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a b s t r a c t

Population coding is the quantitative study of which algorithms or representations are used by the
brain to combine together and evaluate the messages carried by different neurons. Here, we review an
information-theoretic approach to population coding. We first discuss how to compute the information
carried by simultaneously recorded neural populations, and in particular how to reduce the limited
sampling bias which affects the calculation of information from a limited amount of experimental data.
We then discuss how to quantify the contribution of individual members of the population, or the
interaction between them, to the overall information encoded by the considered group of neurons. We
focus in particular on evaluating what is the contribution of interactions up to any given order to the
total information.We illustrate this formalismwith applications to simulated data with realistic neuronal
statistics and to real simultaneous recordings of multiple spike trains.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The central nervous system supports highly reliable and fast
perception of sensory events. In most conditions, animals can
perceive a sensory stimulus based on a single presentation. Yet
responses of individual neurons in the central nervous system
of mammals are often highly variable: repeated presentations
(trials) of the same stimulus elicit a different single neuron
response each time. As a result, single neuron messages are
ambiguous and difficult to interpret. From the point of view of
off-line analysis, it is easy to reduce the effect of this variability
by averaging responses over repeated trials, as often done by
Neurophysiologists. However, the trial averaging strategy cannot
be used by the brain, because the brain usually processes
information and takes decisions based on single events. It is widely
believed that the strategy used by the brain tomake sense of single
trials of the noisy responses of individual neurons is to evaluate
the simultaneous activity of large neural populations. In other
words, it is believed that the brain uses a neural population code
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(rather than a single neuron code) to transmit information about
sensory stimuli. However, exactly how the brain puts together the
information from several neurons remains largely unknown.
Since it is commonly found that the neurons within local

networks are correlated, i.e. the response of a neuron does
not depend only upon the stimulus but also upon the activity
of other neurons (Abeles, Bergman, Margalit, & Vaadia, 1993;
Li, 1959; Luczak, Bartho, & Harris, 2009; Mastronarde, 1983),
several authors have hypothesized that such interactions between
neurons play a crucial part in forming unambiguous population
responses. For example, interactions among neurons may be used
to coordinate their relative firing time to tag particular features
to be bound together (von der Malsburg, 1999), may stabilize
the temporal relationships between cells against the detrimental
effect of trial-to-trial variability (Chase & Young, 2007; Gollisch &
Meister, 2008), or may be exploited to implement strategies for
error correction (Schneidman, Berry II, Segev, & Bialek, 2006).
In this Review, we will consider one particular mathemati-

cal analysis approach to population coding, based on information
theory (Quian Quiroga & Panzeri, 2009). One advantage of this
approach is that information theory quantifies stimulus discrim-
inability based on single trials (rather than on an average across
trials), and this makes it biologically relevant to characterizing
population codes, because (as discussed above) the brain recog-
nizes sensory stimuli and takes decisions on single trials. After
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introducing themain concepts of information theory in the context
of sensory neuroscience, we will discuss ways to reduce the lim-
ited sampling bias which plagues estimation of information mea-
sures from experimentally recorded neural populations, extending
the feasibility of such analysis to larger populations. We will then
discuss how to quantify the contribution of the interactions be-
tween groups of neurons to the overall information carried by the
neuronal population. We will focus in particular on evaluating
what is the contribution of interactions up to any given order to the
total information transmitted by the population, and how this
contribution scales with population size. We will validate and
demonstrate this formalism by applying it to simulated data with
realistic neuronal statistics, with the aim of exploring the robust-
ness of the methods to data sampling. We will also illustrate the
methodology by computing the information about whisker stimuli
carried by real simultaneously recorded populations from the rat
somatosensory cortex in order to demonstrate what type of neu-
rophysiological conclusion can be reached with it.

2. The information carried by neuronal population responses

Consider an experiment in which an animal is presented with
a stimulus s selected with probability P(s) from a stimulus set
S, and the consequent response of a population of C neurons is
recorded and quantified in a certain post-stimulus time window.
We assume that the neural population response is quantified as
a discrete, multi-dimensional array r = r1, . . . , rC of dimension
C , where rc is the response of neuron c on a given trial in the
response window. To simplify the presentation, we assume that
rc is the number of spikes emitted by neuron c during the trial in
the response window although the method could in principle be
easily extended to consider more detailed quantifications of single
neuron responses, for example those which include the temporal
response patterns of single neurons. The maximum number of
spikes that can be observed from an individual neuron in any trial
is denoted byM . (If the considered timewindow is very short,M is
1 and rc is binary). We indicate the response space by R (R contains
(M + 1)C elements). In all examples considered here, M equals 1
(binary responses), but the formalism is generic and iswell defined
for anyM value.
Having discussed how to quantify the response, the second step

is to compute how much information can be extracted from the
chosen response quantification. Themore the response of a neuron
varies across a set of stimuli, the greater its ability to transmit
information about those stimuli (de Ruyter van Steveninck, Lewen,
Strong, Koberle, & Bialek, 1997). The first step in measuring
information is thus to measure the response variability. The most
general way to do this is through the concept of Shannon entropy,
referred to hereafter as entropy, which is a measure of the
uncertainty associated with a random variable. Intuitively one can
posit some desirable properties of any uncertainty measure. The
first is that small changes in the underlying probabilities should
result in small changes in the uncertainty. The second is that the
measure should not depend on the labelling or ordering of the
variables and outcomes. The third is that the measure should take
its maximum value when all outcomes are equally likely and for
systems with uniform probabilities, the measure should increase
with the number of outcomes. The fourth is that the measure
should be additive; that is it should be independent of how the
system is grouped or divided into parts. It can be shown (Cover
& Thomas, 2006) that any measure of uncertainty about the neural
responses satisfying these properties has the form

H(R) = −
∑
r∈R
P(r) log2 P(r) (1)

where P(r) is the probability of observing response r across all
trials to all stimuli. In the neuroscience literature, the quantity
in Eq. (1) is usually called the response entropy, and it quantifies
how neuronal responses vary with the stimulus and thus sets the
capacity of the spike train to convey information. In Eq. (1) (and in
the following equations) the summation over r is over all possible
neuronal responses.
However, neurons are typically noisy; their responses to

repetitions of an identical stimulus differ from trial to trial.
Therefore H(R) reflects both variation of responses to different
stimuli and variation due to trial-to-trial noise. Thus H(R) is not
a pure measure of the stimulus information actually transmitted
by the neuron. We can quantify the variability specifically due
to noise, by measuring the so called noise entropy, which is the
entropy conditional on stimulus presentation:

H(R|S) = −
∑
s∈S

P(s)
∑
r∈R
P(r|s) log2 P(r|s) (2)

where in the above the summation over s is over all possible
stimuli, and P(r|s) is the probability of observing a particular
response r given that stimulus s is presented. Experimentally,
P(r|s) is determined by repeating each stimulus on many trials,
while recording the neuronal responses. The noise entropy
quantifies the irreproducibility of the neuronal responses at fixed
stimulus. The noisier is a neuron, the greater is H(R|S).
The information that the neuronal response transmits about

the stimulus is the difference between the response entropy
and the noise entropy. This is known as the mutual information
I(S;R) between stimuli and responses (in the following sometimes
abbreviated to information).

I(S;R) = H(R)− H(R|S)

=

∑
s∈S

P(s)
∑
r∈R
P(r|s) log2

P(r|s)
P(r)

. (3)

Mutual information quantifies how much of the information
capacity provided by stimulus-evoked differences in neural
activity is robust to the presence of trial-by-trial response
variability (de Ruyter van Steveninck et al., 1997). Alternatively, it
quantifies the reduction of uncertainty about the stimulus that can
be gained from observation of a single trial of the neural response.
When the logarithms used are base 2, as in Eq. (3), the entropy
and information have units of bits. 1 bit of mutual information
corresponds to an average reduction in uncertainty about the
stimulus by a factor of 2 after observation of a single response.
The mutual information has a number of important qualities

that make it well suited to characterizing how well a neural
response is modulated by the stimulus (recently reviewed for
example by Borst & Theunissen, 1999; Fuhrmann Alpert, Sun,
Handwerker, D’Esposito, & Knight, 2007; Panzeri, Magri, &
Logothetis, 2008; Quian Quiroga & Panzeri, 2009). First, as outlined
above, information-theoretic techniques quantify information
gains in single trials (rather than on average across trials) and
this makes them biologically relevant, because brains recognize
sensory stimuli and take decisions on single trials. Second, with
respect to other single trial analysis techniques (such as decoding
or reconstruction of the most likely stimulus that elicited the
neural response) information theory has the advantage that it
naturally takes into account all possible ways in which neurons
can convey information, for example, by predicting the most likely
stimulus, by reporting the uncertainty of the prediction, or by
ruling out very unlikely stimuli (Quian Quiroga & Panzeri, 2009).
Third, I(S;R) is the most general measure of correlation between
the stimuli and the neural responses, because it automatically
takes into account contributions of all interactions among neurons
at all orders. This property is central to evaluating (as we will
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do below) the information losses due to the simplification of
the structure of interactions among neurons. Fourth, computing
information does not require specifying a stimulus–response
model; it only requires computing the response probabilities
conditional on each stimulus. Therefore, the calculation of
information does not require spelling out which stimulus features
(e.g., contrast, orientation, etc.) are encoded. This makes this
formalismnot only adaptable to different experimental designs but
also suited to the analysis of neural responses to complex, rapidly
varying stimuli (de Ruyter van Steveninck et al., 1997).

3. Computing information from limited datasets

3.1. Origin and properties of the limited sampling bias
Calculation of information requires accurate estimation of the

stimulus–response probabilities P(r), P(r|s) and P(s) and thereby
H(R) and H(R|S). These probabilities, however, are not known a
priori and have to be measured experimentally from the available
neurophysiological data. This is the key practical issue for the
accurate application of Information Theory to the study of neural
codes. If we had an infinite amount of data, we could measure
the true stimulus–response probabilities precisely. However, any
real experiment only yields a finite number of trials from which
these probabilities must be estimated. The estimated probabilities
are subject to statistical error and necessarily fluctuate around
their true values. These finite sampling fluctuations lead to a
systematic error (bias) in estimates of entropies and information.
If not corrected, bias can lead to serious misinterpretations of
neural coding data. In this subsection, following and extending
the work of Panzeri, Senatore, Montemurro, and Petersen (2007),
we illustrate and investigate the nature of this problem, and we
present a number of useful techniques that have recently been
developed for addressing this issue.
The most direct way to compute information and entropies

is to estimate the response probabilities as the histogram
of the experimental frequency of each response across the
available trials. Plugging these empirical probability estimates into
Eqs. (1)–(3) results in a direct estimate that we refer to as the
‘plug-in’ method. In the following, Ns denotes the number of trials
recorded in response to stimulus s and N is the total number of
trials across all stimuli.
To understand better the effects of plugging experimentally

determined probabilities into the information functional, we
performed a series of simulations of a realistic population of 8
cells (see Appendix for details), systematically varying the number
of trials. Fig. 1(a) shows the entropy estimates resulting from the
plug-in method. In both cases, the estimates of H(R) and H(R|S)
increased with the number of trials. That is, finite sampling makes
plug-in entropy estimates biased downward. This is the case for
any stimulus–response probability distribution (Paninski, 2003).
Intuitively, the reason is that entropy is a measure of variability.
The fewer the number of trials available, the less likely we are
to fully sample the range of possible responses. Consequently,
entropy estimates are lower than their true values, and the effect
of finite sampling on entropies is a downward bias. H(R) is far less
biased than H(R|S) because the former depends on P(r), which,
being computed from data collected across all stimuli, is better
sampled than P(r|s). From Eq. (3), the bias of the information is
the difference between the bias ofH(R) and that ofH(R|S). Because
the latter is greater (and negative), the net result is that I(S;R) is
strongly biased upward (Fig. 1(b)). Intuitively, this is because finite
sampling can introduce spurious stimulus dependent differences
in the response probabilities, which make the stimuli seem more
discriminable and hence the neurons more informative than they
actually are.

To understand the sampling behavior of information and
entropy better, it is useful to find analytical approximations to
the bias. This can be done in the so-called asymptotic sampling
regime where, roughly speaking, the number of trials is large.
More rigorously, the asymptotic sampling regime is defined as
N being large enough that every possible response occurs many
times: that is, NsP(r|s) � 1 for each stimulus–response pair s, r
such that P(r|s) > 0. In this regime, the bias of the entropies
and information can be expanded in inverse powers of 1/N
and analytical approximations obtained (Miller, 1955; Panzeri &
Treves, 1996). The leading terms in the biases are, respectively

BIAS [H(R)] =
−1
2N ln 2

[
R̄− 1

]
BIAS [H(R|S)] =

−1
2N ln 2

∑
s

[
R̄s − 1

]
BIAS [I(S;R)] =

1
2N ln 2

{∑
s

[
R̄s − 1

]
−
[
R̄− 1

]}
(4)

where R̄s denotes the number of relevant responses for the
stimulus conditional response probability distribution P(r|s)
(i.e. the number of different responses r with nonzero probability
of being observed when stimulus s is presented) and R̄ denotes the
number of relevant responses for P(r) (i.e. the number of different
responses r with nonzero probability of being observed across all
stimuli).
Although valid only in the asymptotic regime, Eq. (4) sheds

valuable light on the key factors that control the bias. First, Eq. (4)
shows that if Ns is constant, the bias increases with the number
of responses R. This means that the bias increases exponentially
with the population size, and this is what makes the application of
information theory to the analysis of neural populations so hard.
Second, Eq. (4) shows that the bias of H(R|S) is approximately S
times bigger than that of H(R). This means that, in the presence
of many stimuli, the bias of I(S;R) is similar to that of H(R|S).
However, I(S;R) is a difference of entropies, and its typical values
are much smaller than those of H(R|S). This implies that spike
train analysis methods must be validated on the performance of
information and not only on entropies, because, in many cases, the
bias may be proportionally negligible for entropies but not for the
information. Third, Eq. (4) shows that the bias is small when the
ratioNs/R is big, i.e. there aremore trials per stimulus than possible
responses. Thus Ns/R is the crucial parameter for the sampling
problem. For example, in the simulations of Fig. 1(b), with R equal
to 28 = 256, the bias of I(S;R) became negligible for Ns = 213
(i.e. Ns/R ≈ 32).

3.2. Bias correction techniques

The plug-in estimate of information I(S;R) tends to require
large numbers of trials (Ns/R ≈ 32 as in Fig. 1(b)) to become
unbiased and is therefore of limited experimental utility. However,
over the last decade, several bias correction procedures have
been developed to reduce the number of trials required to obtain
accurate unbiased estimates (see Panzeri et al. (2007) and Victor
(2006) for reviews).

3.2.1. Quadratic extrapolation
One such correction is the so called quadratic extrapolation

(QE). In the asymptotic sampling regime, the bias of entropies
and information can be approximated as second order expansions
in 1/N , where N is the number of trials (Strong, Koberle, de
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Fig. 1. The limited sampling bias. Plug-in estimates of entropy quantities (panel a) andmutual information estimators (panel b) are shown as function of number of trials per
stimulus used for the estimation. Data is generated from a model of 8 cells from rodent somatosensory cortex, responding to whisker stimulation at 13 different velocities
(ranging between 0.15 and 47.7 mm/s). Stimulus-conditional individual and pairwise marginal probabilities are equal to those observed experimentally (see Section 5) but
no higher order correlations are present. Each point represents the average over 50 simulations of the system; error bars show±1 SD.

Ruyter van Steveninck, & Bialek, 1998; Treves & Panzeri, 1995). For
example, for the information:

Iplugin(S;R) = Itrue(S;R)+
a
N
+
b
N2
. (5)

This property can be exploited by calculating the estimates with
subsets of the original data, with N/2 and N/4 trials and fitting the
resulting values to the polynomial expression above. This allows
an estimate of the parameters a and b and hence Itrue(S;R). To
use all available data, estimates of two subsets of size N/2 and
four subsets of size N/4 are averaged to obtain the values for
the extrapolation. Together with the full length data calculation,
this requires seven different evaluations of the quantity being
estimated. An advantage of QE is that it is simple to implement and
that, although designed for the asymptotic regime, it works well
also for intermediately sampled regimes (Ns/R ≈ 2–4 or more).
The disadvantage of QE correction is that, by design, it cannotwork
in the undersampled regime (Ns/R� 1).

3.2.2. Panzeri–Treves (PT)
Eq. (4) can be used to estimate the bias, provided that one

can evaluate the number of relevant responses R̄s. However,
estimating R̄s is not straightforward. The simplest approach is to
approximate R̄s by the number of responses that are observed
at least once—this is the naive count. This leads to the so-called
Miller–Maddow bias estimate (Miller, 1955). The naive count is a
lower bound on the actual number of relevant responses because
some relevant responses are likely to have been missed due to
lack of data. Thus, the Miller–Maddow estimate is usually an
underestimate of the bias. To alleviate this problem, Panzeri and
Treves (1996) have developed a Bayesian procedure to estimate
the number of relevant responses. This estimate can be inserted
into Eq. (4) to compute the bias and then subtract it from the
plug-in information value: we refer to this procedure as PT bias
correction. PT, being designed also for the asymptotic sampling
regime, has a performance similar to that of QE. It works well also
for intermediately sampled regimes (Ns/R ≈ 2 − 4 or more), but
by design, it cannot work in the undersampled regime (Ns/R� 1).

3.2.3. Nemenman–Shafee–Bialek (NSB)
The NSB method (Nemenman, Bialek, & de Ruyter van

Steveninck, 2004; Nemenman, Shafee, & Bialek, 2002) utilises a
Bayesian inference approach and does not rely on the assumption
of the asymptotic sampling regime. It is based on the principle that
when estimating a quantity, the least bias will be achieved when

assuming an uniform a priori distribution over the quantity. This
method is challenging to implement, involving a large amount of
function inversion and numerical integration. However, it often
gives a significant improvement in the accuracy of the bias
correction and it can potentially work well also in conditions of
severe undersampling (Montemurro, Senatore, & Panzeri, 2007;
Nemenman et al., 2004, 2002).

3.2.4. Comparison of bias subtraction methods
Fig. 2(a) reports the results of the performance of bias correction

procedures on the estimates of the information in simulated
data reproducing the firing rates and second order interactions
of 8 neurons in rat somatosensory cortex (see Section 5 and
Appendix). Fig. 2(a) shows that bias correction procedures improve
the estimate of I(S;R) with respect to the plug-in estimator,
and the NSB correction is especially effective. When using bias
corrections, the estimation of I(S;R) in this simulation became
accurate when 29 trials per stimulus were available (that is, when
Ns/R ≈ 2, comparedwithNs/R ≈ 32 for the pure plug-inmethod).

3.3. Reducing the bias by shuffling correlated responses

The fundamental problem with understanding neural popula-
tion codes is the dimensionality problem: the number of possible
responses becomes exponentially large as the number of neurons,
C , grows. Thus (via Eq. (4)) the bias gets quickly out of control
when considering a large response array. For example, 10 ‘spike-
count’ neurons emitting up to 4 spikes per stimulus presentation
generate 410 (≈106) possible responses. The bias problem for large
C is exacerbated by the fact that, in real neuronal recordings, the
elements of the response array are often statistically correlated at
fixed stimulus. In other words, for some stimulus s the ‘true’ stim-
ulus–response probability P(r|s) is significantly different from the
probability Pind(r|s) obtained if neurons were independent at fixed
stimulus. By definition, the independent probabilitymodel Pind(r|s)
is the product of the stimulus-conditional marginal probabilities
P(rc |s) of responses of each neuron:

Pind(r|s) =
C∏
c=1

P(rc |s). (6)

These interactions at fixed stimulus are usually referred to in
the literature as noise correlations (Gawne & Richmond, 1993;
Latham & Nirenberg, 2005; Pola, Thiele, Hoffmann, & Panzeri,
2003). In sampling terms, the implication is that the sampling
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Fig. 2. Bias corrected mutual information estimates. The effect of different entropy bias correction methods on the mutual information estimators I (panel a), Ish (panel b) and
Ish−ush (panel c) are shown. Data is generated from the same 8 cell model system as in Fig. 1. Each point represents the average over 50 simulations of the system; error bars
show±1 SD.

of the full probability of a response array cannot be reduced
to computing the probabilities of each individual array element
(marginal probabilities) as would be legitimate if responses were
uncorrelated. Thus one has to deal with the full exponentially large
response array. However, fortunately there is a way to keep the
sampling difficulties introduced by correlations under control, as
follows. This discussion closely follows that of Panzeri et al. (2007).
Consider the independent noise entropy thatwould be obtained

if the response in each element of the arraywas independent of the
others at fixed stimulus:

Hind(R|S) = −
∑
s∈S

P(s)
∑
r∈R
Pind(r|s) log2 Pind(r|s). (7)

Because Hind(R|S) depends only on the marginal probabilities
of each individual neuron, it has very small bias (Fig. 1(a)).
Alternatively, correlations between response variables can be
removed by ‘shuffling’ the data at fixed stimulus. This is done
by constructing pseudo response arrays combining rc values each
taken (randomly and without replacement) from different trials
in which the stimulus s was presented. The algorithm for this
is as follows. Take all responses in the first element of the
response array to trials for a given stimulus and randomize
their order across the Ns trials. Repeat for the other elements,
randomizing independently across trials each time. This results in
a pseudo response array from which shuffled stimulus–response
probabilities denoted Psh(r|s) can be sampled and the shuffled

noise entropy Hsh(R|S) computed:

Hsh(R|S) = −
∑
s∈S

P(s)
∑
r∈R
Psh(r|s) log2 Psh(r|s). (8)

Hsh(R|S) has the same value as Hind(R|S) for large numbers of
trials Ns, since the independent shuffling of responses removes
any correlations. However, it has a much higher bias than
Hind(R|S) for small Ns. In fact, Fig. 1(a) shows that the bias
of Hsh(R|S) is of the same order of magnitude as the bias of
H(R|S). Intuitively, this is expected because Psh(r|s) is sampled
with the same number of trials as P(r|s) from responses with
the same dimensionality (Montemurro et al., 2007; Nirenberg,
Carcieri, Jacobs, & Latham, 2001). This observation has led to the
suggestion (Montemurro et al., 2007) to compute information not
directly though I(S;R) but through the following formula:

Ish(S;R) = H(R)− Hind(R|S)+ Hsh(R|S)− H(R|S). (9)

Ish(S;R) has the same value of I(S;R) for infinite number of trials
but has a much smaller bias for finite N due to the approximate
bias cancellation created by the entropy terms added in the right
hand side of Eq. (9).
Fig. 1(b) confirms that as a result of the bias cancellations in Eq.

(9), there a huge bias reduction in the plug-in estimates of Ish(S;R)
with respect to I(S;R).
Moreover, Fig. 1(b) shows that the bias of the plug-in estimate

of Ish(S;R) is negative. Indeed simulations show that the bias
of Ish(S;R) tends to be negative more often that it tends to be
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positive (Montemurro et al., 2007). It is worth briefly considering
the reason of this. The first reason is that the bias cancellation
between Hsh(R|S) and H(R|S) is only exact when correlations are
totally absent, and is only an incomplete cancellation in general. In
particular, in the presence of correlated firing (as shown in Fig. 1(a),
and inmore detail byMontemurro et al. (2007))Hsh(R|S) is usually
slightly more downward biased than H(R|S). To understand why,
Montemurro et al. (2007) derived the bias of Hsh(R|S) in the
asymptotic sampling regime, and found that

BIAS [Hsh(R|S)] =
−1
2N ln 2

∑
s

[
R̄sh−s − 1

]
(10)

where R̄sh−s denotes the number of relevant responses for the
stimulus conditional response probability distribution Psh(r|s). The
number of shuffled relevant stimulus-conditional R̄sh−s is greater
than or equal to R̄s, because Pind(r|s) = 0 implies P(r|s) = 0
and the shuffled responses can be considered as samples from
Pind(r|s). Thus the negative bias of Hsh(R|S) is greater than or equal
to that of H(R|S). The second reason why the bias of Ish(S;R) is
often negative is that there is a downward bias in H(R). This has
a significant negative effect on the bias of Ish(S;R)when there are
only very few stimuli, because in this case the negative bias ofH(R)
(which is computed across all trial to all stimuli) may be large and
may outweigh that of Hind(R|S) (which appears in Eq. (9) with the
sign opposite to H(R)). When the number of stimuli is large, then
H(R) is well sampled and its bias becomes negligible compared to
that of Hind(R|S). However, it should be also noted that the bias
of Ish(S;R) can also be mildly positive in some occasions. This can
happen for example when the cancellation between the biases of
Hsh(R|S) and H(R|S) is perfect (because there are no correlations)
and there are very many stimuli, so that H(R) has effectively no
bias and the whole bias of Ish(S;R) comes from that of−Hind(R|S).
In the previous section, the four bias correction techniques

were applied to I(S;R). However, they can also be applied to
Ish(S;R). Fig. 2(b) illustrates that, with all three bias correction
procedures, there is a bias reduction when using Ish(S;R) rather
than I(S;R). The result of using Ish(S;R) in combination with bias
correction techniques is that the estimates of information become
less dependent on the bias correction method used, and become
unbiased even down to 26 trials per stimulus (i.e., for Ns/R ≈ 1/4)
for the PT and QE methods. This is a factor of eight better than the
best performing bias correction of I(S;R).
Finally we present a novel extension of the Ish(S;R) estimator,

that further reduces the bias in cases when the number of stimuli
is not very high. Under such conditions, the bias of H(R), while
less than that of H(R|S), may still contribute significantly to the
downward bias of Ish(S;R). However, it is possible to cancel the
bias of H(R) in a similar way as the bias of H(R|S) is cancelled in
Ish(S;R). To do this the responses across all stimuli are shuffled
and sampled, obtaining an unconditional shuffled probability
distribution Push(r), with corresponding entropy:

Hush(R) = −
∑
r∈R
Push(r) log2 Push(r). (11)

The entropy Hush(R) has approximately the same bias as H(R),
since it is computed with the same number of samples over a
response space of the same size. In the limit of large numbers
of trials it converges asymptotically to the entropy of the
independent response distribution unconditional to the stimuli
Puind(r) =

∏
i=1...C P(ri):

Huind(R) =
∑
i=1...C

H(Ri). (12)

As discussed for Hind(R|S), Huind(R) has a very small bias since
it depends only on the marginal probabilities of each individual

neuron. So proceeding exactly as in the derivation of Ish(S;R) it is
possible to add and subtract these asymptotically equivalent terms
to cancel the bias of H(R). This results in the following estimator:

Ish−ush(S;R) = H(R)− Hush(R)+
∑
i=1...C

H(ri)

−Hind(R|S)+ Hsh(R|S)− H(R|S). (13)

Fig. 2(c) considers the performance of this estimator in the
case when the number of stimuli is intermediate (13 stimuli).
The uncancelled bias in Ish−ush(S;R) comes from the terms
Huind(R) − Hind(R|S). Bias correction methods such as quadratic
extrapolation and the PT analytical approximation perform better
for Ish−ush(S;R), resulting in improved performance relative to
Ish(S;R) for lownumbers of trials. This allows an unbiased estimate
even down to 25 trials per stimulus (i.e. for Ns/R ≈ 1/8).
As discussed above, in general the bias of Ish(S;R) tends to

be negative in most cases, although it can in principle be either
positive or negative. The additional terms added to Ish−ush(S;R)
ensure that its bias is always more positive than that of Ish(S;R),
because these additional terms were explicitly designed to cancel
out the negative bias of H(R). The use of Ish−ush(S;R) is therefore
only beneficial in cases where Ish(S;R) is biased downwards
because of the negative bias of H(R), which, as mentioned above,
takes a prominent role when the number of stimuli is small.
The difference in performance between Ish−ush(S;R) and

Ish(S;R) depends mainly on the number of stimuli. We verified
that (results not shown) if the number of stimuli were lower, the
benefit of Ish−ush(S;R) would be bigger, since the level of bias of
H(R) would be closer to that of H(R|S). Conversely if the number
of stimuli would be much larger (e.g. hundreds) then Ish−ush(S;R)
would offer no benefit since H(R) would already be very well
sampled.

4. Quantifying the effect of interactions on information trans-
mission

4.1. Defining and quantifying the interactions among neurons

Having defined the information that neuronal responses
transmit about sensory stimuli, we consider how interactions
among neurons affect information transmission.
The first step is to define precisely what we mean by

interactions. Here we say that neuronal populations interact if, for
some stimulus s, the ‘true’ stimulus–response probability P(r|s)
is different from the probability Pind(r|s). In a large population,
these interactions may be in general very complex and may be
characterized by many parameters. For example, in a network of
C binary neurons, 2C − 1 parameters are needed to characterize
all the possible interactions. A central question in studying
neural population codes is to understand which aspects of neural
population activity are important and which are not. Therefore, it
is important not only to document the presence of a statistically
significant correlation structure among responses of neurons
within a population, but also to determine which specific aspects
of the interaction structure are most important for information
transmission. An approach to this question is to consider a
simplified response model which neglects certain aspects of the
spike train correlation structure (e.g. it considers only correlations
among a specific subset of neurons), and test the effects on
information transmission of making such simplifications.
A question which has received much attention recently is

whether we can describe all interactions between the neurons
in terms of interactions between up to two neurons only, or
whether there are interactions among groups of more than
two neurons which cannot be explained in terms of pairwise
interactions. Understanding this is important for building minimal
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models of neural population responses which still capture the
main functional properties. A rigorous way to investigate the
effects of different orders of interaction is provided by the
technique of maximum entropy, which was originally introduced
in statistical physics (Jaynes, 1957), and is now beginning to be
used in neuroscience (Martignon et al., 2000; Montani et al., 2009;
Montemurro et al., 2007; Nakahara & Amari, 2002; Nirenberg &
Victor, 2007; Schneidman et al., 2006; Shlens et al., 2006; Tang
et al., 2008). In general, the idea of the maximum entropy (ME)
principle is to first fix some constraints that are of interest and then
seek the simplest, or most random, distribution subject to those
constraints. Using entropy as a measure of randomness, asking
for the most random distribution corresponds to asking for the
distribution with maximal entropy subject to the constraints. This
removes all types of correlation or structure in the data that does
not result from the constrained features.
The ME formalism can be naturally used to to address the

problem of whether we can describe all interactions between
neurons in terms of interactions between up to k neurons only, or
whether there are higher interactions amongmore than k neurons
which cannot be explained in terms of interactions of order up to
k. Measuring all interactions of up to k variables means measuring
all the marginal response probabilities involving up to k variables.
Therefore any probability matching the observed interactions of
up to k elements must preserve the same marginal response
probabilities of up to order k as the original distribution.
The probability distribution PMEk (r|s) with maximum entropy

among those satisfying the constraints of equality of marginal
probabilities up to order k, is the one that imposes the absence
of any additional interactions of higher order. The case k = 1
corresponds to all neurons firing independently at fixed stimulus
(i.e. PME1 (r|s) = Pind(r|s)).
Following Amari (2001) and Cover and Thomas (2006), it can be

shown that there is a unique solution to the constrainedmaximum
entropy problem for any order k. This solution takes in general an
exponential form. In the specific case of binary response variables
(when the maximum number M of spikes per neuron equals 1,
and ri ∈ {0, 1}) the kth order ME solution can be written in the
following form:

PMEk (r|s) = exp

{
θ0(s)+

∑
i

riθi(s)+
∑
i1<i2

ri1 ri2θi1i2(s)+ · · ·

+

∑
i1<···<ik

ri1 · · · rikθi1···ik(s)

}
. (14)

The set of indices i1, . . . , ia label the subsets of a variables among
the total C considered.
In the more general case of variables taking values from any

finite alphabet, the kth order exponential ME solution takes the
following more complicated form (Amari, 2001):

PMEk (r|s) = exp

{
θ0(s)+

∑
i

∑
a∈A′

δa(ri)θ ai (s)

+

∑
i1<i2

∑
a1,a2∈A′

δa1(ri1)δ
a2(ri2)θ

a1a2
i1i2

(s)

+ · · · +

∑
i1<..<ik

∑
a1..ak∈A′

δa1(ri1)..δ
ak(rik)θ

a1..ak
i1..ik

(s)

}
(15)

where A′ = A \ {0} is the set of members of the finite alphabet
considered, excluding the 0 value, and (following Amari, 2001) we
define an indicator function as follows:

δa (ri) =
{
1, ri = a
0, ri 6= a.

(16)

To quantifywhether interactions of up to k neurons in a population
are sufficient to describe the probabilities of neural responses
to stimuli, we can quantitatively compare the true distribution
P(r|s) of neural responses to the stimulus s to the distribution
PMEk (r|s). By performing this comparison over a range of values of
k, we can empirically determine the minimal k necessary to fit the
empirically measured response probability well.
In order to compute the maximum entropy distribution

PMEk (r|s) of Eq. (14) from real data,weneed to find the θ coefficients
with up to k indices. These θ coefficients can be determined from
the experimentally measured marginal probabilities of up to k
elements through a set of algebraic equations which were derived
in the work of Amari (Amari & Nagaoka, 2000; Amari, 2001). To
solve these equations numerically, we used our recently developed
and publicly available1 pyentropy numerical package (Ince,
Petersen, Swan, & Panzeri, 2009b). We refer to Ince et al. (2009b)
for full details of the algorithm and code implementing the
numerical solutions.
It is important to note that the maximum entropy models

described and used here are not the only way to investigate the
presence and effect of high order interactions. We refer the reader
for example to Gütig, Aertsen, and Rotter (2003), Staude, Rotter,
and Grün (2009) and Onken, Grünewälder, Munk, and Obermayer
(2009) for examples of other techniques based on cumulants or
copulas.

4.2. Defining the effects of interactions on information

After correlations have been defined, the next step is to
characterize how they affect information transmission. Here, for
simplicity we focus only on two specific information-theoretic
measures, which are designed to address two different specific
questions: what is the impact of interactions up to a given order
on the total information about stimuli encoded by the population,
andwhat order of interactions a downstream system needs to take
into account in order to extract all the information about stimuli
available from neural population activity.

4.2.1. Measures of how interactions affect encoding
To understand what is the impact of interactions up to a

given order on the total information encoded by the population,
it is useful to compare the information I(S;R) available in
the population including interactions at all orders with the
information Ik(S;R) that would be available if only interactions up
to a given (low) order were present. The information that would
be available if only interactions up to a given order kwere present
can be evaluated by calculating the mutual information that
would result from a system exhibiting the probability distributions
obtained from the maximum entropy solution, as follows:
Ik(S;R) = Hk(R)− Hk(R|S) (17)
where Hk(R) and Hk(R|S) are the response and noise entropies
respectively of the kth order maximum entropy model. These
entropies are obtained by replacing P(r|s) and P(r) with PMEk (r|s)
and PMEk (r) in Eqs. (1) and (2), where PMEk (r) =

∑
s P
ME
k (r|s)P(s):

Hk(R|S) = −
∑
s∈S

P(s)
∑
r∈R
PMEk (r|s) log2 P

ME
k (r|s)

Hk(R) = −
∑
r∈R
PMEk (r) log2 P

ME
k (r). (18)

Then

Ik(S;R) =
∑
r,s
P(s)PMEk (r|s) log2

PMEk (r|s)
PMEk (r)

. (19)

1 http://code.google.com/p/pyentropy/.
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4.3. Measures of the information lost in decoding with the simplified
model

A second, equally important question is whether a downstream
system needs to take into account interactions at all orders for
extracting all the information available from neural population
activity. Following Wu, Nakahara, Murata, and Amari (2000), Wu,
Nakahara, and Amari (2001) and Nirenberg et al. (2001), the
problem can be formalized by considering a downstream neural
system that extracts information about the stimulus by relying
on the assumption that the spikes are generated by a simplified
response model that contains only correlations up to a given
order. For example, the downstream system may decode the
stimulus using, via Bayes’ rule, a posterior probability based on the
simplifiedmaximumentropymodelwhich neglects interactions of
order higher than k:

PMEk (s|r) =
PMEk (r|s)P(s)
PMEk (r)

. (20)

An important question is how much information is lost because
the information-extracting operation is performed assuming
that responses r are generated with the simplified maximum
entropy distribution PMEk (r|s) rather than with the true probability
distribution P(r|s). An an upper bound to this information loss is
expressed by the following simple closed-formexpression (Latham
& Nirenberg, 2005; Nirenberg et al., 2001):

∆Ik ≡ D(P(s|r) ‖ PMEk (s|r))

≡

∑
r
P(r)

∑
s

P(s|r) log2
P(s|r)
PMEk (s|r)

(21)

where D is conditional Kullback–Leibler (KL) distance (Cover &
Thomas, 2006, Eq. 2.65). The ME model construction ensures that
if, for some r and s, PMEk (r|s) is zero, then P(r|s)must also be zero,
and this in turn ensures that ∆Ik is a non-divergent information-
theoretic measure.
A second quantity of interest is ILB−k (Pola, Petersen, Thiele,

Young, & Panzeri, 2005), defined as the difference between the
mutual information I and∆Ik:

ILB−k = I −∆Ik

=

∑
r,s
P(r, s) log2

PMEk (r|s)
PMEk (r)

. (22)

Since∆Ik is non-negative and is an upper bound to the information
lost when decoding the neuronal responses with the mismatched
response model PMEk , ILB−k has a well defined meaning: it provides
a lower bound to the information that can be decoded by using the
simplified probability distribution PMEk .
The maximal amount of information Îk that can be decoded by

using the mismatched decoder based on PMEk (r|s) (rather than on
the true distribution P(r|s)) can be quantified by computing the
maximumover the parameterβ of the following quantity (Merhav,
Kaplan, Lapidoth, & Shamai Shitz, 1994; Oizumi, Ishii, Ishibashi,
Hosoya, & Okada, 2009):

I(β)k = −
∑
r
P(r) log2

[∑
s

[
PMEk (r|s)

]β
P(s)

]
+

∑
r,s
P(r|s)P(s) log2

[
PMEk (r|s)

]β
. (23)

It can be shown (Oizumi, Ishii, Ishibashi, Hosoya, & Okada, 2010;
Oizumi et al., 2009) that Îk ≤ I(S;R) and that ILB−k equals I

(β)

k

for β = 1. Since Îk is the maximum over β of I
(β)

k , it follows that

Îk ≥ ILB−k, confirming that ILB−k is a lower bound. When the value
of Îk is strictly lower than I(S;R), it follows that including in the
decoding model correlations up to order k is not enough to decode
the entire information in the neural responses.
The computation of the precise amount of information decod-

able by taking into account correlations up to order k, Îk has not
been used in neuroscience until very recently (Oizumi et al., 2010,
2009). Its sampling properties and the best procedures to estimate
it from a limited amount of data are still largely unexplored. Given
this quantity can in principle provide important answers to charac-
terizing simple but efficientways to read out a population code, we
suggest that investigating in detail the statistical issues regarding
the valuation of Îk is an important topic for further research.

4.4. Other information-theoretic measures of the importance of
neural interactions in coding

The quantities Ik(S;R), ∆Ik, ILB−k, Îk are by no means the only
information-theoretic measures of the importance of correlations
that have been developed. Although for space reasons we cannot
describe them all here, in this subsection we briefly review
some of the main ones and (when appropriate) we discuss their
relationship with the information-theoretic quantities Ik(S;R),
∆Ik, ILB−k, Îk that we presented above.
The idea of evaluating the impact of interactions on information

by taking the difference between the information I(S;R) available
in the population including all interactions and the information
I1(S;R) that would be available if the single neuron marginal
probabilities were the same but no interactions were present was
introduced some 10 years ago in Panzeri, Schultz, Treves, and Rolls
(1999), Hatsopoulos, Ojakangas, Paninski, and Donoghue (1998)
and Nirenberg and Latham (1998). The difference between I(S;R)
and I1(S;R) was previously termed Icor by Pola et al. (2003) and
∆Inoise in Schneidman, Still, Berry, and Bialek (2003), the latter
name being due to the fact that interactions and correlations
measures at fixed stimulus are usually named noise correlation.2
Panzeri et al. (1999) and Pola et al. (2003) introduced a so

called ‘‘information breakdown’’ formalism which separates the
total impact of neural interactions on encoding Icor (which, as
mentioned above, equals I(S;R)− I1(S;R)) into two contributions
Icor−ind and Icor−dep, reflecting stimulus independent and stimulus
dependent interactions respectively. The quantity Icor−dep equals
∆I1. Therefore the quantify ∆Ik in Eq. (21) can also be interpreted
as the contribution of stimulus modulations of interactions of
order higher than k. More recent generalizations of the information
breakdown have focused on how to carefully separate the
contributions of interactions between spikes emitted by different
neurons from the contributions of interactions among spikes from
the same neuron (Scaglione, Foffani, Scannella, Cerutti, & Moxon,
2008; Scaglione, Moxon, & Foffani, 2010).
The idea of using ME methods to separate out the information

about stimuli carried by different orders of neural interactions
was pioneered by Nakahara and Amari (2002), who investigated
how to separate information attributable to stimulus modulation
of higher order interactions from the information attributable to
stimulus modulation of lower order marginals. The idea (reviewed
in previous subsections) of computing the effect of interactions of
order higher than k on encoding of stimulus-related information
by considering the difference between I(S;R) and Ik(S;R) was
introduced in Ince, Montani, Arabzadeh, Diamond, and Panzeri
(2009a); Montani et al. (2009).

2 The quantity I1(S;R)was also called Iind(S;R) or Ilin+Isig−sim in Pola et al. (2003).
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5. Neurophysiological data

After having described information-theoretic techniques to
study the effect of interactions of up to any given order on
information transmission by neural populations, we illustrate their
use by applying them to a population of neurons recorded from the
whisker representation in the somatosensory cortex of urethane
anaesthetized rats. We first describe the dataset and we then
evaluate the effect of the interaction order on the information
about the stimuli carried by the neural responses.
The data set, previously published in Arabzadeh, Petersen, and

Diamond (2003) and Arabzadeh, Panzeri, and Diamond (2004),
consists of 24 simultaneously recorded neural clusters, each
sampled with a different electrode with a minimal inter-electrode
distance of 400 µm. Spike times from each electrode were
determined by a voltage threshold set to a value 2.5 times the
root mean square voltage. Since it was not possible to sort well-
isolated units from each channel, spikes from the same recording
channel were considered together as a single neural cluster. It
has been estimated that, under these recoding conditions, each
cluster captured the spikes of approximately two to five neurons
located near the tip of the electrode (Petersen & Diamond, 2000).
Neural activity was recorded in response to stimulation (with a
piezoelectric wafer controlled by a voltage generator) consisting
of sinusoidal whisker vibrations, each defined by a different value
of vibration velocity and delivered for 500ms (see Arabzadeh et al.,
2004, for full details). Thirteen different values of vibration velocity
were tested, ranging between Af = 0.15 and Af = 47.7 mm/s.
Each value of vibration velocity was treated as a different stimulus
s; there were 13 stimulus classes in total. The number of recorded
repetitions for each stimulus (called ‘trials’ in neurophysiology),
from which the probability of response at fixed stimulus is
determined, varied between a minimum of 200 and a maximum
of 1400 across stimuli. In each trial, the population response r is
computed as follows. It was previously shown (Arabzadeh et al.,
2004) that themajority of the information is transmitted very early
post-stimulus onset. We therefore quantified the response using a
post-stimulus time window of 10–15 ms, which was the window
whichmaximized the information about the stimulus conveyed by
the responses of individual channels. To facilitate the sampling of
the population response probabilities, for each recording channel
we ‘‘binarized’’ the responses, i.e. we set the response of each
channel to 1 if at least one spike occurred in in 10–15 ms post-
stimulus window, and 0 otherwise. The reason for the binarization
of responses was that, although we had enough data to reliably
compute information in binarized responses of up to 8 cells, we
did not have enough data to compute information in multi-level
population responses. However, we checked that, at the single
neuron level, the binarization of neural responses had a small effect
on information: the single channel information about the stimuli
was 0.216±0.003 bits for the binarized spike count responses and
0.221± 0.003 for the unprocessed spike count response (average
± SD across the population).
For performing the information analysis,wedecided to consider

response distributions of C = 8 simultaneously recorded channels
(out of the 24 available). The reason was that this population size
was big enough to begin observing how the effect of interactions
at various orders depends on the population size, while it was
small enough to be sampled with the available data and provide
sufficiently accurate information analysis. The robustness of the
results with respect to sampling issues was verified by dividing
the data into two halves, by recomputing each of the considered
information quantities from each halved dataset, and by obtaining
the result that none of the information quantities obtained with
the entire dataset differed more than 2% from the ones obtained
from the halved dataset over the entire population size range 2–8
(results not shown).

To get a better feeling for the data, in Fig. 3(a) we plot the
mean and 25–75th percentile spread across the population of
the probability of channel firing in the 10–15 ms post-stimulus
window as function of the different values ofwhisker velocity used
during the experiment. It is apparent that the firing rate of these
cells increases monotonically with increasing stimulus velocity.
The value of the mean spike probabilities are of interest in the
context of studying the effect of correlations because previous
studies have argued that the population is compelled to be well
described by just considering pairwise correlations if the product
of the mean spiking probability of a single neuron and the size
of the population is much smaller than one (Panzeri et al., 1999;
Roudi, Nirenberg, & Latham, 2009a). Fig. 3(a) shows that this is
not the case for our population. In fact, for the upper half of
the presented stimulus velocities, firing probabilities are in the
range of 0.4–0.5, and we will quantify the information carried by
a population of up to C = 8 channels. This suggests that there
is the possibility that we could find some contribution of higher
order correlations to the transmitted information in the range of
population sizes that we will analyze. In Fig. 3(b), we report the
mean and 25–75th percentile spread across the population of the
Pearson correlation coefficient computed from the binarized spike
counts in the 10–15 ms post-stimulus window for each value of
whisker velocity. These correlation coefficient distribution shows
that these neurons are indeed correlated, and that correlations
depend on the stimulus. For example, stimuli with high velocity
tend to elicit lower response correlation than stimuli with low
velocity. The fact that this population is correlated in a stimulus
dependent way suggests that such correlations might play some
role in this particular population code for stimulus velocity.
We begun the investigation of how this population encodes

information by first considering howwell Ik(S;R), the information
transmitted if interactions only up to order k were present,
approximates the true total information carried by the population.
To understand how these information-theoretic quantities scaled
with the population size, we computed the information carried
by each m-plet of channels (m = 2, . . . , 8) out of the 8
available channels. We averaged the information values over all(
8
m

)
m-plet’s, and we plotted the mean information values as a

function of the population size. Results are reported in Fig. 4(a).
The information I1(S;R) carried if individual neurons had the
observed marginal probabilities but they fired independently at
fixed stimulus is much higher than the true information I(S;R)
carried by the population. Note that in the following discussion
we refer to the full mutual information as I(S;R), although in
practice we computed its value from experimental data using the
shuffled estimator Ish−ush(S;R) described above. The difference
between I(S;R) and I1(S;R) is small when considering 2–3 cells,
but it grows steeply as a function of the population size. When
considering 8 cells, I1(S;R) is almost 50% bigger than I(S;R). This
means that, in this system, the presence of interactions has a
severely limiting effect on information transmission. This limiting
effect grows with the population size. However, the information
I2(S;R) computed taking into account interactions up to order two
gave a good approximation to I(S;R). For small population sizes
(up to 4 cells), I2(S;R) was almost exactly equal to I(S;R). For
larger population size, the difference between I2(S;R) and I(S;R)
remained small, and reached 3.2% when considering 8 channels.
Finally, the the information I3(S;R) computed taking into account
interactions up to order three gave an essentially perfect (within
0.5%) approximation to I(S;R) within the entire population size
range considered.
In sum, within the population size range explored here, the

mutual information of the system was very well approximated by
models containing interactions up to order 2, and was perfectly
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Fig. 3. Mean firing rate and correlation coefficients for the data. The mean probability of observing a spike in the 10–15 ms post-stimulus window considered is shown (panel
a) as a function of the whisker velocity stimulus. Black line shows mean spike probability across the 8 cells considered; grey region shows 25–75th percentile. The Pearson
correlation coefficients of neural responses for each stimulus are also shown (panel b). Black line shows mean correlation coefficient across the 28 pairs among the 8 cells
considered; grey region shows 25–75th percentile.

Fig. 4. Quantifying the effect of correlations on information. The information Ik(S;R) carried by systems containing correlations only up to order k, and shortened as Ik
(k = 1, 2, 3) (panel a), lower bounds on information available to a decoder neglecting correlations of order higher than k, ILB−k (k = 1, 2, 3) (panel b) and the Ish−ush mutual
information estimator are shown as a function of the number of cells considered. 8 channels from the experimental data set (see Section 5) were chosen; each point shows
the mean value over all

(
8
c

)
combinations of c channels. Error bars show±1 SD. All values are corrected using quadratic extrapolation.

approximated by models containing interactions of up to order
3. This is a significant simplification since it greatly reduces the
parameters required to describe the system. For example, in the
case of 8 binary cells as considered here, specification of the
full distribution requires 28 − 1 = 255 parameters, while the
second and third order models require only 36 or 92 parameters
respectively.While it is still challenging to sample second and third
order marginals, it is a muchmore tractable problem than the case
where all orders of interaction must be accurately determined.
Moreover, we note that, to our knowledge this is the first report
of I2(S;R) being a close approximation to I(S;R) outside of the
regime when the probability of observing a spike across all cells
in a bin is not small compared to 1 (see Roudi et al., 2009a, for the
reasons why this result is of interest).
We then computed, as a function of the population size, the

quantity ILB−k, which is a lower bound to the information that
can be extracted by a downstream system assuming that the
probabilities of neural response contain only interactions up to
order k. Results are plotted in Fig. 4(b). The quantity ILB−3was equal
to I(S;R) over all the population size considered, meaning that a
downstream decoder needs only to pay attention to correlation up
to order 3 to extract all information available in this population.

In fact, the quantity ILB−2 was also very close to I(S;R) over
all the population size considered, the difference between the
two quantities however showing a slight tendency to increase
as function of the population size. ILB−2 was within 1% of I(S;R)
when considering 8 channels,meaning that a downstreamdecoder
operating on populations of up to 8 cells would decode essentially
all of the information even when paying attention to correlations
only up to order 2.
Interestingly, Fig. 4(b) also shows that the quantity ILB−1 was

much smaller than I(S;R), with the difference between the two
quantities increasing very steeply with the population size. This is
to our knowledge the first time that ILB−1 was reported to fail so
dramatically to match I(S;R), as previous studies reported a close
match between ILB−1 and I(S;R) for both neuronal pairs (Golledge
et al., 2003;Montani, Kohn, Smith, & Schultz, 2007;Nirenberg et al.,
2001; Petersen, Panzeri, & Diamond, 2001) and for populations
of few tens of neurons (Pillow et al., 2008). The fact that ILB−1
is much smaller than I(S;R) is interesting because it raises the
possibility that downstream receivers of barrel cortex activity
must use knowledge of their correlation in order to extract the
information that this neurons carry. However, the fact that ILB−1
is only a lower bound to the information that can be obtain by
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neglecting all types of interactions, makes it difficult to assess
whether the large difference between ILB−1 and I(S;R) comes from
the fact that the knowledge of interactions was really necessary
to decode all the information, or simply because the lower bound
was not tight. We will investigate this point in more detail in later
sections.
A notable fact arising from the study of both ILB−k and Ik(S;R)

is that in both cases the effect of neural interactions of information
increases steeply with the population size. This means that studies
on the role of correlations on information carried out on pairs of
neurons do not necessarily generalize to large populations, and
it stresses the importance of further developing the information
calculation methods in order to evaluate the information content
of larger and larger populations.

6. Using the knowledge of the correlation structure to reduce
the bias

Another way to reduce the bias and the problems in computing
information from limited datasets is to reduce the complexity
of the population response space by fitting the probability
distributions to simple, low-dimensional models. A prominent
example of this strategy is to assume that the structure of the
interactions between cells is described by a low dimensional
model, for example the maximum-entropy model including
correlations up to a given low order k. If this assumption is correct
and is sufficient to describe the whole information content of
population responses, then the resulting calculation of information
from the low order model is potentially much more data robust.
The sampling advantages of information-theoretic quantities

based on low-dimensional probability models can be appreciated
by computing different information-theoretic quantities on a
simulated population of 8 cells. Fig. 5 compares the scaling with
the number of trials of the information I1(S;R) and I2(S;R) (based
on no interactions and on pairwise interactions respectively) to
that of the full information I(S;R). It is apparent that I1(S;R)
can be computed without bias from as little as 23 = 8 trials
per stimulus, and is thus is much more data robust than I2(S;R),
which requires at least 25 = 32 trials per stimulus for unbiased
computation. I2(S;R) is in turn is more data robust than I(S;R)
which is unbiased only with at least 210 trials per stimulus. The
reason for this behavior is that for small k fewer parameters are
necessary to characterize the responses, and the fewer parameters
that have to be sampled, the smaller the bias (see Eq. (4)). The same
reasoning also applies to ILB−1 and ILB−2 which, as shown in Fig. 5,
scale with the number of trials in a way similar to I1(S;R) and
I2(S;R) respectively.
The drawback of using low order models to estimate informa-

tion is that they do not converge to the correct information value if
the wrong assumption is made about the minimal order k which
fully captures the interaction in the data. This can be appreci-
ated by comparing the simulations in Fig. 5(a) and (b). In Fig. 5(a),
data are simulated in such a way that stimulus-conditional re-
sponse probabilities are independent (i.e. the responses are de-
scribed by the k = 1 model). In this case, ILB−1 and I1(S;R) have to
converge to the correct value of information I(S;R) (because by
construction the response probabilities are perfectly described by
a k = 1 model), and so the sampling advantages of I1(S;R) and
ILB−1 can be used at no price of distortion of information calcu-
lation. However, in Fig. 5(b), data are simulated in such a way
that stimulus-conditional response probabilities are described by
a pairwise model (i.e. the responses are described by the k = 2
model). In this case, ILB−2 and I2(S;R) converge to the correct value
of information I(S;R), but ILB−1 and I1(S;R)) do not. Using ILB−1
and I1(S;R)) would lead to a highly misleading evaluation of in-
formation, because the order k = 1 is in this case inadequate to

describe the data. This example illustrates that using simplified
probability models to compute information is only advisable if a
rigorous criterion is used to select the simplestmodel that fully de-
scribes the data. Various parametric and non-parametric statisti-
cal procedures for suchmodel selections have been proposed (Ince
et al., 2009a; Kennel, Shlens, Abarbanel, & Chichilnisky, 2005;Mar-
tignon et al., 2000; Montemurro et al., 2007; Nakahara & Amari,
2002), and we refer the reader to such articles for a thorough dis-
cussion of various proposals.
Fig. 5 also compares the sampling behavior of the information

estimates Ik(S;R) and ILB−k based on lower ordermodels (k = 1, 2)
to the improved shuffled estimator Ish−ush(S;R) discussed in the
previous section. The result is that Ish−ush(S;R) has a sampling
behavior which is comparable to that of I1(S;R) and ILB−1, with
the added advantage of converging (for large datasets) to the true
information value independently of the order of the interactions
in the simulated model. This results stresses that the shuffled
estimator remains competitive evenwhen compared to estimators
based on model selection.

7. Computing data robust information lower bounds using
decoding techniques

Despite the progress with the bias correction procedures
described above, when the neuronal population is large it becomes
impossible to compute the information in neural responses
directly because the number of possible responses r grows
exponentially with the population size (this is sometimes called
the curse of dimensionality). At somepoint even the bias correction
procedures discussed above will be ineffective for the quantities of
data that can be experimentally collected. Therefore, calculation
of information from large populations remains a problem unless
highly efficient ways to compress the response space with little
information loss can be found.
A promising approach to the information analysis of larger

populations is the use of information theory coupled to decoding
approaches (Quian Quiroga & Panzeri, 2009). These procedures use
a stimulus-decoding procedure to predict the most likely stimulus
elicited from a single trial population response, and this makes
it possible to compress the population response space into the
space of ‘predicted stimuli’ (Quian Quiroga & Panzeri, 2009). If the
number of stimuli is much smaller than the number of responses,
stimulus-decoding is an effective and simple way to reduce the
space of responses.
In more detail, this approach works as follows. Decoding can

be defined as the prediction of which stimulus elicits a particular
neuronal response in a single trial. More formally, decoding is a
function f (r) operating on the population response in any given
trial and giving a prediction sp of the stimulus that elicited the
observed neural population response in that trial:

sp = f (r). (24)

A prominent example of decoding is Bayesian decodingwhich pre-
dicts the most likely stimulus given the response as follows (Cover
& Thomas, 2006):

sp = argmax
s

P(s|r). (25)

From this decoding procedure performed on each trial, the
performance of the decoder across all trials can be summarized
by computing the so called confusion matrix Q (sp|s), which is
defined as the fraction of times that a stimulus spwas predicted in a
given trial in which stimulus swas presented. To validate decoding
results, some trials can be used to optimize the decoder (the
training set) and the rest to test its performance, a procedure called
cross-validation (Quian Quiroga & Panzeri, 2009). It is important
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Fig. 5. Bias properties of mutual information bounds. Information bounds Ik , ILB−k , (k = 1, 2) and mutual information estimates I , Ish−ush are shown as a function of number
of trials per stimulus. Two model systems are considered, one with individual marginals matching the experimental data, but no second or higher order correlations (panel
a) and one with individual and pairwise marginals matching the experimental data as in Figs. 1, 2 and 4 (panel b). Each point represents the average over 50 simulations of
the system; error bars show±1 SD. All values are corrected using quadratic extrapolation.

that trials belonging to the training set are not used to evaluate
the decoding performance because this may lead to artificially
high values due to overfitting. A common procedure is the ‘leave-
one-out’ validation, in which each trial is predicted based on the
distribution of all the other trials. This has the advantage that
both optimization and assessment testing are based on the largest
possible number of trials (Quian Quiroga & Panzeri, 2009).
Since the distribution of test responses to a given stimulus is

given by P(r|s), Q (sp|s) can be written down as:

Q (sp|s) =
∑
r
δ(sp, f (r))P(r|s) (26)

where δ is the Kronecker delta function. The ‘decoded’ information
I(S; SP) is then quantified as follows:

I(S; SP) =
∑
s

∑
sp
P(s)Q (sp|s) log2

Q (sp|s)
Q (sp)

(27)

where Q (sp) =
∑
s Q (s

p
|s)P(s).

It is useful to note that information-theoretic inequalities en-
sure that I(S; SP) ≤ I(S;R) (Cover & Thomas, 2006). The rea-
son why I(S; SP) can be less than I(S;R) even when the decoding
algorithm is well constructed and the probability model used for
decoding is correct is that the decoding operation captures only
one aspect of the information carried by the population response,
namely the identity of the most likely stimulus. However, neu-
ral populations can carry information by other means than by
reporting the most likely stimulus. For example, they can carry
information by reporting which stimuli are very unlikely and
should be ruled out, or they can carry additional information by
reporting the identity of the second most likely stimulus, and so
on (Quian Quiroga & Panzeri, 2009). The quantity I(S;R) automat-
ically captures all theseways to carry information,whereas I(S; SP)
does not. However, other information can be added from the de-
coding procedure by progressively including in the calculation in-
formation about less likely or unlikely stimuli. For example, one
can extend the information carried by the most likely stimulus
prediction I(S; SP) by adding knowledge of the second most likely
stimulus to the decoded information:

I(S; SP1SP2) =
∑
s

∑
sp1,sp2

P(s)Q (sp1sp2|s) log2
Q (sp1sp2|s)
Q (sp1sp2)

(28)

where Q (sp1sp2|s) is probability of predicting stimulus sp1 and sp2
as most and secondmost likely stimulus respectively when stimu-
lus s is presented. Again, information-theoretic inequalities ensure
that I(S; SP) ≤ I(S; SP1SP2) ≤ I(S;R), and so on for adding more

aspects of stimulus likelihood (for example, computing the infor-
mation I(S; SP1SP2SP3) carried by the identity of the three most
likely stimuli). Progressively adding more and more knowledge
about the order of stimulus likelihood and the relative likelihood
of all stimuli should eventually let the procedure to converge to
I(S;R).
It is interesting to consider how to evaluate the role of

correlations at given order using the decoding procedure outlined
above. To address this, one can decode the stimulus using a
decoding algorithm based on the simplified posterior probability
model containing correlations up to order k, PMEk (s|r), rather than
the true distribution P(s|r), as follows:

spk = argmax
s

PMEk (s|r). (29)

Using this decoded stimulus one can compute I(S; SPk ), the
information obtained by Bayesian decoding of the most likely
stimulus using the kth order model through Eq. (29). This is done
by first computing the confusion matrix Q (spk|s) obtained from Eq.
(26) when using the Bayesian kth order decoder (Eq. (29)) as the
decoding function f (r), and by then inserting this decoding matrix
into Eq. (27).
We note that to compute the above equation for Q (spk|s), the

‘‘decoder’’ needs to know PMEk (r|s), but not P(r|s). In fact, P(r|s) is
not needed in the single trial decoding operation, and the average
over r in Eq. (26) is done by simply counting how many times a
stimulus was presented and then decoded as spk .
As outlined above, one can also extend this calculation to

include the information carried by the secondmost likely stimulus
with the kth order model I(S; SP1k S

P2
k ), and so on. The difference

with respect to decoding based on the full probability is that
in the case of kth order model-based decoding, adding more
and more knowledge does not necessarily lead to converge to
I(S;R). The value of information to which this iterative procedure
converges to can be taken as an estimation, or a definition, of the
maximal amount of information that can be extracted through
the mismatched kth order model. It remains to be understood in
which conditions this iterative estimation of the maximal amount
of information that can be extracted through the mismatched kth
order model is equivalent to the one denoted as Îk and discussed
above (Merhav et al., 1994; Oizumi et al., 2009), and in which
conditions these two procedures differ in estimated value and
meaning.
In the following we explore the iterative procedure by applying

it to populations of up to 8 somatosensory recording channels
responding to whisker stimulations of different velocities from the
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Fig. 6. Decoded information using the independent model. 8 clusters from
the experimental data set (see Section 5) were chosen and for all

(
8
c

)
combinations of c clusters, the decoded information under the independent model
considering the most likely stimulus, I(S; SP11 ), and considering the two most
likely stimuli I(S; SP11 S

P2
1 ) was computed. These values are shown as fractions of

the full information I(S;R) computed using the shuffled estimator and quadratic
extrapolation. Error bars show±1 SD.

data set considered in Figs. 3 and 4 (see Section 5). We remind the
reader that we previously found (Fig. 4) that the lower bound to
the information that could be decoded by the independent model
ILB−1 was much lower than the full information I(S;R) carried by
the population, and that by using only this lower bound we could
not resolve whether the result meant that taking into account
interactions was indeed necessary to decode the information, or
it meant simply that the lower bound was not tight. Here we
explore the use of the decoding methodology to address this issue.
We computed the information I(S; SP11 ), obtained by maximum
likelihood decoding using the independent (k = 1) model, and
then iteratively added knowledge about other less likely stimuli
(i.e. computing I(S; SP11 S

P2
1 ) etc.) and we investigated whether this

procedure converged to the full information I(S;R).
Fig. 6 shows that in this population I(S; SP11 ) was higher than

ILB−1, demonstrating that the lower bound was indeed not tight,
especially when considering more than 3–4 channels. However,
I(S; SP11 ) remained lower than I(S;R) and the difference between
I(S; SP11 ) and I(S;R) increased with the population size. For 8
channels, I(S; SP11 ) was 86% of I(S;R). This suggests that decoding
the most likely stimulus with the independent model is not
enough to decode all information, especially when considering
larger populations. To understand whether more information can
be extracted by the independent model, we computed also the
information obtained from the knowledge of the most and second
most likely stimulus of the independent model I(S; SP11 S

P2
1 ). This

quantity was significantly higher than I(S; SP11 ). We verified the
statistical significance of the increase by computing I(S; SP11 Srand),
the information carried by the most likely stimulus of the
k = 1 model and the addition of a second ‘‘dummy’’ decoded
stimulus, Srand, which was chosen at random. This was lower
than I(S; SP11 S

P2
1 ) across all population sizes; one-way anova,

p < 0.05. However, I(S; SP11 S
P2
1 ) did not reach I(S;R), which

means that knowing both the most likely and the second most
likely stimulus with the independent model is still not enough
to decode all information. We then added the knowledge of the
identity of the third stimulus of the independent model (i.e. we
computed I(S; SP11 S

P2
1 S

P3
1 )), and we found that the addition of the

knowledge about the third most likely stimulus did not add any
more information (as shown by the statistical test of adding a

third random stimulus to the first two, one way anova, p > 0.5).
Similarly, adding more estimates of other types of knowledge (for
example, knowledge of the least likely stimulus of the independent
model, and so on) did not significantly increase the information
with respect to I(S; SP11 S

P2
1 ). Therefore we took I(S; S

P1
1 S

P2
1 ) as an

empirical estimate of the maximal amount of information that can
be extracted by interpreting the data using an uncorrelated (k = 1)
model. The quantity I(S; SP11 S

P2
1 )was significantly less than I(S;R)

(one-way anova, p < 0.05). Fig. 6 shows that the gap between
I(S; SP11 S

P2
1 ) and I(S;R) also increased with the population size.

For 8 channels, I(S; SP11 S
P2
1 ) was 89% of I(S;R). We concluded

that, although the independent model allowed the extraction of
a good fraction of the total information, decoding while ignoring
interactions was not enough to extract the whole information
about the population, particularly for larger population sizes.
The iterative decoding procedure to compute the maximal

amount of information extractable from a given level of correlation
is less elegant than a direct calculation of Îk (Merhav et al., 1994;
Oizumi et al., 2009). However, it has the advantage that it gives
an explicit construction of how to extract information from a
probabilitymodel, and it also is useful to understandwhich aspects
of the posterior probability distributions of neural population
responses carry information. Moreover, such iterative decoding
evaluationmay be convenient in cases inwhich the population size
is too large and so sampling problems prevent a direct calculation
of I(S;R) and Îk.

8. Discussion

Information-theoretic tools provide metrics which are useful
to understand how populations of neurons encode information
in single trials, and they can help to understand how neuronal
interactions shape the way in which neural populations represent
and transmit messages about the sensory environment. However,
information-theoretic calculations are difficult with neuronal
populations because of the curse of dimensionality and the
resulting sampling bias problem. Because of these problems, until
very recently most information-theoretic studies of neural codes
concentrated only on single neurons or on pairs of neurons. In
recent years, however several techniques have been developed to
ameliorate the problems caused by the limited sampling bias. One
of the most promising of these is the Ish estimator (Montemurro
et al., 2007), which we presented here together with a novel
extension (Ish−ush) which improves the performance of the
estimator for systems where the number of stimuli is small. These
techniques nowpermit the computation of the information carried
by populations of up to some 8 neurons. This enables scientists to
begin exploring information processing in local networks. One of
the findings that the analysis of these networks starts to reveal, and
which was highlighted by the somatosensory cortical examples
presented here, is that the effect of interactions among neurons
increases steeply with the population size. This means that, as
previously discussed in theoretical studies (Averbeck, Latham, &
Pouget, 2006; Roudi et al., 2009a), it could be potentially dangerous
to assume that conclusions about neural codes obtained with
small populations generalize in a straightforward way to larger
populations. This, in turn, implies that future work needs to set the
bar for analyzable population size even higher than now. For the
above reasons, a major and important challenge for computational
neuroscientists is to find ways to further extend the feasibility
of performing information-theoretic computations with larger
populations. In this review, we have highlighted two directions
which are particularly promising.
First, we have considered how to investigate the interaction

structure of cortical population responses through using simplified
maximum entropy models preserving interactions up to a given
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order, but featuring no higher order correlations. The use of
maximum entropy models containing only low-order interactions
has been the subject of intense studies in neuroscience over the
last few years (Martignon et al., 2000; Montemurro et al., 2007;
Nakahara & Amari, 2002; Nirenberg & Victor, 2007; Schneidman
et al., 2006; Shlens et al., 2006; Tang et al., 2008). These models
have been mostly used for either inferring network connectivity
(Roudi, Tyrcha, & Hertz, 2009b; Tatsuno, Fellous, & Amari, 2009)
or for quantifying the effect of interactions on the so called
fraction of network information (which measures the reduction
of network variability specifically attributable to correlations up
to a given order, see Schneidman et al. (2006, 2003)). Here, we
extended the maximum entropy approach to quantify the effect
of interactions up to a given order to the mutual information that
population responses carry about sensory stimuli. The latter is in
principle distinct from their effect on the fraction of connected
information, because the variability of the population response is
not equivalent to the information they carry about the stimuli.
In the example analysis of somatosensory data that we reported
in this paper, we found that within the population size range
(2–8 channels) explored here, the mutual information between
stimuli and population responses was very well approximated by
models containing interactions up to order 2, and was perfectly
approximated by models containing interactions of up to order
3. While it is still challenging to sample second and third order
marginals, it is amuchmore tractable problem than the casewhere
all orders of interactionmust be accurately determined. Therefore,
as well as revealing characteristics of local network processing,
accurate analysis based on low order maximum entropy models
can be used to effectively reduce the number of parameters
describing how neural population responses carry information
about the stimuli, thereby greatly reducing the information bias
problem.
Second, we have explored the use of decoding techniques as

a robust and efficient way to reduce the dimensionality of the
response space while losing little information. We have described
a set of hierarchical approximations to the information I(S;R)
carried by neural responses which are based on decoding various
features of the response (e.g. the identity of the most or least likely
stimuli). In conditions when the number of stimuli is not excessive
and the population size is large, these techniques provide a data
robust way to iteratively approximate the mutual information
carried by the population activity, and to learnwhich aspects of the
posterior probability distributions of neural population responses
are most important for carrying information. As discussed in
this Review, these techniques can be used in conjunction with
low-interaction-order maximum entropy models to evaluate the
performance of such simplified models in extracting information
from population activity. This approach, together with those
developed in Latham and Nirenberg (2005); Merhav et al. (1994);
Oizumi et al. (2009), could help in discovering the minimal
set of response features needed to decode all information from
population responses.
As the development of information-theoretic analysis tools

becomes increasingly specialised, it is important tomake sure they
are available to experimental groups to apply to a wide range of
data. An excellent way of achieving this goal is to make the code
freely and publicly available, a practice known as open source.
One of the factors which has (in our view) limited the expansion
of the use of information theory in the analysis of neuroscience
data has been the lack of such open source analysis packages
containing state of the art techniques. Fortunately, in recent
years several groups (including ours) have released open source
information-theoretic packages for the analysis of neuroscience
data (Goldberg, Victor, Gardner, & Gardner, 2009; Ince et al.,
2009b; Magri, Whittingstall, Singh, Logothetis, & Panzeri, 2009).

All the techniques and calculations implemented in this paper
were implemented through calls of the routines of the open source
entropy software of Ince et al. (2009b), and are therefore relatively
easy to reproduce. We believe that the continued expansion of
such open source effort in information-theoretic analysis and in
other areas of neuroscience data analysis is important because it
holds the promise for a significant advance in the standardization,
transparency, quality, reproducibility and variety of techniques
used to analyze neurophysiological data.
In summary, it is our hope that data analysis tools such as those

described here will help to provide insights into the mechanism
of neuronal computation. In addition to revealing features of the
biological system through direct analysis of experimental data,
such tools can also be used to provide additional metrics for
comparing the results of large-scale models with real neural
systems.
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Appendix. Simulation of cortical somatosensory neural re-
sponses

In this appendix, we describe briefly the procedures used to
generate the simulated data used in the figures. We obtained
the parameters for the simulated systems from the experimental
data described in Section 5. As discussed, this data set consists
of simultaneous recordings of neural clusters from somatosensory
cortex of urethane anaesthetized rats in response to sinusoidal
whisker stimulation at 13 different average velocities. A binary
response was obtained for each cell consisting of a 1 if there was
at least one spike in a window of 10–15 ms post-stimulus onset,
and a 0 if no spike was emitted in this window. This window was
chosen since it was the window for which the presence or absence
of one or more spikes was most informative about the stimulus
presented.
For the responses of these clusters, the independent firing

probabilities (first order marginals) and pairwise marginal firing
probabilities were obtained for each stimulus condition. The
empirically obtained maximum entropy solutions (Section 4.1)
preserving these first and second order marginals were used as
the model stimulus conditional distributions for generating data
in Figs. 1, 2 and 5(b). The maximum entropy solutions preserving
only first order marginals were used for Fig. 5(a).
With the model stimulus conditional distributions defined as

above, fixed numbers of trials per stimulus were generated via in-
verse transform sampling, and the resulting data set was analyzed
with the information-theoretic pyentropy package3 (Ince et al.,
2009b).
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