear rotations has been presented
in [5]. As a brief introduction to the subject, we shall first
remind the reader about some general features of the con-
ventional nuclear many-body approach and then we shall
proceed to discuss the essentials of the BRST method. As
is customary in dealing with the microscopic description of
single-particle and collective nuclear excitations (see the
textbook of ref. [6]), one chooses a two-body interaction
and a single-particle basis where the matrix elements of
the interaction can be calculated. Then, one can attempt
to perform a diagonalization of the Hamiltonian in a cer-
tain configuration basis. Naturally, a complete shell model
calculation can provide us with the exact solution of the
problem. Unfortunately, such a diagonalization is not fea-
sible even for a relatively modest number of nucleons. In
consequence, one is forced to introduce approximations,
i.e., effective single-particle and collective states which can
be used to describe the solutions. Central to this picture
are both the violation and the partial fulfillment of some
symmetries. As an example, we can mention the diagonal-
ization of the separable pairing Hamiltonian by using the
BCS transformations and the RPA treatment of particle-
hole or two quasiparticle excitations around close shells.
Another example is the treatment of two quasiparticle ex-
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citations in a deformed basis. Although these approxima-
tions may work, further corrections to them are hampered
by instabilities and/or divergences which originate in vi-
olations of the Pauli principle, in the overcompleteness of
the basis or in the lack of an expansion parameter which
can be used to formulate the corrections perturbatively.
All these drawbacks stem from the fact that fermions and
collective excitations are not independent. A possible so-
lution to these problems could be to project out spurious
components of the approximate solutions and to perform
variations in order to determine minima in the parametric
space defined by the collective variables. This is the case
of the variation after projection method introduced by the
Tübingen group [7]. Another view is the one introduced
by the Copenhagen School (see Bohr and Mottelson [8]),
which deals with intrinsic and collective variables. The
unified model of nuclear rotational and vibrational degrees
of freedom [8] gives us an example of the use of collective
and intrinsic variables. However, perturbative expansions
in the unified model scheme cannot always be performed.
In this context, we referred to the method introduced by
Bes [1–5], where the difficulties associated with the use
of perturbation theory in a deformed basis are avoided by
constructing quadratic Hamiltonians which include intrin-
sic, collective and auxiliary variables. Also, in dealing with
fermionic Hamiltonians, the use of collective variables was
shown [4] to be an alternative to other treatments, such
as particle number projection [9].

The essentials of the formalism are the following:
i) the starting Hamiltonian H is rewritten in terms of

intrinsic and collective variables,
ii) the mean-field treatment of H fixes a particular

choice of the intrinsic frame,
iii) the symmetry broken by this choice of the intrinsic

frame is restored by the inclusion of collective variables,
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through the definition of generalized constraints, as pre-
scribed by the BRST method [1], and

iv) the perturbative treatment of the resulting Hamil-
tonian is performed in the intrinsic frame and it is free
from infrared divergences.

So far, the known examples of the above scheme have
shown that a good agreement between exact and pertur-
bative results [1–5] can be obtained. However, for some
cases, the convergence of the perturbative expansion may
be slow. This is the situation found, for example, when
the BRST Hamiltonian is expanded in a boson basis, as
done in the previous examples [1,2,5]. The residual BRST
Hamiltonian has been treated in the framework of the Nu-
clear Field Theory (NFT) [10] and by using the Holstein-
Primakoff expansion [11].

In the present paper, we propose the use of the Dyson
boson expansion method, as an alternative to the use of
the Holstein-Primakoff boson expansion method, in con-
junction with the already developed BRST + RPA treat-
ment of the pairing interaction of refs. [1–5]. The pertur-
bative expansion based on the Holstein-Primakoff boson
expansion method is performed by using the shell degener-
ancy as expansion parameter [1]. Here, for the case of the
Dyson boson expansion method [11], we shall introduce
the vacuum expectation value (v.e.v.) of the boson num-
ber as a parameter. In this way, we aim at defining a suit-
able mean field. Corrections to mean field v.e.v. are added
by performing a perturbative treatment in the subspace
of states connected by the transformed Hamiltonian [12].
The v.e.v. of the boson number is determined by a vari-
ation, afterwards. In the following, we shall describe the
proposed mapping and discuss the advantage of its use,
for the case of the monopole pairing force of ref. [13].

2 Formalism

The conventional separable pairing Hamiltonian [13] reads

H̃ = Hsp − V
∑
kk′

a†ka
†
k
a k′ ak′ , (1)

and, after applying the Bogoliubov transformation to the
quasiparticle basis [8], it is written as the BCS Hamilto-
nian

H̃ = H00 +H11 +H20 +H22 +H40 +H31 +Hqp-qp . (2)

The explicit form of each term of this equation is given
in Appendix A. The BCS parameters λ, ∆ and the quasi-
particle occupancies, uk and vk, are determined from the
conditions [6],

H11 =
∑
k

Ekν̂k,

H20 = 0,

〈N̂〉BCS = N , (3)

with

u2
k =

1
2

(
1 +

εk − λ
Ek

)
,

v2
k =

1
2

(
1− εk − λ

Ek

)
,

Ek =
√

(εk − λ)2 +∆2 , (4)

in standard notation. In the following, we shall introduce
the BRST version of the Hamiltonian of eq. (2), as it is
given in refs. [1,2]. It reads

ĤBRST = Ĥ − Ω̂(2n̂− N̂) + iπ̂π̂ − 2ω2η̂[Ĝ, n̂]η̂

+ω2

(
ĜP̂ − 1

2I
P̂ 2

)
. (5)

In the gauge treatment of the interaction we have de-
fined N̂ as the variable conjugate to the collective vari-
able θ̂, P̂ as the conjugate variable associated with Ω̂, Ĝ
as the gauge-fixing function and π̂, π̂, η̂, η̂, as the ghost
Hermitian operators [1], ω is an arbitrary constant and I
is the moment of inertia for rotations in gauge space. At
the RPA order of approximation, the pair contributions of
the number operator, n̂20, reads

n̂RPA =
∑
k

nk(γ̂†k + γ̂k) , (6)

with nk = ukvk and where γ†k (γk) creates (annihilates)
a pair of quasiparticles. The conjugate operator, θ̂RPA, is
written as

θ̂RPA = i
∑
k

θk(γ̂†k − γ̂k) . (7)

The RPA contribution to the moment of inertia, I(2),
the RPA angle operator θ̂RPA and the conjugate operator
n̂RPA can be obtained from the system of equations [14]:

[HRPA, n̂RPA] = 0 ,

[HRPA, θ̂RPA] = −i n̂RPA

I(2)
,

[θ̂RPA, n̂RPA] = i. (8)

These commutators lead to the expressions [1,2]:

θk = − 1
4I(2)ζ2

,

(
ζ1
εk − λ
E2
k

+ ζ2
∆

E2
k

)
,

I(2) =
∆

4ζ2

(
ζ2
1 + ζ2

2

)
, (9)

with [1,2]

ζ1 =
∑
k

[k]
εk − λ
E3
k

,

ζ2 = ∆
∑
k

[k]
E3
k

. (10)
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In the above equations, the quantities εk are the single-
particle energies, Ek are the quasiparticle energies and [k]
is half the value of the single j-shell degenerancy.

The RPA Hamiltonian in its final form reads

HRPA = H0 +
n̂2

RPA

2I(2)
+

∑
n(ωn 6=0)

ωnΓ̂
†
nΓ̂n , (11)

where
Γ †n =

∑
k

(Xnkγ
†
k − Ynkγk) (12)

are the operators which create physical phonons with en-
ergies ωn.

The spurious phonons sector of the Hamiltonian is
taken from [1,2] and it reads

Ĥ
(spurious)
BRST = ω(aa+ bb) + ω(Γ1

†Γ1 − Γ0
†Γ0) , (13)

where

Γ †1 =

√
1

2I(2)ω
n̂RPA + i

√
I(2)ω

2
θ̂RPA −

√
I(2)

2ω
Ω̂ ,

Γ †0 = −i
√
I(2)ω

2
θ̂RPA +

√
I(2)

2ω
Ω̂ + i

√
ω

2I(2)
P̂ (14)

are the spurious phonons of energy ω and the operators
a and b are linear combinations of the ghost operators,
with [1,2]:

a =
1√
2ω
π̂ − i

√
ω

2
η̂ ,

b =
1√
2ω
π̂ + i

√
ω

2
η̂ ,

a = i
1√
2ω
π̂ +

√
ω

2
η̂ ,

b = −i 1√
2ω
π̂ +

√
ω

2
η̂ , (15)

where
[a, a]+ = [b, b]+ = 1 . (16)

The operators Γ †n, Γn, n̂RPA and θ̂RPA form a complete
set of operators which create (annihilate) states with finite
energy. By inverting the above equations, we can write the
operators γ†k and γk as

γ†k =
∑

n>1(ωn 6=0)

(XnkΓ
†
n + YnkΓn)

−θk
√

[k]n̂RPA + iukvk
√

[k]θ̂RPA ,

γk =
∑

n>1(ωn 6=0)

(YnkΓ †n +XnkΓn)

−θk
√

[k]n̂RPA − iukvk
√

[k]θ̂RPA . (17)

The corresponding RPA amplitudes are given by

X1k =
(
ukvk
I(2)ω

− θk
)√

I(2)ω

2
,

Y1k = −
(
ukvk
I(2)ω

+ θk

)√
I(2)ω

2
,

X0k = −θk

√
I(2)ω

2
,

Y0k = −θk

√
I(2)ω

2
. (18)

The quantities Xnk (Ynk), with n 6= 0, 1, are the for-
ward (backward) amplitudes of the non-zero energy modes
of the RPA Hamiltonian.

Up to this point, we have followed literally the pro-
cedure outlined in [1,2]. For the benefit of the readers
who are unfamiliar with the BRST method, and in order
to preserve the meaning of the introduced BRST degrees
of freedom, we have strictly copied the notation of [1,2].
The perturbative treatment of the residual interactions
between intrinsic and collective degrees of freedom has
been presented in [2], where [k] = jk + 1/2 was taken as
the order parameter. The ordering of the terms (see [1])
is then uniquely defined and one has to add all possible
terms. This may be a rather difficult task, mostly because
at each order in the expansion parameter several groups
of different diagrams can contribute.

Let us now introduce the Dyson boson expansion [11]
as alternative to the use of NFT [10]. We introduce the
ideal boson operators b†k (bk),

γ̂†k =
1√
[k]
b̂†k([k]− b̂†k b̂k) ,

γ̂k =
√

[k]b̂k ,

ν̂k = 2b̂†k b̂k , (19)

with [b̂k, b̂
†
k] = 1.

After the Dyson boson mapping is performed on the
operators of eqs. (11)-(15) the residual BRST Hamiltonian
in the Dyson boson basis reads

Ĥ
(res)
BRST = −

∑
kk′

rkk′

(√
[k′]
[k]

b̂†k b̂
†
k b̂k b̂k′ +

√
[k]
[k′]

b̂†k′ b̂
†
k′ b̂k′ b̂k

)

−
∑
kk′

skk′

(√
[k′]
[k]

b̂†k b̂
†
k b̂k b̂

†
k′ +

√
[k]
[k′]

b̂†k b̂
†
k′ b̂
†
k′ b̂k′

)
+
∑
kk′

skk′√
[k′][k]

b̂†k b̂
†
k b̂k b̂

†
k′ b̂
†
k′ b̂k′

+
∑
kk′

hkk′
√

[k](b̂†k b̂
†
k′ b̂k′ + b̂†k′ b̂k′ b̂k)

−
∑
kk′

hkk′√
[k]
b̂†k b̂
†
k b̂k b̂

†
k′ b̂k′ − V

(∑
k

2nk b̂
†
k b̂k

)2

−Ω̂2n̂11 − ω2η̂[θ̂RPA, 2n̂11]η̂ , (20)
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with

rkk′ = −V
2

(u2
ku

2
k′ + v2

kv
2
k′) ,

skk′ =
V

2
(u2
kv

2
k′ + v2

ku
2
k′) ,

hkk′ = −2V uk′vk′(u2
k − v2

k) , (21)

and
n̂11 =

1
2

(u2
k − v2

k)b̂†k b̂k . (22)

In order to treat the Hamiltonian of eq. (20), we shall
introduce a two-step procedure. First, we shall define the
expectation value of the operator b̂†k b̂k on the RPA vacuum

〈| b̂†k b̂k |〉 ≡ φk , (23)

as a parameter in eq. (20), before transforming to the
phonon basis. Next, by using the Wick theorem, we shall
write the residual Hamiltonian of eq. (20) in the phonon
basis. The final result reads

H
(res)
BRST = V0(φ)

+
∑
n

(V1(n, φ)Γ †n + V ′1(n, φ)Γn)

+
∑
nn′

V2(n, n′, φ)Γ †nΓn′

+
∑
nn′

(V3(n, n′, φ)Γ †nΓ
†
n′ + V ′3(n, n′, φ)Γn′Γn)

+
∑
mnn′

(V4(n, n′,m, φ)Γ †mΓ
†
n′Γ
†
n

+V ′4(n, n′,m, φ)ΓnΓn′Γm)

+
∑
nn′m

(V5(n, n′,m, φ)Γ †nΓ
†
n′Γm

+V ′5(n, n′,m, φ)Γ †mΓn′Γn)

+
∑
n

V6(n, φ)

×(aa+ bb− 1− iab− iab)(Γ †n + Γn) , (24)

with n, n′ and m running over all possible one phonon
states. The expressions for the vertex functions Vi are
given in Appendix B. The spectrum of the Hamiltonian
HBRST has non-zero eigenvalues. At this point, we can pro-
ceed, as done in [1], to calculate perturbatively the correc-
tions to the ground-state energy and to the energy of the
one-phonon state. The vertex functions V of eq. (24) con-
tain different powers of the parameter φk and the Hamil-
tonian of eq. (24) is acting in the subspace which includes
states up to three phonons. In order to treat H(res)

BRST per-
turbatively, the left and right basis must contain the same
states. In the next section, we shall show that the use of
the parameter φk of eq. (23) may simplified the perturba-
tive treatment of the Hamiltonian of eq. (20). In eq. (24)
terms which are proportional to powers of b̂†k b̂k have been

Table 1. Contributions to the energy of the ground state. The
values of n, listed in the first column, indicate the number of
phonons included in each vertex. The notation is explained in
Appendix B.

n = 0 V0(φ)

1
V1(r, φ)V ′1 (r, φ)

E0 − ωr

2
2V3(r, r, φ)V ′3 (r, r, φ)

E0 − 2ωr
+

2V3(1, 1, φ)V ′3 (1, 1, φ)

E0 − 2ω

+
2V3(0, 0, φ)V ′3 (0, 0, φ)

E0 + 2ω
+
V3(0, 1, φ)V ′3 (0, 1, φ)

E0

3
6V4(r, r, r′, φ)V ′4 (r, r, r′, φ)

E0 − 3ωr
+

2V4(r, 1, 1, φ)V ′4 (r, 1, 1, φ)

E0 − ωr − 2ω

+
2V4(r, 0, 0, φ)V ′4 (r, 0, 0, φ)

E0 − ωr + 2ω
+
V4(r, 1, 0, φ)V ′4 (r, 1, 0, φ)

E0 − ωr

Table 2. Contributions to the energy of the one-phonon state.
The values of n, given in the first column, correspond to the
number of phonons entering in each vertex function. The no-
tation is explained in Appendix B.

n = 0 V0(φ)

1 −4
V1(r, φ)V ′1 (r, φ)

ωr

2 V2(r, r, φ)

−2V3(r, 1, φ)V ′3 (r, 1, φ)

ωr + ω
− 2V3(r, 0, φ)V ′3 (r, 0, φ)

ωr − ω

−2V3(r, r, φ)V ′3 (r, r, φ)

2ωr

3 −V5(r, r, rφ)V ′5 (r, r, r, φ)

ωr
+
V5(0, 1, r, φ)V ′5 (0, 1, r, φ)

ωr

+
V5(1, 1, r, φ)V ′5 (1, 1, r, φ)

ωr − 2ω
+
V5(0, 0, r, φ)V ′5 (0, 0, r, φ)

ωr + 2ω

−V4(r, r, r, φ)V ′4 (r, r, r, φ)

3ωr
− V4(r, 1, 1, φ)V ′4 (r, 1, 1, φ)

ωr + 2ω

+
V4(r, 0, 0, φ)V ′4 (r, 0, 0, φ)

−ωr + 2ω
− V4(r, 1, 0, φ)V ′4 (r, 1, 0, φ)

ωr

replaced by powers of the parameter φk. In this way, we
are introducing a sort of density-dependent approxima-
tion, similar to the one used in some Green functional
approaches of boson correlations [15]. As said before, the
actual value of φk can be fixed by a variation restricted to
the perturbative corrections of eq. (24).

3 Results and discussions

In this section, we shall discuss the use of the above-
presented formalism in the case of a two-level model. Fur-
thermore, we shall assume that the parameter φk is in-
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Fig. 1. Contribution to the energy of the ground state, as
a function of the parameter φ, for the case Ω = 5 and
x = 0.5. With HP and Dyson we are denoting the results of
the Holstein-Primakoff and Dyson boson expansion methods,
respectively.

dependent of the single-particle index k. This approxima-
tion is an acceptable one in the spirit of the RPA method.
This approximation is justified if one thinks that the ideal
bosons represent collective bosons. Otherwise, the single
variation of the the perturbative corrections generated by
eq. (24) would have to be replaced by a multi-variation.
The fact that the perturbative corrections can be mini-
mized by choosing φ appropriately, as we shall see from the
results, seems to indicate the feasibility of the procedure.
In Appendix B, we have specified the expressions of sect. 2
for the case of a single-particle space consisting of two
shells. In the numerical applications we have solved the
BCS equations and we have constructed the vertex func-
tions of eq. (24). Next, we have calculated the zero-order
spectrum of HBRST and performed perturbative calcula-
tions of the ground-state and one-phonon excited-state
energies. The explicit form of the contributions to the
ground-state energy is given in table 1, where each dia-
gram is written in terms of the vertex functions Vn. The
corresponding expressions for Vn are given in Appendix
B. The corrections to the energy of the one-phonon state
are listed in table 2. As done for the case of the correc-
tions to the ground-state energy, each vertex function of
table 2 is written in terms of the Hamiltonian amplitudes
of Appendix B. In order to compare the results of the dif-
ferent approximations, we have calculated the diagrams of
tables 1 and 2 for the case of a reduced model space con-
sisting of two single-particle shells with degeneracy [k] = 5
(case 1) and [k] = 10 (case 2). For both model spaces we
have calculated exact solutions and perturbed ones in the

0 2 4 6 8 10
-23 .4

-23 .2

-23 .0

-22 .8

-22 .6

-22 .4

-22 .2

Exact

E
0 [

M
e

v]
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φ

Fig. 2. Same as fig. 1, for the case Ω = 10 and x = 0.35.

Holstein-Primakoff and Dyson approaches. For the case of
the Holstein-Primakoff we have considered only diagrams
at leading order in 1/[k] [1].

The exact solution has been obtained as shown in [13],
for N = 2[k] and x ≡ G [k]/(2ε). In figs. 1, 2 and figs. 3, 4,
the results corresponding to the energy of the ground state
and to the first excited state, respectively, are shown as
a function of the parameter φ. These results have been
obtained by fixing the parameters in the superfluid phase
of the model. For the case of the ground-state energy the
Dyson mapping gives a better result than the Holstein-
Primakoff approximation and it saturates. For the case of
the first excited state, the results of the Dyson approach
are better, as compared with the exact results, than the
Holstein-Primakoff ones and the agreement is restricted
to a narrow interval of the values of φ. For these cases,
figs. 3 and 4, the results of the Dyson approach reach a
minimum at values of φ of the order of 2-3.

Finally, with the aim of comparing the degree of ac-
curacy of the different approximations discussed in this
work, we have calculated the ground-state energy using
the projection method of [9]. The results, corresponding
to the two-level model space, are shown in table 3. As
expected, the results obtained with the BRST approach,
are close to the results obtained by applying the projec-
tion technique of Hara et al. [9]. It is seen that the agree-
ment improves when the shell degenerancy Ω increases.
For Ω = 10 the BRST + Dyson approach and the particle
number projection yield the same result, which differs in
' 2% from the exact value.

From these results, we can conclude that the use of the
Dyson boson expansion method can improve the conver-
gence of the BRST perturbative expansion.
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φ
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Fig. 3. Contribution to the energy of the one-phonon state
as a function of the order parameter, for the case Ω = 5 and
x = 0.5.

Naturally, in performing these approximations, we are
incorporating higher-order terms in the 1/[k] expansion.
The Holstein-Primakoff expansion allows for fixing an or-
der in 1/[k] but it may be rather cumbersome to imple-
ment at higher orders. At this point, we would like to
remind the reader that the conventional perturbative ap-
proach applied to the Hamiltonian H of eq. (1) would
simply yield divergent results.

4 Conclusions

In this paper we have applied the BRST method to treat
the schematic pairing force Hamiltonian, as it was first
done by Bes et al. [1–4]. We have compared the results of
the combined BRST + boson expansion for two different
boson expansion methods, namely the Holstein-Primakoff
and the Dyson one. From the comparison between these
results, for the ground-state and first-excited-state ener-
gies, we can conclude that the use of the Dyson boson
expansion method can improve the agreement with exact
solutions. As a matter of fact, these conclusions apply to
the considered two-level model situation but this may be
also the case of the other known applications of the BRST
method [5]. More work along this line will be done in the
future.
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Fig. 4. The same as fig. 3 for the case Ω = 10 and x = 0.35.

Table 3. Ground-state energy, E0, calculated in the approxi-
mations discussed in the text. The values are given in units of
MeV and the meaning of the columns is the following: stan-
dard BCS approach (BCS), BRST + Holstein-Primakoff boson
mapping (HP), BRST + Dyson boson mapping (Dyson), par-
ticle number projection (PN ) and exact results (Exact). The
values shown in the first and second row have been obtained
by using the parameters Ω and x given in the captions of figs.
1 and 2, respectively.

E0 (BCS) E0 (HP) E0 (Dyson) E0 (PN ) E0 (Exact)

−6.87 −7.00 −7.05 −7.28 −7.41

−22.20 −22.39 −22.60 −22.60 −23.03

about the manuscript, and the INT at the University of Wash-
ington, Seattle, for its hospitality during the INT-00-3 pro-
gram.

Appendix A.

We can write the pairing Hamiltonian in the quasiparticle
basis as

H̃ = Ĥ − λ2n̂ ,

H̃ = H00 +H11 +H20 +H22 +H40 +H31 +Hqp-qp ,

H00 =
∑
k

2vk2(εk − λ)− ∆2

V
,

H11 =
∑
k

((εk − λ)(uk2 − vk2)−∆2ukvk)ν̂k ,



O. Civitarese et al.: Application of the Dyson boson expansion method to the treatment of the pairing force 269

H20 =
∑
k

((εk − λ)2ukvk −∆(uk2 − vk2))(γ̂†k + γ̂†
k
) ,

H22 = −V
∑
kk′

1
2

(uk2uk′
2 + vk

2vk′
2)(γ̂†kγ̂k′ + γ̂†k′ γ̂k) ,

H40 = V
∑
kk′

1
2

(uk2vk′
2 + vk

2uk′
2)(γ̂†kγ̂

†
k′ + γ̂k′ γ̂k) ,

H31 = −V
∑
kk′

uk′vk′(uk2 − vk2)(γ̂†kν̂k′ + ν̂k′ γ̂k) ,

Hqp-qp = −V

(∑
k

ukvkν̂k

)2

.

In these expressions the operators ν̂k is the quasiparti-
cle number operator and γ̂†k (γ̂k) create (annihilate) a pair
of quasiparticles.

Appendix B.

The vertex functions of the BRST Hamiltonian are given
in this Appendix. We have adopted the notation of in-
dexes corresponding to the two-level model limit. The ar-
gument of each vertex function Vn will contain one or more
indexes describing the type of phonons that can be con-
nected at the vertex. The index r represents real phonons,
the indexes 0 and 1 represent spurious 0 and 1 phonons
(see eq. (14)), respectively. As an illustration, we provide
here vertex functions Vn, up to two phonons. Similar ex-
pressions are obtained for higher values of the number of
phonons:

V0(φ) = 4V φ2

(
1− 3

2
(2uv)2

)
,

V1(r, φ) = 2h31V

(
E

2ωr

)1/2

×
[(

3φ− 2φ(1 + 4φ)
[k]

)(
1 +

ωr
2E

)
+ 3φ

(
1− ωr

2E

)]

+2θω
(

2E
ωr

)1/2

,

V ′1(r, φ) = 2h31V

(
E

2ωr

)1/2

×
[(

3φ− 2φ(1 + 4φ)
[k]

)(
1− ωr

2E

)
+ 3φ

(
1 +

ωr
2E

)]

+2θω
(

2E
ωr

)1/2

,

V2(r, r, φ) =
EV

ωr

[
f1(φ)

(
1− ω2

r

4E2

)
+ 2f2(φ)

]
,

V2(0, 0, φ) = I(2)ωθ2V [f3(φ) + 2f4(φ)] ,

V2(1, 1, φ) = I(2)ωV

×
[
f3(φ)

(
θ2 − (uv)2

(I(2)ω)2

)
+ f4(φ)

(
θ2 +

(uv)2

(I(2)ω)2

)]
,

V2(0, 1, φ) = I(2)ωθV

×
[
f3(φ)

(
θ +

uv

I(2)ω

)
+ f4(φ)θ

]
,

V2(1, 0, φ) = I(2)ωθV

×
[
f3(φ)

(
θ − uv

I(2)ω

)
+ f4(φ)θ

]
,

V3(r, r, φ) =
EV

2ωr

×
[
f1(φ)

(
1 +

ωr
2E

)2

+ 2f2(φ)
(

1− ω2
r

(2E)2

)]
,

V ′3(r, r, φ) =
EV

2ωr

×
[
f1(φ)

(
1− ωr

2E

)2

+ 2f2(φ)
(

1− ω2
r

(2E)2

)]
,

V3(0, 0, φ) =
1
2
V2(0, 0, φ) ,

V ′3(0, 0, φ) = V3(0, 0, φ) ,

V3(1, 1, φ) =
I(2)ωV

2

×
[
f3(φ)

(
θ − uv

I(2)ω

)2

+ 2f4(φ)
(
θ2 − (uv)2

(I(2)ω)2

)]
,

V ′3(1, 1, φ) =
I(2)ωV

2

×
[
f3(φ)

(
θ +

uv

I(2)ω

)2

+ 2f4(φ)
(
θ2 − (uv)2

(I(2)ω)2

)]
,

V3(0, 1, φ) = V2(1, 0, φ) ,

V ′3(0, 1, φ) = V2(0, 1, φ) ,

with

f1(φ) = −2(uv)2(1 + 6φ)
(

1− 2phi
[k]

)
+(1− 2u2v2)4φ

(
1− φ

[k]

)
,

f2(φ) = (1− 2u2v2)4φ− (2uv)2 (1 + 6φ)− (2uv)2φ ,

f3(φ) = −2(uv)2(1 + 6φ)
(

1− 2φ
[k]

)
−(1− 2u2v2)4φ

(
1− φ

[k]

)
,

f4(φ) = (1− 2u2v2)4φ− (2uv)2 (1 + 6φ) + (2uv)2φ ,

h31 = [k]1/22uv(u2 − v2).
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In these expression we have introduced the factors

θ = − E

2∆[k]
,

and

I(2) =
∆2[k]
2E3

.

The rest of the notation is the one given in the text.
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