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a b s t r a c t 

Pathway analysis is an important step in the interpretation of single cell transcriptomic data, as it 

provides powerful information to detect which cellular processes are active in each individual cell. 

We have recently developed a protein-protein interaction network-based framework to quantify 

pluripotency associated pathways from scRNA-seq data. On this occasion, we extend this approach 

to quantify the activity of a pathway associated with any biological process, or even any list of 

genes. A systems-level characterization of pathway activities across multiple cell types provides 

a broadly applicable tool for the analysis of pathways in both healthy and disease conditions. 

Dysregulated cellular functions are a hallmark of a wide spectrum of human disorders, including 

cancer and autoimmune diseases. Here, we illustrate our method by analyzing various biological 

processes in healthy and cancer breast samples. Using this approach we found that tumor breast 

cells, even when they form a single group in the UMAP space, keep diverse biological programs 

active in a differentiated manner within the cluster. 

• We implement a protein-protein interaction network-based approach to quantify the activity 
of different biological processes. 

• The methodology can be used for cell annotation in scRNA-seq studies and is freely available 
as R package. 

 

Specifications table 

Subject area: Bioinformatics 

More specific subject area: Cell annotation from single cell transcriptomics 

Name of your method: ORIGINS2 

Name and reference of original method: Not applicable 

Resource availability: https://github.com/danielasenraoka/ORIGINS2 

Method details 

Background 

Bulk RNA-sequencing (RNA-seq) is focused on quantifying the gene expression profiles across a population of cells to get insight

into the biological processes at transcriptional level without taking into consideration cellular heterogeneity. On the other hand, 
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single-cell RNA sequencing (scRNA-seq) is a high-throughput technology used to study cellular heterogeneity at the transcriptional 

level and it has been successful to discover novel cell types in cancer and analyze lineages in the context of embryonic development

[1 , 2] . 

Although scRNA-seq provides high-resolution transcriptomic data that can potentially characterize various phenotypes, the task 

of identifying true biological differences between cells is challenging due to several technical constraints. Most of the scRNA-seq 

studies consist of differential gene expression analysis performed on groups of cells, derived by unsupervised clustering methods, to

discover genes (features) associated with these cell type clusters (phenotypes). The cell clusters are determined based on the similarity

of transcriptional profiles. Additionally, gene set enrichment analysis, originally developed for bulk data, can be used to retrieve a

functional profile of the gene sets obtained after clustering and differential expression analysis, in order to better understand the

underlying biological processes [3–5] . 

Due to intrinsic cellular heterogeneity this commonly used approach can lead to excessive partition of a uniform cell sub-population

or yield subtle phenotypic changes, without a clear boundary between different phenotypes. Further, due to the sparse and noisy

nature of scRNA-seq measurement the differential gene expression analysis on a gene-by-gene basis may result in an inaccurate

characterization of the cell population or yield misleading conclusions, even when using well-established tools that exist for such 

analysis [6 , 7] . 

In general, complex interactions between molecules including DNA, RNA, proteins, and small molecules give rise to the biological

processes that underlie a specific cell phenotype [8] . Nowadays, more information is being made available on these interactions and

the elements integrating different biological function modules. This makes network-based approaches dedicated to detecting gene 

expression signatures in single cells, resulting from a specific biological process or cell state based on a combined group of genes,

feasible. Here, we extend the concept introduced in a recent approach that takes advantage of well-established knowledge, such 

as the gene ontology annotation associated with a given biological process and the protein-protein interaction network (PPIN) to

identify the most highly phenotype-associated cell sub-populations. Originally this approach, named ORIGINS [9] , aimed to quantify 

pluripotency and detect cells that may be the origin of a lineage in differentiation pathways. In this work we provide a generalization

of the previous methodology to evaluate several biological processes other than cell differentiation. In order to illustrate the use and

application of the ORIGINS extension to discover cells that carry out specific biological programs of interest, we apply our method

to assess biological processes such as: stem cells, proliferation, migration, cell cycle, etc. from scRNA-seq data derived from triple

negative breast cancer (TNBC) and healthy human breast samples. 

In addition to the extension to assess different biological modules, we made technical adjustments to the previous method. Modi-

fications include the removal of proteins from the PPIN that act as negative regulators of the module under study, as overexpression

of negative regulators would inaccurately increase the activity of the corresponding PPIN. To further enhance the efficiency of our

method, we have modified the program to eliminate duplicated interactions in the PPIN, thereby reducing computing time of the

algorithm. Furthermore, we provide a new functionality to build PPINs associated with any biological process or set of genes of inter-

est. The method is implemented as an R package called ORIGINS2 , which also includes the PPINs used in this work. The package is

open-source and publicly available at https://github.com/danielasenraoka/ORIGINS2 , where a user guide to download and use the 

program is included. 

Data description 

We used publicly available scRNA-seq data from two published studies [1 , 10] . From the first study we take one sample corre-

sponding to normal breast tissue (ind4), while we used a TNBC sample from the second dataset (TN-0135). The criteria to choose

this samples were based on the large number of cells assessed in these cases. 

PPIN activity computation 

A PPIN is a collection of nodes (proteins) interconnected by edges (interactions). The edges convey information about the links

between the nodes (weights) and in this case edges have no direction, that is, the PPIN is an undirected graph. All the PPINs used

in this paper were built by considering the whole biochemical interactions listed in Pathways Commons (version 12), that integrate

2424,055 interactions from 22 databases [11] . From this set of interactions we disregard the interactions involving not-protein 

molecules, such as chemical compounds. From this whole network we select the protein-protein interactions associated with the 

gene products involved in different biological process (BP) without considering the genes acting as negative regulators of the BP

and build the PPIN associated with this BP. The protein lists from H. sapiens were downloaded from the QuickGo database [12] for

each biological process. The edges of this PPIN correspond to biochemical reactions and contribute to the activity of the module 𝑃 ,

following mass-action law, proportionally to their amount [9] : 

𝑃 = 

𝑁 𝑝 ∑
𝑖,𝑗=1 

𝐴 𝑖𝑗 𝑥 𝑖 𝑥 𝑗 , (1) 

where 𝐴 𝑖𝑗 is the upper triangular adjacency matrix (i.e., the element 𝐴 𝑖𝑗 is one when proteins 𝑖 and 𝑗 interact and zero otherwise),

𝑥 𝑖 and 𝑥 𝑗 are the expression levels associated with genes I and J, respectively; and 𝑁 𝑝 is the number of genes in the pathway 𝑝 . In

contrast to the previous algorithm, here we use the upper triangular adjacency matrix as we consider only one interaction between

each pair of proteins instead of the complete adjacency matrix. Since the adjacency matrices are symmetric, that is, A interacts with
2 
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B and B with A, we decided to eliminate this duplication of edges, only considering one for each pair of proteins. In this way, the

computation time is reduced, obtaining the same result. 

Moreover, in the original methodology, we considered all the proteins involved in cell differentiation, which was the biological

process for which the previous method was developed. Here we decided to remove all the proteins that are negative regulators of the

module, as they would contribute to activity inaccurately. The negative regulators that were discarded were obtained by selecting 

negative regulation of the corresponding process in the QuickGo database [12] . Some negative regulators act as positive regulators

simultaneously, therefore only the proteins that exclusively act as negative regulators were eliminated from the network. 

The earliest version of the software was developed to quantify activity of the PPIN associated with cell differentiation BP, which

is particularly useful to identify pluripotent cells to use as root when performing trajectory inference. The main contribution of

ORIGINS2 lies in its capability to assess activity of the PPIN associated with any biological process or set of genes. The inclusion

of pre-built PPINs within the software package that are associated with a diverse range of biological processes is a major novelty

of ORIGINS2, and serves to greatly expand the scope of analyses that can be performed using the software. In this regard we sup-

ply the PPINs associated with several biological processes, including but not limited to: cell differentiation (GO:0030154), cell cycle 

(GO:0007049), mitotic cell cycle (GO:1903047), cell population proliferation (GO:0008283), DNA repair (GO:0006281), DNA replica- 

tion (GO:0006260), immune response (GO:0006955), inflammatory response (GO:0006954), cell migration (GO:0016477), stem cell 

proliferation (GO:0072089), stem cell differentiation (GO:0048863), hormone secretion (GO:0046879), humoral immune response 

(GO:0006959), acute inflammatory response (GO:0002526), chronic inflammatory response (GO:0002544), response to tumor cell 

(GO:0002347), innate immune response (GO:0045087) and adaptive immune response (GO:0002250). 

Furthermore, we provide a new feature that builds a PPIN associated with any module of interest. To create a custom-made PPIN

the build_ppin R function should be used, the inputs are the gene ID list associated with the corresponding biological process and the

full human PPIN, included within the package. Essentially, this function operates by overlaying the gene list onto the full human

PPIN, subseting the protein-protein interactions (edges) from the full human PPIN whose nodes are included in the gene list provided

by the user. The output is an adjacency list that contains a subset of the full human PPIN that is specific to the biological process

under study. This feature enables the user to determine the activity of the PPIN associated with any desired biological process. To

accomplish this, the previously created PPIN and the expression matrix must be entered as inputs into the activity function. For further

information users may refer to the detailed documentation provided by the R package. 

Method validation 

Application to healthy breast tissue 

In our previous version we do not distinguish if any node is acting as a negative or positive regulator. However, accounting for

the expression of negative regulators in Eq.(1) could lead to an overestimation of the actual activity 𝑃 of a given biological module.

To circumvent this drawback, the new approach does not take into account any of the genes that act as negative regulators of the

BP in question. To illustrate the effect of this improvement, we compare the performance of both computations for a healthy breast

sample [10] by considering two BPs: cell differentiation ( Fig.1 ) and cell population proliferation ( Fig. 2 ). These UMAP representations

contain 3 clusters: luminal 1 (L1), luminal 2 (L2) and basal cells, as we determined previously [9] . Activity visualization on the UMAP

space, with and without negative regulators, yielded similar relative results on the color scale. Although, as expected, lower absolute

values are observed when negative regulators are not considered, since the new form of calculation involves a network of fewer

genes. However, when comparing the distributions of the activities associated with cell differentiation and cell proliferation in each 

population, we observe that there are differences between them, that may or may not be significant depending on the significance

level given, depending on whether or not PPIN considers negative regulators. For example, Fig. 2 shows that the cell proliferation-

associated activity distributions of basal and L2 cells are significantly different in the overestimated calculation, whereas when the 

activity is calculated without adding the negative regulators are not (at the 0.01 significance level). 

By considering this modification in the PPIN activity calculation, we also compute the activities associated with several other 

biological processes over this healthy breast sample. Fig. 3 A depicts the UMAP representation of a healthy breast sample colored by

the activity associated with acute inflammatory response. In this case, the highest activity levels are concentrated in the upper region

of the L1 cells in the UMAP space. There are also few L2 cells showing acute inflammatory response to the left of the L2 cluster, also

visible in the distribution (green plot in Fig. 3 B). From this example, it is evident that even from a clearly delimited cluster of cells,

the activity level of some biological module can be heterogeneously distributed among the population of cells; and that the method

proposed here is useful to identify intra-cluster cells that perform a particular BP. Fig. 3 C depicts Pearson correlation coefficients

between several BP computed over all cells in this data set. The BPs analyzed can be mainly clustered into two groups: one including

inflammatory and immune responses and the other including cell replication and differentiation. These groups of BPs appear to be

anti-correlated in this healthy breast sample. 

Application to triple negative breast cancer 

Healthy samples exhibit mixed cell types, which can be identified based on differences in their transcriptomic profiles. The

situation is rather more complex in cancer research, where characteristic tumor signatures dilute intra-tumoral heterogeneity of 

tumor cells. To overcome this drawback, our technique can be used to identify biological modules operating in different regions

of the cluster corresponding to tumor cells. Fig. 4 illustrates the UMAP representations of the activities associated with nine BPs
3 
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Fig. 1. A : UMAP representation of the healthy breast sample colored by the activity of the PPIN associated with all genes involved in the cell 

differentiation BP (GO:0030154). B : Activity computed by excluding the genes that negatively regulate the process above. C : Probability density 

estimation of cell differentiation activity per cell type computed with all genes, as panel A. D : Probability density estimation of cell differentiation 

activity computed excluding genes that negatively regulate the process, as panel B. Results from the Mann-Whitney test among different distribution 

are displayed at right. Luminal 1 cells (L1), luminal 2 cells (L2). 

Fig. 2. A : UMAP representation of the healthy breast sample colored by the activity associated with all genes involved in the cell proliferation BP 

(GO:0008283). B: Activity computed by excluding the genes that negatively regulate the process above. C: Probability density estimation of cell 

proliferation activity per cell type computed with all genes, as panel A. D: Probability density estimation of cell proliferation activity computed 

excluding genes that negatively regulate the process, as panel B. Results from the Mann-Whitney test among different distributions are displayed at 

right. Luminal 1 cells (L1), luminal 2 cells (L2). 

4 



D. Senra, N. Guisoni and L. Diambra MethodsX 10 (2023) 102179 

Fig. 3. A : UMAP representation of the healthy breast sample colored by the activity associated with acute inflammatory response BP (GO:0002526) 

computed by excluding the genes that negatively regulate this process. B: Probability density estimation of acute inflammatory response activity 

per cell type. C: Correlations among activities associated with different BP computed over the same healthy breast sample. Luminal 1 cells (L1), 

luminal 2 cells (L2). 

 

 

 

 

 

 

 

 

 

 

 

 

of interest in a tumoral breast sample. These UMAP representations contain four cell clusters: tumor cells (TC), fibroblasts (CAF),

macrophages (TAM) and T-cells. It can be observed that the tumor cells cluster presents high heterogeneity, i.e., different regions in

the UMAP space where biological modules are operating. For example, while cell differentiation activity appears in a vast number

of TC, the cell migration process is active in a small number of cells. On the other hand, mitotic cell cycling, DNA replication and

DNA repair processes appear quite correlated, as expected, and highly activated in the lower-left region of the tumor cells. This is in

agreement with the observations made by [1] , where authors found out that all the breast cancer subtypes studied in their work [1] ,

in particular TNBC, always showcase a population of cycling TC. Further, there is a small group of cells which present an important

stem cell differentiation activity within the TC cluster, as well as fibroblasts. Finally, while the innate immune response affects TC

and macrophages, the adaptive immune response activity is observed almost exclusively in macrophages. 

Certainly, the activity levels of many of these processes can be correlated, as shown previously for the healthy sample in Fig. 3 C.

Fig. 5 depicts Pearson correlation coefficient between several BPs computed over all cells in this cancer breast sample. In contrast to

the healthy sample, most BPs appear to be correlated or poorly correlated but not anti-correlated. 

The method proposed here is particularly useful for efficiently translating scRNA-seq transcriptomes into biological discoveries 

associated with a functional network of genes of interest. The ultimate goal is to examine whether the most significant biological

features can be further elucidated by an alternative approach. 

The typical pipeline to identify subpopulations from single-cell transcriptomic data involves several serial steps. First, unsupervised 

clustering is performed to define cell clusters. Then, differential expression analysis is carried out to obtain the marker genes for each
5 
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Fig. 4. UMAP representation of the breast cancer sample colored by the activity associated with nine BP of interest: cell differentiation 

(GO:0030154), cell population proliferation (GO:0008283), cell migration (GO:0016477), mitotic cell cycle (GO:1903047), DNA replication 

(GO:0006260), DNA repair (GO:0006281), stem cell differentiation (GO:0048863), innate immune response (GO:0045087) and adaptive immune 

response (GO:0002250). TC: tumor cell, TAM: tumor-associated macrophage, CAF: cancer-associated fibroblast. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cluster. Finally, the enrichment of these markers in known cell types and pathways is assessed to gain insight into the biological

significance of each cell cluster. However, this traditional approach is highly dependent on the preceding steps, specially on clustering,

as the technique identifies the active pathways in each cell cluster. In this sense, this widely used methodology does not provide

information about the heterogeneity in different biological pathways at single cell level, which might be critical in samples containing

rare cell types. In this way, ORIGINS2 can quantify how active the PPIN associated with a certain biological process is for each cell,

without assuming the number of cell types or cell states within a sample. 

Comparison with other methods 

In order to compare ORIGINS2 with other methodologies that perform pathway enrichment we evaluated the mean expression 

(Average) of the gene set associated with the biological process of interest, a common practice when scoring expression levels of a

gene set [13 , 14] . In addition, we also assessed AUCell [15] , a computational method that determines the enrichment of user-defined

gene sets within each cell. To evaluate enrichment, AUCell utilizes the Area Under the Curve (AUC) approach to determine if a

critical subset of the input gene set is overrepresented among the expressed genes in each cell. Specifically, we used gene sets that

were associated with the biological processes studied in our investigation using ORIGINS2. By providing the scRNA-seq expression 

matrix and the gene sets of interest to AUCell, the software calculates a score that indicates the activity level of the pathway of interest

in each individual cell. We computed the three scores using the TNBC sample used in the section Application to triple negative breast

cancer . 

Table 1 displays the Pearson correlation coefficient between ORIGINS2, AUCell and Average for all the gene sets used in Fig. 5A .

All three methods are positively correlated, with mean Pearson correlation coefficients ranging from 0.31 to 0.96. The mean corre-

lation coefficients are ⟨𝜌ORIG INS 2 , AUCe ll ⟩ = 0 . 59 , ⟨𝜌ORIG INS 2 , Aver age ⟩ = 0 . 79 and ⟨𝜌𝐴𝑈𝐶𝑒𝑙 𝑙 ,𝐴𝑣𝑒𝑟𝑎𝑔𝑒 ⟩ = 0 . 66 . The different scores for gene sets
containing a small number of genes may be sensible to dropouts and less stable. Thus, we calculated the mean correlation coefficients

disregarding the BP with less than 200 genes ⟨𝜌𝑁 genes > 200 
ORIG INS 2 , AUCe ll ⟩ = 0 . 63 , ⟨𝜌𝑁 genes > 200 

ORIG INS 2 , Aver age ⟩ = 0 . 86 and ⟨𝜌𝑁 𝑔𝑒𝑛𝑒𝑠 > 200 
𝐴𝑈𝐶𝑒𝑙 𝑙 ,𝐴𝑣𝑒𝑟𝑎𝑔𝑒 

⟩ = 0 . 66 . 
In Fig. S1 we show the AUCell score (panels A-C) for the breast cancer data set compared to the ORIGINS2 activity (panels

D-F) associated with three biological processes: cell differentiation, cell proliferation and cell migration. Overall, both scores are 

comparable although the AUCell score presents activities in a more concentrated group of cells. In this figure, it is observed that as
6 
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Fig. 5. A: Heat-map of correlations among activities associated with different BPs computed over the same tumoral breast sample. B: Alternative 

representation of the correlation matrix among the same activities. 

Table 1 

Pearson correlation coefficient between ORIGINS2, AUCell and Average gene expression and number of genes 

(N genes ) of different biological processes studied. 

Gene Ontology Biological Process 𝝆𝑶 𝑹 𝑰 𝑮 𝑰 𝑵 𝑺 𝟐 , 𝑨 𝑼 𝑪 𝒆 𝒍 𝒍 𝝆𝑶 𝑹 𝑰 𝑮 𝑰 𝑵 𝑺 𝟐 , 𝑨 𝒗 𝒆 𝒓 𝒂 𝒈 𝒆 𝝆𝑨 𝑼 𝑪 𝒆 𝒍 𝒍 , 𝑨 𝒗 𝒆 𝒓 𝒂 𝒈 𝒆 N genes 

Cell population proliferation 0.53 0.84 0.49 656 

Cell differentiation 0.39 0.94 0.35 3704 

Mitotic cell cycle 0.68 0.93 0.70 494 

Cell migration 0.60 0.83 0.62 914 

Immune response 0.66 0.89 0.63 2414 

Stem cell differentiation 0.46 0.54 0.50 179 

Cell cycle 0.68 0.96 0.67 1367 

DNA replication 0.69 0.90 0.73 332 

DNA repair 0.62 0.94 0.64 824 

Inflammatory response 0.75 0.84 0.75 581 

Stem cell proliferation 0.44 0.52 0.61 64 

Hormone secretion 0.31 0.55 0.61 100 

Acute inflammatory response 0.65 0.66 0.76 103 

Chronic inflammatory response 0.70 0.77 0.90 13 

Adaptive immune response 0.84 0.81 0.80 867 

Humoral immune response 0.54 0.62 0.88 415 

Innate immune response 0.53 0.86 0.60 1005 

 

 

 

 

 

 

 

 

 

 

the correlation coefficients between ORIGINS2 and AUCell increase, the UMAP representations of the different biological processes 

more closely resemble each other. 

Although the scores were found to be correlated, it is important to acknowledge that the underlying methodologies for the

parameter calculation strongly differ. AUCell and the average method exclusively use gene expression information (expression matrix) 

to provide a parameter that is high when the set of genes of interest is overrepresented and vice versa. In the case of the algorithm

proposed in this study, in addition to inputting the expression matrix, protein-level information is utilized by providing PPINs. Thus,

the parameter calculated with ORIGINS2 reflects the level of interaction between genes that encode proteins that are reported to

interact with each other. 

Furthermore, it is worth noting that ORIGINS2, together with the other evaluated methods in this work, exhibits reduced robustness

in scenarios where the set of genes of interest is small. This phenomenon is attributable to the technical limitations inherent to scRNA-

seq experiments, which are characterized by high dropout rates. 

Our findings demonstrate that this approach is useful in identifying pluripotent cells [9] and annotating cells. To expand the

applicability of the tool, several approaches can be pursued in the future, such as extending the PPINs to a greater number of biological

processes and calculating activities related to additional biological processes that may be of interest. In addition, ORIGINS2 could be

used to map scRNA-seq data onto a space of activities associated with relevant biological processes for each particular dataset. On

this space of activities, standard techniques for scRNA-seq, including dimensionality reduction, visualization and trajectory inference, 

could be performed, among other promising avenues of investigation. 
7 
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Code availability 

ORIGINS2 is freely available as an open source R package from the GitHub repository: https://github.com/danielasenraoka/ 
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