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a b s t r a c t 

Trajectory inference is a common application of scRNA-seq data. However, it is often necessary to previously 

determine the origin of the trajectories, the stem or progenitor cells. In this work, we propose a computational 

tool to quantify pluripotency from single cell transcriptomics data. This approach uses the protein-protein 

interaction (PPI) network associated with the differentiation process as a scaffold and the gene expression 

matrix to calculate a score that we call differentiation activity. This score reflects how active the differentiation 

network is in each cell. We benchmark the performance of our algorithm with two previously published tools, 

LandSCENT (Chen et al., 2019) and CytoTRACE (Gulati et al., 2020), for four healthy human data sets: breast, colon, 

hematopoietic and lung. We show that our algorithm is more efficient than LandSCENT and requires less RAM 

memory than the other programs. We also illustrate a complete workflow from the count matrix to trajectory 

inference using the breast data set. 

• ORIGINS is a methodology to quantify pluripotency from scRNA-seq data implemented as a freely available R 

package. 
• ORIGINS uses the protein-protein interaction network associated with differentiation and the data set 

expression matrix to calculate a score (differentiation activity) that quantifies pluripotency for each cell. 
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Specifications table 

Subject area: Bioinformatics 

More specific subject area: Pluripotency quantification from single cell transcriptomics 

Name of your method: ORIGINS 

Name and reference of original method: Not applicable 

Resource availability: https://github.com/danielasenraoka/ORIGINS 

Method details 

Background 

Recent advances in single cell RNA sequencing (scRNA-seq), that allow the transcriptional profiling 

of single cells, offer a promising capability to explain developmental processes. The ability to quantify

pluripotency is relevant to comprehend differentiation, cell lineages and lineage hierarchy. This task 

may also be important for cancer research to identify cancer stem cells, which have been suggested

to be responsible for metastasis, remission and resistance to therapies [3] . It may also be a critical

step to perform trajectory inference, a popular application of single cell transcriptomics to unveil 

differentiation processes. 

Several algorithms were developed to reconstruct differentiation pathways by using scRNA-seq. 

In 2019 Saelens et al. reported the existence of more than 70 trajectory analysis techniques [4] and

in recent years many more have emerged [5–7] . Many techniques require prior information to infer

the trajectory, such as a starting or root cell [ 8 , 9 ]. Prior biological information can help the method

find the correct trajectory but on the other hand, incorrect prior knowledge can bias the trajectory.

Traditionally, previously known stemness markers are used to identify the starting cell, but it is

not always feasible due to the high drop-out rate of the scRNA-seq technique. Moreover, stemness

markers depend on the tissue and the developmental stage and are not always available for all

cases. 

In this sense, in order to quantify pluripotency a systems approach methodology was proposed

by members of the Teschendorf Lab. They calculated a parameter called network entropy using a

protein-protein interaction (PPI) network [10] . In following works the group deepened the research on

quantifying stemness, proposing different alternatives to compute entropy [ 1 , 11 , 12 ]. The final version

of this method, LandSCENT, is one of the most widespread entropy-based algorithms to compute 

differentiation potency from scRNA-seq data [1] . The algorithm uses a highly curated a PPI network

as a scaffold and the normalized expression profile to estimate the signal entropy rate (SR) for each

single cell. Briefly, the gene expression profile is used to calculate the edges of the PPI network, which

can be interpreted as interaction probabilities, by invoking the mass action principle. This defines a

stochastic matrix that is used to compute the signaling entropy rate over the weighted network based

on the Shannon entropy measure. Authors state that differentiated cells have certain specific pathways

activated leading to low entropy levels whilst pluripotent cells display a broad pattern of signaling

pathways activated and do not express any preference for any particular lineage. In terms of single

cell transcriptomics data, this translates as more heterogeneous gene expression profiles, resulting in 

high entropy levels. 

Other publications address entropy without utilizing a PPI network as a scaffold. For instance,

StemID aims to identify stem cells by using a score that combines the cluster median entropy and

the number of inter-cluster links that define the topology of the lineage tree [13] . Another variation

is SLICE, a Shannon entropy-based algorithm with some implementation modifications [14] . 

On the other hand, there are few techniques to quantify pluripotency that are not based on

entropy. For example, Palmer et al. derived a stemness gene expression signature and used it to

compute a stemness index over gene expression microarray samples [15] . They utilized the projection

of the coordinates of an expression profile onto the first principal component of the gene space

defined by the stemness gene signature as a relative measure of stemness. 

In 2020 Gulati et al. developed a computational framework called CytoTRACE to identify stem cells

using scRNA-seq data [2] . They found that the gene counts are generally correlated with the state of

https://github.com/danielasenraoka/ORIGINS
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ifferentiation. As scRNA-seq was designed to capture gene expression, they suggested determining

he genes that correlate with the gene counts and creating a dataset-specific gene count signature

GCS). The authors evidenced a limitation in the case of quiescent stem cells. CytoTRACE is not useful

or identifying quiescent stem cells due to their reduced metabolic activity and low RNA content, as

s the case for hematopoietic stem cells [2] . 

Lately, increasing information about protein interactions and their role in biological processes

as become available. In this work we exploit the fact that interactions between proteins underlie

ell phenotypes [16] . With the widespread use of high-throughput sequencing technologies, many

ethodologies to integrate this type of data and network-based biological strategies have been

mplemented [11] . Here, we use the information of a PPI network to identify stem and progenitor

ells. In this way, we define a score, which we call differentiation activity, that quantifies how active

he differentiation PPI network is in each cell based on its expression profile and the set reactions

nvolved on this PPI. This tool was implemented as an R package named ORIGINS. 

ORIGINS: activity computation 

Gene Ontology (GO) provides structured, controlled vocabularies and classifications associated with

olecular functions, biological processes and cellular compartment [17] . Exploring GO annotations

nderlying a set of Differentially Expressed Genes (DEG) for insights into potential experimental

eanings has become a widespread practice. Alternatively, to identify differential biological processes

BP) across a cell population we propose a strategy that exploits the set of biochemical reactions

nvolved in the biological function of interest rather than several DEGs. In this sense, we build

 protein-protein interaction (PPI) network associated with the gene products involved in Cell

ifferentiation BP (BP-GO: 0030154) as putative biochemical reactions. 

To this end we consider 11,582 proteins from H. sapiens associated to BP-GO: 0030154 listed at

uickGo database [18] , which include 87 child BP terms. These proteins constitute the nodes of the

etwork. Further, we also consider the biochemical interactions listed in Pathways Commons (version

2), that integrate 2,424,055 interactions from 22 databases [19] . From this set of interactions we

elect the 191,072 interactions that involve only human proteins associated with BP-GO: 0030154, we

o not take into account interactions involving chemical compounds nor other not-protein molecules.

hese PPI constitute the edges of the network and can be represented by an adjacency matrix A . Note

hat the PPI network used in our approach is an undirected graph, i.e., the links have no direction.

urther, the PPI network does not distinguish if nodes are negative or positive regulators. 

After building the PPI network associated with Cell Differentiation BP we define how to compute

ts activity level from a given expression profile. We consider that the activity level of the pathway

s the accumulation of the biochemical reactions occurring in the pathway. Based on the Law of

ass action for elementary reactions, we estimate the probability that a reaction will occur as the

roduct of reactant concentrations, without considering the stoichiometric details. This approximation

llows us to estimate the contribution of a PPI network edge between nodes a and b , a ↔ b , solely

rom the expression profile as: x a × x b , where x a and x b are the expression levels associated with

roteins A and B, respectively. Therefore, for a given expression profile { x i } a weighted edge matrix

s defined W ij = A ij x i x j , where i and j = 1 , 2 , ..., N g and N g is the number of genes in the pathway. A ij

s the adjacency matrix, a N g × N g square matrix, such that its element A ij is one when there is an

dge (when two proteins interact), and zero otherwise. Thus, the activity level associated with Cell

ifferentiation BP can be defined as: 

P = 

N g X 

i , j=1 

W ij 

For sc-RNAseq data each cell k has an expression profile associated and the corresponding

eighted edge matrix W 

k from which the activity level P k associated with Cell Differentiation BP of

he k th cell can be computed. Finally, activity levels are scaled so that activity takes values between

 and 1 as follows: P k 
scaled 

= 

P k −min ( P k ) 

max ( P k ) −min ( P k ) 
, where min ( P k ) and max ( P k ) are the minimum and

aximum activity levels among all cells. 
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Validation 

We tested the performance of our proposed methodology to quantify pluripotency using four 

human data sets: breast epithelium [20] , colon epithelium [21] , bone marrow (hematopoietic cells)

[22] and lungs [23] . Cell types were already annotated and provided as metadata for all datasets 

except the breast sample, which was annotated by ourselves according to the original publication [20] .

For more details on breast cell annotation go to section Application to human mammary epithelium.

Below there is a brief description of the data sets. 

Breast epithelium. Data from human breast epithelial cells that is publicly available in the GEO

database (GSE113197) [20] was used. We utilized a healthy adult sample (Ind4). 

Colon epithelium. Data was downloaded from the GEO database (GSE125970). We used an adult 

human colon sample (Colon-2) to benchmark our algorithm. 

Hematopoietic. Publicly available scRNA-seq data of hematopoietic progenitors from human bone 

marrow was used. Raw data is available in the GEO database under the accession code GSE117498

[22] . We performed the pluripotency quantification using data from Donor A. 

Lungs. The scRNA-seq data included 19 lung samples, we focused on one of the five adult donors

(D122), a 32 years old healthy male. Data was downloaded from the cellxgene Data Portal . Raw

data is also available in the GEO database (GSE161383) [23] . 

We compared the performance of ORIGINS with two previously existing methodologies specifically 

developed for scRNA-seq data: the Signaling Entropy Rate (SR) from LandSCENT [1] and CytoTRACE [2] .

Both algorithms are publicly available as R packages and were downloaded and installed from their

official repositories. In addition, we propose a quicker approximation to estimate the differentiation 

activity by using the 20 0 0 top highly variable features (HVF) of the expression matrices. These genes

were determined using the Seurat function FindVariableFeatures() with selection.method = vst. Thus, 

we obtained a reduced gene expression matrix for each sample and we computed the activity on this

normalized reduced matrix but with the same PPI network. This quantity is referred as activity HVF

(ORIGINS). 

All the code was implemented in R version 4.1.2 and the main packages used were LandSCENT

version 0.99.5, CytoTRACE version 0.3.3 and Seurat version 4.1.0. The computer specifications were 

Kernel Version 5.13.0-30-generic, processor 12 × Intel R ° Core TM i7-8700 CPU @ 3.20GHz and 16 GiB

of RAM. 

The different pluripotency scores calculated for the breast sample are presented in the UMAP 

space in Figs. 1A–D. We investigated how these parameters vary according to cell types. Basal cells

presented the highest average levels of SR (LandSCENT), activity (ORIGINS) and its approximation (Fig. 

1E, G and H). This was expected since in the article where data was published the authors suggested

the presence of breast stem cells within the basal population [20] . In the work where LandSCENT is

presented, the breast sample was also used and the authors found that the majority of the multipotent

cells are basal [1] . In the same way, it would be expected that Luminal 1 cells (L1) are in second

place because they are more immature cells than Luminal 2 (L2), however this was only evidenced

for activity (ORIGINS) and its approximation. The CytoTRACE score did not coincide with this order, it

was found that on average the L1 cluster has the highest values followed by L2 and basal ( Fig.1 B and

F). 

In the case of the colon sample, where cells were already annotated (Fig. S1A), the four stemness

scores are exhibited in Fig. S1B–E in the UMAP space. All the methods were limited in finding the

stem cells, since the transit amplifying cells (TA) showed the highest score values on average and not

the stem cells (Fig. S1F–I). In the intestine, stem cells divide asymmetrically, giving rise to another

stem cell and a daughter cell called transit amplifying progenitor cell. Transit-amplifying cells are 

highly proliferative, they undergo a limited number of cell divisions and eventually differentiate into 

absorptive (enterocytes) or secretory (mucosal, enteroendocrine, Paneth cell) lineages [24–26] . 

The analyzed bone marrow cells were classified as hematopoietic stem cells (HSC), multipotent 

progenitors (MPP), multilymphoid progenitors (MLP), pre-B lymphocytes / Natural Killer cells 

(PREB/NK), megakaryocyte-erythroid progenitors (MEP), common myeloid progenitors (CMP) and 

granulocyte-monocyte progenitors (GMP) [22] as shown in Fig. S2A. The classical hematopoietic model 
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Table 1 

Computational time comparison between SR (LandSCENT), CytoTRACE, activity (ORIGINS) and activity 

HVF (ORIGINS). 

SR (LandSCENT) CytoTRACE activity (ORIGINS) activity HVF (ORIGINS) 

Breast epithelium 3.43 h 28.27 s 2.95 h 3.00 min 

Colon 4.11 h 44.19 s 3.11 h 3.11 min 

Hematopoietic 8.12 h 59.95 s 6.24 h 4.09 min 

Lungs 5.37 h 35.00 s 4.71 h 3.19 min 

s  

p  

[

E  

b  

s  

a  

p  

o

 

u  

d  

c  

n  

s  

p  

(  

h  

m  

r  

t  

a

C

 

a  

a  

a  

0

E

 

(  

1

R

 

w  

i  

p  
tates that hematopoietic stem cells (HSC) give rise to all blood-cells types [ 27 , 28 ]. HSC cells are

redominantly in a quiescent state [29] and can be activated as a response to the organism demand

30] . Self-renewing HSC occupy the apex of the hierarchy and originate different progenitors. Fig. S2B–

 depict the calculated scores in the UMAP representation for several progenitor cell types. It should

e noted that all the methods agreed that the highest average potency corresponded to the GMP as

een in Fig. S2F–I. HSCs would have been expected to be the most pluripotent, followed by MPPs,

nd then MLPs and CMPs. However, none of the methods seem adequate to order cells according to

luripotency based on the hematopoietic model, this could be a consequence of the different degree

f quiescence and cell commitment of the hematopoietic stem/progenitor cells [ 2 , 31 , 32 ]. 

The lung is a complex organ that includes several distinct cell types, as seen in the lung sample we

sed (Fig. S3A). Regarding the lungs hierarchical organization, alveolar type II (AT2) cells are the best

escribed stem cells and give rise to alveolar type I (AT1) cells [33] . In addition, club cells are stem

ells that differentiate into ciliated cells [ 34 , 35 ]. Furthermore, basal [36–38] , club-like and pulmonary

euroendocrine cells were identified as progenitor cells [39] . Fig. S3B–E exhibit the pluripotency

cores in the UMAP space calculated for the lung sample. Among the approximately 30 cell types

resent in the dataset analyzed, AT2/club-like had the highest average SR (LandSCENT) and activity

ORIGINS) scores. The highest activity (ORIGINS) values were observed for AT2 cells, although not the

ighest mean activity score. All cells of interest, including basal and club cells, ranked in the top 8

ean scores for SR (LandSCENT), CytoTRACE, and activity (ORIGINS) as shown in Fig. S3F,G and H,

espectively. The activity approximation, HVF activity (ORIGINS), failed to classify cell types based on

he expected pluripotency. This may be because the use of the top 20 0 0 HVF is not enough to provide

 good activity approximation, probably due to the great diversity of cells analyzed (Fig. S3I). 

orrelation with other methods 

The Pearson correlation coefficient between the methodologies was computed for all data sets

s shown in Fig. 2 . All quantities were positively correlated. Taking into account the four data sets

nalysed, the average correlation coefficient between activity (ORIGINS) and SR (LandSCENT) was

round 0.77, between activity (ORIGINS) and CytoTRACE 0.44, between SR (LandSCENT) and CytoTRACE

.63 and between activity (ORIGINS) and its approximation activity HVF (ORIGINS) 0.67. 

fficiency 

The elapsed real time for all algorithms and samples are reported in Table 1 . On average, SR

LandSCENT) took approximately 25% longer than activity (ORIGINS) and CytoTRACE took less than

%. As expected, activity HVF (ORIGINS) took less than 2% than activity (ORIGINS). 

AM usage 

LandSCENT was the most memory demanding program. For example, an extra 6.4 Gb of RAM

as required for the breast data set, while CytoTRACE needed an additional 5.8 Gb. This makes

t difficult to quantify pluripotency for typical size samples (a few thousand cells) using standard

ersonal computers. In this aspect, ORIGINS significantly outperforms the other programs as it does



6 D. Senra, N. Guisoni and L. Diambra / MethodsX 9 (2022) 101778 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

not require additional RAM other than the vector where activity is stored, for the same data set the

memory allocated by this vector was 26.6 Kb. 

Simplicity and biological foundation 

The main concept underlying the activity of the differentiation PPI network is relatively simple.

Briefly, the differentiation activity of a cell is proportional to the sum of all the weights of

the differentiation PPI network. The weights (edges) associated with two transcripts (nodes) are 

approximated as the multiplication of the expression levels of the associated proteins according to 

the law of mass action. Thus, an edge weight is greater if both nodes are highly expressed and vice

versa. By adding all the edges of this differentiation network, we can quantify how active this network

is. 

ORIGINS can handle zero-containing expression matrices 

Normalized expression matrices often have null elements (zeros), such as the obtained by using 

the R Seurat package normalization. Unlike the Signaling Entropy Rate (SR) [1] , ORIGINS is not limited

by the presence of zeros in the expression matrix. The user can provide any normalized non-negative

expression matrix. 

User friendly 

The algorithm is easy to use. By typing four lines of code in R, the differentiation activity can be

calculated: 

install.packages( “remotes ”) #if remotes package not installed 
remotes::install_github( “danielasenraoka/ORIGINS ”) library(ORIGINS) 
diff_activity < - activity(expression_matrix, differentiation_edges) 

Application to human mammary epithelium 

We applied our methodology, ORIGINS, to identify stem cells in the human mammary gland.

Below we describe all the steps performed, from the raw data to the inference of the differentiation

trajectory. We used a scRNA-seq data set of human breast epithelial cells that is publicly available in

the GEO database (GSE113197) [20] . This data set was acquired using the 10 × Genomics Chromium

platform. It included approximately 250 0 0 cells from four nulliparous women between 17 and 36

years old denoted as Individuals 4 to 7 (Ind4-7). In a previous work the Individual 4 sample (Ind4)

was used to quantify pluripotency using LandSCENT [1] , so for comparative purposes we will describe

our analysis in detail for this donor. 

Data analysis workflow 

We performed the Seurat pipeline for scRNA-seq data analysis. We downloaded the UMI 

count matrix, cells and features were filtered to reduce noise and eliminate redundancies. Data

was normalized and dimensionality reduction was performed ( Fig. 3 ). Clustering and differential

expression analysis allowed us to annotate the cells (Figs. S4A and B). We identified three main

clusters and concluded that these corresponded to a basal myoepithelial cell type, a luminal

immature secretory and immune-related cell type, and a luminal mature hormone-responsive cell 

type. The identified cell types are in accordance with the original work where the data was

published [20] and other subsequent works [1] . In line with the original notation, we will refer

to them as Basal, Luminal1 (L1) and Luminal2 (L2). The workflow used is described in detail

below. 

Filtering . We trimmed cells based on the total number of mapped reads, the number of unique

features detected and proportion of mitochondrial content. In this sense, we filtered cells that have
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nique feature counts over 30 0 0 or less than 200 and total number of mapped reads less than 120 0 0.

pper and lower bounds were applied to filter potential doublets or multiplets and debris or empty

roplets, respectively. Besides, we removed cells that had a high mitochondrial content to eliminate

otentially low-quality cells, an upper bound of 5% was chosen as it was done by Chen et al. [1] .

hresholds were selected so that after filtering, the main body of cells was kept while removing

utliers. We also filtered out features expressed in few cells, the cutoff value of 3 cells per feature

as used. Additionally, we filtered out three small non-epithelial clusters (stromal, endothelial and

utliers) as was done in the work where data was published [20] . 

Normalization . In order to compare cells among them, it is necessary to carry out a normalization

tep. Gene counts are divided by the total counts for each individual cell, scaled (multiplication by a

cale factor) and natural-log transformed. We used the NormalizeData() function from the R package

eurat. We later performed a step to identify features that exhibit high cell-to-cell variation. 

Dimensionality reduction. We scaled the data prior to reducing the dimensionality of the data set,

o that the mean expression is 0 and the variance is 1 across cells. We then performed PCA and UMAP

nd visualized the data ( Fig. 3 ). Three main big clusters were revealed. 

Clustering . We performed clustering using the Seurat functions FindNeighbors() and FindClusters().

n short, it includes building a KNN graph using the euclidean distance in the PCA space and applying

he Louvain algorithm that optimizes the standard modularity function. 

Differential expression. We carried out differential expression analysis and obtained the gene

ignatures of all the clusters. We executed non-parametric Wilcoxon rank sum test and a ROC test

hat returns the power of a classifier. In Fig. S4A we display some markers in the UMAP space and in

ig. S4B a heatmap is shown to portray the differential expression among clusters. 

Cell annotation. The previous step provided a gene signature for each cell cluster. Three epithelial

ell types were identified. The orange/pink cluster in Fig. 3 differentially expressed keratin coding

enes such as KRT14 (Fig. S4A KRT14), KRT5 and KRT17 [ 20 , 40 , 41 ]. This cluster also displayed smooth

uscle related genes, e.g., ACTA2 and MYLK and was labeled as a myoepithelial basal cluster [ 20 , 42 ].

he two remaining cell clusters were both positive to KRT18 gene expression and identified as luminal

ell types [ 20 , 40 ]. The blue cluster in Fig. 3 exhibited high expression levels of SLPI and LTF (Figs. S4A

LPI and LTF), which are the typical Luminal Progenitor markers [ 20 , 43 ]. Thus, we annotated this

luster as Luminal 1 (L1). The green cluster in Fig. 3 could be identified as a luminal mature cell type

ecause of the differentially expressed ANKRD30A gene (Fig. S4A ANKRD30A) [ 20 , 44 ]. Another gene

arker highly expressed was AREG, a central factor in estrogen action and ductal development of

he mammary glands [ 44 , 45 ]. AGR2, which is a hormone responsive gene [ 20 , 46 ], was over-expressed

oo. Overall, this cluster was labeled as Luminal 2 (L2) and is associated with a hormone responsive

unction. 

luripotency quantification using ORIGINS 

Differentiation PPI network activity was computed over the gene expression matrix. The

ormalized expression matrix used to calculate the activity was not the one provided by Seurat

ecause this procedure returns a matrix that has null elements. Since our goal is to compare our

lgorithm performance with other methods, and LandSCENT does not accept expression matrices with

ull elements as input, we applied a different normalization. We followed the normalization on the

andSCENT tutorial which sets an offset value of 1.1 before log-transformation to avoid having zero

alues. 

Differentiation activity can be visualized in the PCA and UMAP spaces in Figs. 4 A and 1 A. The

ighest levels of activity were found within the basal group. This is in agreement with the results of

he work in which the data was originally published, as the authors found a group of basal cells with

temness capacity [20] . Similarly, in the LandSCENT publication, the authors found a higher percentage

f multipotent cells within the basal cluster, although they also observed high levels of SR in luminal

ells in close proximity to the basal cluster [1] . 
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Fig. 1. A–D : UMAP representation of the breast sample colored by the scores calculated by LandSCENT, CytoTRACE, ORIGINS 

using all genes and the top highly variable features (HVF). E–H : Violin plots of the pluripotency scores per cell type sorted 

according to increasing values of the mean scores. 

Fig. 2. Correlation matrices between all applied methodologies, SR (LandSCENT), CytoTRACE, activity (ORIGINS) and activity 

HVF (ORIGINS) for all data sets. 
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Fig. 3. Breast sc-RNAseq data in the UMAP space colored by cell type. 

Fig. 4. A: Breast sc-RNAseq data representation in the PCA space. . B: Breast sc-RNAseq data representation in the PCA space 

colored by cell types. Performing trajectory inference revealed a bifurcating pathway. The first branch, Lineage 1, leads to the 

L1 cell type. The second branch, Lineage 2, ends at the L2 cell cluster. 
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rajectory inference 

Trajectory inference are single cell transcriptomics techniques that infer lineages structures.

ssentially, these computational methods order cells based on their expression similarities along a

temporal” variable called pseudotime. In agreement with Saelens et al. [4] we consider that, among

he large number of tools available, Slingshot [47] is one of the simplest, most robust and best

ocumented. For this reason, we run Slingshot, an R package, on the breast data set. Slingshot works

n two steps. First, it infers the global lineage structure using a cluster-based minimum spanning tree.

n a second instance, it infers pseudotime for each lineage using simultaneous principal curves. Like

any methods, Slingshot requires the prior definition of the trajectory origin, namely, the stem or

rogenitor cells. 

We set the root as the cells with the highest differentiation PPI network activity, located within

he basal cluster. We discovered that the trajectory progresses from the basal starting point and

ifurcates into the L1 and L2 cell types, going through an intermediate state ( Fig. 4 B). Furthermore,

his group of luminal precursor cells located within the L1 cluster has moderately high activity levels

 Fig. 4 A). At this point the trajectory branches and heads towards the terminal cells L1 or L2 into two

eparate lineages. The results obtained by performing trajectory inference supports previous works

here stem/progenitor breast cells where suggested as bi-potent cells that can originate differentiated

asal and luminal cell types [ 1 , 20 ]. We refer to the lineage starting at the basal cluster and ending at

luster L1 as Lineage 1 and the one ending at L2 as Lineage 2. 

We next performed differential expression analysis along the inferred trajectory to both lineages.

hereby, we obtained the genes whose expression changed the most along the trajectory, which can
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be visualized by the heatmaps in Figs. S5A and B. For that, we used the R Bioconductor package

tradeSeq [48] . Briefly, tradeSeq fits a negative binomial generalized additive model (GAM) to model

the relation between gene expression and pseudotime and then tests for significant relationships 

between gene expression and pseudotime. 

In summary, we show a complete workflow to perform trajectory inference with sc-RNAseq data. 

We first identified the root cells using our algorithm (ORIGINS) and then used SLINGSHOT to unveil

the differentiation process of the breast epithelium. SLINGSHOT provided a bifurcated trajectory, 

supporting the theory that breast stem cells are bi-potent. Furthermore, our analysis allowed us to

identify the genes that drive the differentiation process. 
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