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Abstract.
In order to understand how populations of neurons encode information about external correlates,
it is important to develop minimal models of the probability of neural population responses
which capture all the salient changes of neural responses with stimuli. In this context, it is
particularly useful to determine whether interactions among neurons responding to stimuli can
be described by a pairwise interaction model, or whether a higher order interaction model is
needed. To address this question, we compared real neural population activity obtained from the
rat somatosensory cortex to maximum-entropy models which take into account only interaction
of up any given order. By performing these comparisons, we found that interactions of order
two were sufficient to explain a large amount of observed stimulus-response distributions, but
not all of them. Triple-wise interactions were necessary to fully explain the data. We then
used Shannon information to compute the impact of high order correlations on the amount of
somatosensory information transmitted by the neural population. We found that correlations
of order two gave a good approximation of information carried by the neural population, within
4% of the true value. Third order correlations gave an even better approximation, within 2%
of the true value. Taken together, these results suggest that higher order interactions exist and
shape the dynamics of cortical networks, but play a quantitatively minor role in determining
the information capacity of neural populations.

1. Introduction
The activity of sensory neurons provides the information about the external world based

upon which animals take decisions. Determining how the activity of populations of neurons
represents sensory stimuli is thus of obvious importance for the progress of neuroscience and is
a prerequisite for understanding sensory function. Yet, characterizing the details of the neural
representations of sensory stimuli has proven to be a daunting challenge so far. This difficulty
is due to several reasons. The first reason is that the presentation of even the simplest sensory
stimulus elicits the activity of large numbers of neurons, which at any time may either fire

International Workshop on Statistical-Mechanical Informatics 2009 (IW-SMI 2009) IOP Publishing
Journal of Physics: Conference Series 197 (2009) 012013 doi:10.1088/1742-6596/197/1/012013

c© 2009 IOP Publishing Ltd 1



or not fire a spike in response to the stimulus. Thus, neural responses are intrinsically high
dimensional [1]. The second problem is that neural responses are variable, and this implies that
the stimulus-response relationship must be characterized probabilistically rather than with just
a simple tuning curve or transfer function.

However, even despite the above problems, it would be still easy to construct a low
dimensional representation of neural populations responses to a stimulus if the responses of
each neurons were statistically independent from that of other neurons. In this case, one could
measure the response probabilities of each neuron separately, and then construct a population
response probability by simply taking the product of the probabilities of the individual neurons.
Unfortunately, that’s not the case: the response of a neuron does not depend only on the
stimulus but also on the activity of the other neurons [2–5]. Theoretical and experimental
studies have suggested that such interactions can profoundly affect the information transmitted
by neural populations, by increasing the information content of neural populations [6–8], by
tagging features to be bound together [9], by stabilizing the temporal relationships between cells
against the detrimental effect of trial-to-trial variability [10, 11], by implementing strategies for
error correction [12], or by severely limiting the representational capacity of neural populations
[13, 14]. As a consequence, neural population responses cannot be described simply using models
of independent non-interacting neurons neurons: any model of neural responses must be able to
capture all the salient interactions among neurons.

Given that models of the neural responses must include all the salient interactions among
neurons, the best hope to find a compact low-dimensional representation of neural responses is if
the structure of interactions within neurons in a population could be described only in terms of
interactions between pairs of neurons, rather than in terms of interactions between whole large
assemblies. A pairwise representation of neural interaction would greatly simplify the number
of parameters needed to describe neural representations of stimuli, potentially leading to the
development of simple but effective models of decoding neural population activity [1].

The question of whether the structure of correlated activity can be satisfactorily described
by considering only pairwise interactions is only recently beginning to be studied systematically
both by theory and experiments [15–22] A number of groups [17–19] have addressed this problem
demonstrating that in several types of experimental preparations pairwise correlations account
for the majority (> 90%) of decrease of response entropy due to all possible interactions (of any
order) between neurons. Given that entropy is a measure of variability of responses, these results
suggests that pairwise interactions are sufficient to describe reasonably well how interactions
constrain neural population activity. However, these results do not clarify fully whether or not
high order interactions exist and are statistically significant. Moreover, given that response
entropy and information about stimuli are not equivalent concepts, these results do not fully
clarify whether high order interactions are quantitatively important to describe how neurons
encode information about external stimuli.

In this study we aim at contributing to this research by evaluating whether high order
interactions among neurons are present in the somatosensory cortical network, and by measuring
what is the impact of such high order interactions on the amount of Shannon information that
the neural population conveys about somatosensory stimuli.

This paper is organized as follows. We first describe how to use maximum entropy models
to quantify whether the probabilities of neural population responses to stimuli can be described
with only interactions up to a given order. We then apply these techniques to real neural
population activity recorded from the rat somatosensory cortex, and establish whether there
are statistically significant interactions among neurons of order higher than two. We then use
Shannon information to quantify what is the impact of correlations of a given order on the
sensory representation of information.
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2. Investigating the order of interaction through the maximum entropy principle
We consider a population of N neurons whose activity is simultaneously observed during a
specified short time window following the presentation of a sensory stimulus s taken from a set
of S different stimuli. Since the time window is short, we can use a binary representation of
the activity of each neuron (with zero or one to respectively denote the presence or absence of
spikes from the neuron). Thus, the neuronal population activity is represented by a binary array
x = {x1, ..., xN} in the space X of all binary arrays of length N , where xi = 0 if neuron i is
silent in some time window and xi = 1 if it is firing one or more spikes.

The question that we seek to address is whether we can describe all interactions between
the neurons in terms of interactions between up to two neurons only, or whether there are
interactions among groups of more than two neurons which cannot be explained in terms of
pairwise interactions. A rigorous way to investigate the effects of different orders of interaction
is provided by the technique of maximum entropy, which was originally introduced in statistical
physics [23], and is now beginning to be used in neuroscience [1, 17–19, 24, 25]. In general, the
idea of the maximum entropy (ME) principle is to first fix some constraints that are of interest
and then seek the simplest, or most random, distribution subject to those constraints. Using
entropy as a measure of randomness, asking for the most random distribution corresponds to
asking for the distribution with maximal entropy subject to the constraints. This removes all
types of correlation or structure in the data that does not result from the constrained features.

The ME formalism can be naturally used to to address the problem of whether we can
describe all interactions between neurons in terms of interactions between up to k neurons only,
or whether there are higher interactions among more than k neurons which cannot be possibly
explained in terms of interactions of order up to k. Measuring all interactions of up to k variables
means measuring all the marginal response probabilities involving up to k variables. Therefore
any probability matching the observed interactions of up to k elements must obey (apart from
the usual non negativity and normalization constraints) the following linear constraints:

P (xi1 = 1|s) = ηi1 (1)

P (xi1 = 1, xi2 = 1|s) = ηi1,i2
· · ·

P (xi1 = 1, xi2 = 1, · · · , xik = 1|s) = ηi1,i2,··· ,ik

where (in agreement with the well-established notation of Amari [26]), the set of variables
denoted η represent the values of the marginal probabilities, and the subscript indices of η
represent the variables involved in the marginal probabilities.

The probability distribution P
(k)
ME(x|s) with maximum entropy among those satisfying the

above constraints is the one that does not impose the presence of any additional interaction of
order higher than k. (The case k = 1 is trivial and corresponds to the case in which all neurons
fire independently at fixed stimulus). Following [26, 27], it can be shown that there is a unique
solution to the constrained maximum entropy problem, which can be written in the following
exponential form:

P
(k)
ME(x|s) = exp

⎧⎨
⎩
∑
i

xiθi +
∑
i1<i2

xi1xi2θi1i2 + · · ·+
∑

i1<···<ik

xi · · ·xkθi1···ik − ψ

⎫⎬
⎭ (2)

To quantify whether interactions of up to k neurons in a population are sufficient to
describe the probabilities of neural responses to stimuli, we can quantitatively compare the true

distribution P (x|s)of neural responses to the stimulus s consider to the distribution P
(k)
ME(x|s).

By performing this comparison over a range of values of k, we can empirically determine the
minimal k necessary to fit well the empirically measured response probability.
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In order to compute the maximum entropy distribution P
(k)
ME(x|s) of Eq. (2) from real data,

we just need to find the θ coefficients with up to K indices entering the above equation to
construct the solution above. These θ coefficients can be determined from the experimentally
measured marginal probabilities η of up to k elements through a set of algebraic equations which
were derived in the work of Amari [26, 28]. To solve these equations numerically, we used the
publicly available pyentropy numerical package that we recently developed and published [29].
We refer to Ref [29] for full details and for download of the code implementing the numerical
solutions.

3. The role of high order correlations in shaping synchronous discharge in
somatosensory cortex
After having described the ME techniques to study the presence of interactions of up to any
given order, we apply them to a population of neurons recorded from the whisker representation
in the somatosensory cortex of urethane anaesthetized rats. We first describe the dataset; we
then compare the ME probabilities at fixed interaction order with the real data; and we finally
evaluate the effect of the interaction order on the information about the stimuli carried by the
neural responses.

3.1. Neurophysiological data
The data set (previously published in [30, 31]) consists of 24 simultaneously recorded neural
clusters, each sampled with a different electrode with a minimal inter-electrode distance of 400
μm. Spike times from each electrode were determined by a voltage threshold set to a value 2.5
times the root mean square voltage. Since it was not possible to sort well-isolated units from
each channel, spikes from the same recording channel were considered together as a single neural
cluster. It has been estimated that, under these recoding conditions, each cluster captured the
spikes of approximately two to five neurons located near the tip of the electrode (see [32]).
Neural activity was recorded in response to stimulation (with a piezoelectric wafer controlled
by a voltage generator) consisting of sinusoidal whisker vibrations, each defined by a different
value of vibration velocity and delivered for 500 ms (see [31] for full details). Thirteen different
values of vibration velocity were tested, ranging between Af = 0.15 mm/s and Af = 47.7
mm/s. Each value of vibration velocity was treated as a different stimulus s (there were 13
stimulus classes in total). The number of recorded repetitions for each stimulus (called “trials”
in neurophysiology), from which the probability of response at fixed stimulus is determined,
varied between a minimum of 200 and a maximum of 1400 across stimuli.

It was previously shown [31] that the majority of the information is transmitted very early
post stimulus onset (typically between 5 and 30 ms). We therefore concentrated on data taken
from these early highly-informative windows.

3.2. Fitting the neurophysiological stimulus-conditional response probabilities to maximum
entropy models
We used these data to study the shape of the distribution of neural population responses at
fixed stimulus, and the order of neural interactions needed to describe this distribution. We
note that some previous seminal studies [17, 18] focused on the probability of response to many
different stimuli. However, this has the potential problem that the resulting correlation may arise
both from correlations in the stimulus and from actual neural interactions, and it is difficult to
separate them [1]. Thus, we considered distributions at fixed stimuli to ensure that we did not
investigate neural interactions originating at least in part from correlations in the stimuli.

We decided to consider response distributions of N = 8 channels simultaneously recorded
(out of the 24 available). The reason was that this population size was big enough to begin
observing some effects of high order interactions, while was small enough to be sampled with
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the available data and be tested with both quantitative goodness-of-fit tests and the information
analysis of the next subsection.

We first considered (figure 1) the distribution of neural responses to one particular stimulus
(velocity = 4.3 mm/s; 1200 trials available). Neural responses evolve over time, and thus the
distribution of neural responses depends on the particular post-stimulus window considered.
Since it has been previously shown [31] that in this system the majority of the information
is transmitted very early after stimulus onset (typically between 5 and 30 ms), and since the
integration time constant of neurons post-synaptic to the ones analyzed here is likely to be in
the range of 10-20 ms, we concentrated on responses taken from short, early, highly informative
windows. In particular, we selected the 5-15 and the 5-25 ms post-stimulus windows. The
distributions of neural responses in these windows are shown in figure 1 (5-15 ms post-stimulus
in figure 1A; and 5-25 ms post-stimulus in figure 1B). In figure 1, the responses were arbitrarily
ordered in the x axis to give a monotonically decreasing probability. We compared the real
observed distribution with the ME distribution of a given order k (k = 1, · · · 3) obtained with
the numerical procedure outlined in the previous section. It is apparent than, for both time
windows, the k = 1 distribution (which of course corresponds to the case in which all neurons fire
independently at fixed stimulus) did not provide a good fit to the data, whereas ME probabilities
with k > 1 provided a good qualitative agreement. The k = 3 distribution provided a small but
visible improvement in the goodness of fit with respect to the k = 2 distribution.

Figure 1. Maximum entropy models at fixed stimulus. Here the true distribution (solid black
line) and maximum entropy distributions of orders k = 1, 2, 3 (solid blue, solid purple, dashed
green respectively) are plotted for binary responses to a particular randomly selected group of
8 channels to a 4.3 mm/s stimulus (1200 trials) in the window 5-15 ms (panel A) and 5-25 ms
(panel B) (see text). The response symbols are ordered by decreasing probability value.

To better quantify the goodness of fit of the maximum entropy models across all stimuli and
all observed populations of N = 8 channels, we repeated the ME calculation of the probability
models for each stimulus condition and for 1000 populations made of random combinations of
8 channels from the 24 available. We then computed the probability of rejection of the null
hypothesis that the observed distribution comes from the considered ME model using a log-
likelihood test (the g-test) [33]. This test produces a chi-square distributed test statistic, similar
to the Pearson chi-squared test. Indeed the Pearson chi-squared test was originally developed as
an approximation of the log-likelihood ratio test due to the difficulty of calculating logarithms
before the advent of computers. The percentage of rejections of the null hypothesis at the
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p = 0.05 level for the k = 1 and k = 2 model across all dataset are reported in figure 2 (for
the 5-15 ms post-stimulus window) and figure 3 (for the 5-25 ms post-stimulus window). It
is apparent that the k = 1 model had to be rejected most times, whereas for most stimulus
conditions the number of rejections of the k = 2 model was below the 5% random level. The
k = 2 model however failed above chance for longer windows and for the stimulus conditions
with more trials available (velocity equal to 1.61, 2.66 and 4.3 mm/s). In contrast, the k = 3
model and higher had zero rejections at p = 0.05 for both windows and all stimuli.

In sum, the k = 1 order model does not explain the response probabiltiies at fixed stimulus
in any satisfactory way. The k = 2 model explains most (but not all) probability distributions,
whereas the k = 3 model was sufficient to fully explain the observed response distributions.

Figure 2. Goodness of fit measures of maximum entropy distributions for 5-15 ms response
window. 1000 random combinations of 8 channels were chosen from the 24 available and the
maximum entropy solutions of different orders were obtained. These were compared to the
measured distribution using the log-likelihood g-test (see text) and the percentage of these 1000
trials for which the first order model (panel A) and second order model (panel B) was rejected
(p=0.05) for 5 different fixed stimuli are shown. For the third order model (not shown) no trials
were rejected for any stimuli.

3.3. Effect of Interactions on somatosensory information encoding
The above finding that there are significant high order interactions suggests that they should
not be neglected in models of information transmission, but it does not tell how much these
correlations are important. To quantify this, we next computed the information between the
stimulus and the population activity, and we compared it to that derived from the maximum
entropy models.

The mutual information between the stimuli and the neural population activity is defined as
follows:

I(S;X) = H(X)−H(X|S) (3)

where H(X) and H(X|S) are the response entropy and noise entropy respectively:

H(X) = −
∑
x

P (x) log2 P (x) (4)

H(X|S) = −
∑
x,s

P (s)P (x|s) log2 P (x|s) (5)
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Figure 3. Goodness of fit measures of maximum entropy distributions for 5-25 ms response
window. 1000 random combinations of 8 channels were chosen from the 24 available and the
maximum entropy solutions of different orders were obtained. These were compared to the
measured distribution using the log-likelihood g-test (see text) and the percentage of these 1000
trials for which the first order model k = 1 (panel A) and second order model k = 2 (panel B)
was rejected (p=0.05) for 5 different fixed stimuli are shown. For the third order model (not
shown) no trials were rejected for any stimuli.

where in the above P (x) =
∑

s P (x|s)P (s). We computed I(S;X) from the the population
activity as follows. First, to improve the sampling properties of this data set we pooled the
two lowest velocity stimuli (0.15 mm/s and 2.3 mm/s) and the two highest velocity stimuli
(29.5 mm/s and 47.7 mm/s) resulting in 11 stimulus classes with a minimum of 600 trials
and a maximum of 1400 trials. Then, we empirically measured P (x|s), P (s) and P (x) and
plugged them into the above equations. The limited sampling bias [34] was corrected for using
a combination of the shuffled estimator Ish [25, 34] with the Panzeri-Treves analytic correction
[35] from the Pyentropy library [29].

We investigated the impact of interactions at a given order k by calculating the mutual
information that would result from a system exhibiting the probability distributions obtained
from the maximum entropy solution, as follows:

I(k)(S;X) = H(k)(X)−H(k)(X|S) (6)

where H(k)(X) and H(k)(X|S) are the response and noise entropies respectively of the k-th
order maximum entropy model. These entropies are obtained by replacing P (x|s) and P (x)

with P
(k)
ME(x|s) and P (k)

ME(x) in Eqs. (4,5), where P
(k)
ME(x) =

∑
s P

(k)
ME(x|s)P (s). Then

I(k)(S;X) =
∑
x,s

P (s)P
(k)
ME(x|s) log2

P
(k)
ME(x|s)
P

(k)
ME(x)

(7)

Ik(S;X) was computed from the data as follows. First, and as for I(S;X), we pooled the
two lowest velocity stimuli (0.15 mm/s and 2.3 mm/s) and the two highest velocity stimuli
(29.5 mm/s and 47.7 mm/s) resulting in 11 stimulus classes. Then, for each stimulus class,

we obtained the maximum entropy solution, P
(k)
ME(x|s), for each order of interest and for each

stimulus conditional response. Then, from each of these stimulus-conditional maximum entropy

International Workshop on Statistical-Mechanical Informatics 2009 (IW-SMI 2009) IOP Publishing
Journal of Physics: Conference Series 197 (2009) 012013 doi:10.1088/1742-6596/197/1/012013

7



solutions, we simulated data with the same number of trials as available in the experimental data
set (this was different for each stimulus). These trials were generated using inverse transform
sampling. This is done to ensure a fair comparison between the measured data and the generated
data; any bias effects should affect both equally. The values obtained were averaged over 1000
repetitions to remove any trial to trial variation from the inverse transform sampling step.

Figure 4 shows the effect of including higher order interactions on information. The first order
maximum entropy models conveyed significantly higher information than the true probabilities.
This means that interactions in this system have mostly a limiting effect on information. The
second and third order information was significantly lower than the first order one and was very
close to to the true one. We found that correlations of order two gave a good approximation
of information carried by the neural population, as they were within 3% and 4% of the true
value for windows of 5-15 ms (figure 4A) and 5-25 ms (figure 4B) post-stimulus respectively.
Third order correlations gave an even better approximation, within 2% of the true value for
both post-stimulus windows (figure 4). This suggests that interactions of order two or higher
are sufficient to describe well how neural interactions limit the rate of information transmission.

It is interesting that the mutual information of the system was already well approximated by
models containing interactions of up to order 2 or 3. This is significant, since it greatly reduces
the parameters required to describe the system. While it is still challenging to sample up to
third order marginals reliably in an experiment, it is a much more tractable problem than the
case where all orders of interaction must be accurately determined.

Figure 4. Effect of interactions on mutual information. 1000 random combinations of 8
channels were chosen from the 24 available and the maximum entropy solutions of different
orders were obtained. These were used to compute the mutual information in a system with
only interactions of up to order k = 1, 2, 3. The means of these values over the different channel
combinations are compared to the mean of the true information for response windows of 5-15
ms (panel A) and 5-25 ms (panel B). Errorbars show ±1 s.e.m.

4. Discussion
In this paper, we used maximum-entropy techniques to investigate the presence of interactions
of order higher than two in the rat somatosensory cortex, and to evaluate their effect on
the information that somatosensory cortical populations carry about the velocity of whisker
stimulation. Considering population responses made of spiking activity collected from up to
8 simultaneously recorded locations, we found that interactions of order two were sufficient to
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explain a large amount of observed stimulus-response distributions, but not all of them. Triple-
wise interactions were necessary to fully explain the data. We then used Shannon information
to compute the impact of high order correlations on the amount of somatosensory information
transmitted by the neural population. We found that correlations of order two gave a good
approximation of information carried by the neural population, within 4% of the true value.
Third order correlations did even better, proving an approximation within 2% of the true value
of information carried by neural activity. In the following, we briefly discuss the implication of
our results, as well as differences and similarities with respect to previous work.

4.1. Interactions of order higher than two are present in cortical populations
A first result is that pairwise interactions were not enough to fully explain the observed stimulus-
response distributions, thereby confirming that higher order interactions between groups of
neurons are indeed a part of cortical dynamics, as suggested by earlier studies demonstrating
the existence of multineuronal firing patterns in a variety of experimental preparations [4, 24, 36–
40]. An important and still open question is what may be the potential function of high
order interactions. Modeling work suggests that higher order interactions may have a role in
regularizing the overall rate of discharge of the population, for example by avoiding concentration
of firing on the maximally firing state [41]. It would be interesting for future research to
understand whether high order interaction serve this purpose in real local cortical networks.

4.2. Different measures of the impact of interactions at a given order
A series of recent studies [17–19] quantified the quality of pairwise models by using a measure
called the fraction of full network information. The fraction of full network information that is
captured by a second order ME model is defined [18, 42] as the the ratio between the reduction of
total entropy accounted for by all interactions of order > 2 (computed as the difference between
the pairwise maximum entropy and the the total entropy taking into account all correlations) and
the reduction of entropy due to all interactions of any order (computed as the difference between
the entropy of the independent probability model and the the total entropy taking into account
all correlations). This entropy-based metric has many interesting properties and advantages,
discussed in [42]. In particular, given that entropy is a measure of variability of responses,
this metric is useful to investigate whether pairwise interactions are enough to describe how
interactions shape the variability of neural responses. A novelty of our work, with respect to
several previous studies, is that we introduced and used some new metrics to assess the quality
of pairwise models in describing the response probabilities. These metrics are potentially useful
because they allow addressing some questions which are in principle different from the ones that
can be addressed using the fraction of network information, as we elaborate next.

The fraction of full network information cannot be used to clarify whether or not high order
interactions exist and are statistically significant. This is because, as discussed in [22], this
metric can be relatively small even the pairwise and the true probabilities have very different
shapes. To overcome this potential problem, here we introduced a different procedure to assess
the goodness of the pairwise model. This simple procedure, based on fitting ME distributions
to the data numerically using Amari’s formalism [26] and by assessing the difference between
ME and true distribution using a g-test statistic, revealed that interactions of order higher than
two are significant in the analyzed dataset.

Moreover, in this study we were interested in whether pairwise interactions were sufficient to
describe how the population of neurons encodes information about the stimulus. This question
cannot possibly be addressed by quantifying the fraction of network information. This is because
of two reasons. The first is that the fraction of network information measures the reduction
of network variability specifically attributable to correlations up to a given order, and the
variability of the population response is not equivalent to the information about the stimuli
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carried by the population. The second is that typically mutual information is smaller than both
the response and the noise entropy: an impact that may be proportionally small for entropy
may be proportionally much larger when considering information. Thus, we had to introduce
a new metric based on comparing the amount of Shannon information about the stimuli which
is obtained when considering either the full response model or the one taking into account
only correlations up to a given order k. The novel finding obtained using this metric was
that interaction of order two gave a a very good (but not perfect) approximation of information
carried by the neural population. These results extended a previous attempt from our group [20]
to measure Shannon information from pairwise models which made the simplifying assumptions
that all neurons and interactions are perfectly homogenous. This simplifying assumption was
no longer used or necessary in the present work.

Another potentially interesting metric is to consider the information lost by a downstream
decoder if it was to ignore higher order correlation when decoding. This metric has recently
been investigated by Oizumi and colleagues [43].

4.3. Scaling of the effect of higher order with the population size
In this work, we decided to analysis populations responses made of spiking activity collected
from up to 8 simultaneously recorded locations. Fixing the population size to 8 was somewhat
arbitrary, but it was empirically the largest population size that allowed us to compute reliably,
with the present methodology, both the goodness of fit of ME models and the information
carried by the neuronal population. Analyzing 8 simultaneous recording sites was a significant
improvement with respect to previous analyses based on Shannon information (which were
usually limited to two or three cells), but is of course still far from enough to understand the
behavior of the cortical network. A crucial question for the interpretation of these results is how
the significance of interaction of order higher than two, and the information they carry, scales
when increasing the population size. In fact, it would be unwise to assume that the behavior
of these measures extrapolates smoothly from small to large population sizes [22]. Measuring
information from large populations will require to further improve the techniques for estimating
information from limited sampling [34], which is a topic of current research for neurostatisticians.
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[7] Oram M W, Földiák P, Perrett D I, Oram M W and Sengpiel F 1998 Trends Neurosci. 21 259–65

[8] Pola G, Thiele A, Hoffmann K P and Panzeri S 2003 Network: Comp. Neural. 14 35–60

[9] von der Malsburg C 1999 Neuron 24 95–104

[10] Chase S and Young E 2007 P. Natl. Acad. Sci. USA 104 5175–80

[11] Gollisch T and Meister M 2008 Science 319 1108–11

[12] Schneidman E, Bialek W and Berry M J 2003 J. Neurosci. 23 11539–53

International Workshop on Statistical-Mechanical Informatics 2009 (IW-SMI 2009) IOP Publishing
Journal of Physics: Conference Series 197 (2009) 012013 doi:10.1088/1742-6596/197/1/012013

10



[13] Zohary E, Shadlen M N and Newsome W T 1994 Nature 370 140–43

[14] Mazurek M and Shadlen M 2002 Nat. Neurosci. 5 463–71

[15] Bohte S, Spekreijse H and Roelfsema P 2000 Neural Comput. 12 153–79

[16] Nakahara H and Amari S I 2002 Neural Comput. 14 2269–316

[17] Shlens J, Field G D, Gauthier J L, Grivich M I, Petrusca D, Sher A, Litke A M and Chichilnisky E J 2006
J. Neurosci. 26 8254–66

[18] Schneidman E, Berry II M J, Segev R and Bialek W 2006 Nature 440 1007–12

[19] Tang A, Jackson D, Hobbs J, Chen W, Smith J L, Patel H, Prieto A, Petrusca D, Grivich M I, Sher A,
Hottowy P, Dabrowski W, Litke A M and Beggs J M 2008 J. Neurosci. 28 505–18

[20] Montani F, Ince R A A, Senatore R, Arabzadeh E, Diamond M and Panzeri S 2009 Phil. Trans. R. Soc. A
367 3297–310

[21] Roudi Y, Tyrcha J and Hertz J 2009 Phys. Rev. E 79 051915

[22] Roudi Y, Nirenberg S and Latham P E 2009 PLoS Comput. Biol. 15 e1000380

[23] Jaynes E 1957 Phys. Rev. 106 620–30

[24] Martignon L, Deco G, Laskey K, Diamond M, Freiwald W and Vaadia E 2000 Neural Comput. 12 2621–53

[25] Montemurro M A, Senatore R and Panzeri S 2007 Neural Comput. 19 2913–57

[26] Amari S I 2001 IEEE Trans. Inform. Theory 47 1701–11

[27] Cover T M and Thomas J A 2006 Elements of Information Theory, 2nd Ed. (John Wiley & sons)

[28] Amari S I and Nagaoka H 2000 Methods of Information Geometry (Oxford University Press)

[29] Ince R A A, Petersen R S, Swan D C and Panzeri S 2009 Front. Neuroinformatics 3 4

[30] Arabzadeh E, Petersen R S and Diamond M E 2003 J. Neurosci. 23 9146–54

[31] Arabzadeh E, Panzeri S and Diamond M E 2004 J. Neurosci. 24 6011–20

[32] Petersen R S and Diamond M E 2000 J. Neurosci. 20 6135–43

[33] Woolf B 1972 Ann. Hum. Genet. 35 397–409

[34] Panzeri S, Senatore R, Montemurro M A and Petersen R S 2007 J. Neurophysiol. 98 1064–72

[35] Panzeri S, Schultz S R, Treves A and Rolls E T 1999 Proc. R. Soc. B 266 1001–12

[36] Schnitzer M J and Meister M 2003 Neuron 37 499–511

[37] Schrader S, Gruen S, Diesmann M and Gerstein G 2008 J. Neurophysiol. 100 2165–76

[38] Harris K D 2005 Nat. Rev. Neurosci. 6 399–407

[39] Riehle A, Gruen S, Diesmann M and Aertsen A 1997 Science 278 1950–53

[40] Gruen S, Diesmann M and Aertsen A 2002 Neural Comput. 14 43–80

[41] Amari S I, Nakahara H, Wu S and Sakai Y 2003 Neural Comput. 15 127–42

[42] Schneidman E, Still S, Berry M J and Bialek W 2003 Phys. Rev. Lett. 91 238701

[43] Oizumi M, Ishii T, Ishibashi T, Hosoya T and Okada M 2009 Advances in Neural Information Processing
Systems vol 21 ed Koller D, Schuurmans D, Bengio Y and Bottou L (Cambridge: MIT press) pp 1225–32

International Workshop on Statistical-Mechanical Informatics 2009 (IW-SMI 2009) IOP Publishing
Journal of Physics: Conference Series 197 (2009) 012013 doi:10.1088/1742-6596/197/1/012013

11




