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Abstract—Systems known as SoC-FPGAs have experienced a
growing popularity in recent years. This devices integrate field
programmable gate arrays with elements such as microproces-
sors, PLLs and embedded memory blocks. The advantages of this
type of systems are clear: great reconfigurability, performance,
and energy efficiency, but they come with an negative side:
programming and optimizing the applications that use them
remains a long and complicated process. In particular, real-
time signal processing at high frequencies is an application that
can clearly benefit from the advantages of SoC-FPGAs, but
the complex workflow assosiated with them usually prevents
the designers from taking advantage of its capabilities. In this
work, an open source SoC-FPGA platform, specifically intended
for signal processing is presented, with the aim of alleviating
this workflow. The platform structure is described, specifying
the places where the designer may implement their algorithms,
and then its operation is demonstrated by acquiring a signal
at a maximum sampling frequency of 65 MHz and passing it
through a 32th order FIR filter, verifying that the it meets it’s
expected theoretical response. The whole system can operate at a
maximum frequency of 85 Mhz, has a latency of 16 clock cycles,
and uses less than half of the resources of a Cyclone V device.

Index Terms—SoC-FPGA, signal-processing, open-source, fil-
tering .

I. INTRODUCTION

In recent years, there has been a growing demand of compu-
tational capacity. This demand has motivated the development
of new architectures and computational systems among which
solutions based on field programmable gate arrays (FPGAs)
stand out. These devices are highly re configurable, with high
performance and energy efficiency, and the chips that inte-
grate them have evolved to include different sub-systems that
complement their capabilities. In this process, systems known
as SoC-FPGAs have emerged, which integrate an FPGA with
embedded memory blocks, phase locked loops (PLLs), digital
signal processing blocks (DSPs) and even microprocessors in
a single chip [1] [2].

In particular a SoC-FPGA system with an embedded mi-
croprocessor is an interesting platform for implementing high

speed signal processing systems, with the FPGA in charge of
the real-time processing, including the control of the analog
signal acquisition and generation systems, and the micropro-
cessor controlling the operation and the user interface. This
guarantees complete control of the signal at clock transfer
level, while keeping the user interface friendly and versatile.

The usual workflow when designing an application on a
SoC-FPGA system begins with hardware design at register
transfer level (RTL) in some hardware description lenguage
(HDL) like Verilog or VHDL, with the assistance of some
simulation tool for its verification. Special care must be taken
when elements such as PLLs or DSP blocks are needed, since
the HDL must be written correctly for the compiler to be able
to infer them. Compilers provided by different manufacturers
(Intel-Altera’s Quartus or Xilinx’s Vivado, for example) are
then used to generate the “bitstream” needed to program the
FPGA, which has to be tested experimentally to solve possible
problems that have not appeared in simulation. Additionally, in
SoC-FPGAs that include a microprocessor, the programming
of this processing element must be done independently, with
code in some high-level language such as C, C++, Python,
etc. This code must be compiled for the target microprocessor,
either by trans-compiling it with vendor-supplied tools, or by
compiling it natively on the microprocessor. Finally the whole
system must be verified. This long and complicated process
requires designers highly skilled in digital design and in the
particular architecture of the target platform [3].

In order to alleviate this workflow, High level synthesis tools
(HLS) have emerged [4] [5] [6] [7]. This tools allow the gener-
ation of HDL code from C/C++/OpenCL code. Although these
languages generate sequential programming codes, they allow
parallelized algorithms to be implemented using computation
directives. This greatly simplifies the design of algorithms, but
does not simplify the rest of the steps involved in the system’s
design.

In this article an architecture of a SoC-FPGA system,
specifically intended for signal processing, will be described.



The design includes digital an analog signal inputs, a model for
the processing stages of the system, and the means to control
the signal flow and retrieve the results of the processing.
Its objective is that the programmer should only concentrate
on the application of the signal processing algorithms, either
writing HDL or using HLS tools, without worrying about the
integration of the different sub-systems. In order to test the
system a 32th order finite impulse response (FIR) filter with
re configurable coefficients was implemented.

The design is open source, licensed under the terms of
the MIT license, and available at [8]. It was implemented
on an Intel-Altera Cyclone V SoC-FPGA [9], mounted on a
DE1-SoC development kit, provided by Terasic [10]. Verilog
was used for HDL programming, with the addition of some
free licenced Intel-Altera intellectual property (IP) blocks, and
tools written in C/C++ and C# were developed for the control
of the operation.

II. SYSTEM DESCRIPTION

The proposed design is schematically shown in Fig. 1.

A. Control Stage

The control stage includes the hardware designed in the
FPGA, which contains elements to configure the processing
operation, control its speed and flow, and collect available
results, and the control element itself. This can be a mi-
croprocessor integrated on the SoC or a “soft” processor,
implemented in the FPGA fabric, depending on the availability
in the target platform and the designer’s needs. For the latter,
the free version of the NIOS 2 processor, a 32-bit RISC
processor optimized to save area on the FPGA [11], was
implemented, and to communicate the design with the external
processor, if available, the “Lightweight-axi-bus” was used.
In the Cyclone V platform this processor is an ARM-Cortex
A9. Hardware abstraction layers (HAL), written in C/C++, are
provided for both modes of operation.

The main system’s clock is generated trough a PLL, avail-
able inside the Cyclone V chip. Two IP blocks provided by
Intel-Altera are used to instantiate it: “Altera PLL” [12] and
“Altera PLL reconfig” [13]. These blocks allow to generate,
from a 50 MHz clock, one with a frequency between 1 and 65

Fig. 1. Design’s general structure.

Fig. 2. Control module.

MHz. Additionally, a clock divider is provided, to implement
lower frequencies. The enable, reset, and termination signals
are used to control the flow of the process.

To parameterize the operation at run time a parameter
control stage is included. Some examples where this may be
useful are when the user wants to control the number of cycles
during which a signal is integrated, or the coefficients of a
filter.

The results of the processing enter the module in 32 or 64 bit
formats, and are stored in First in first out (FIFO) memories.
In addition to the data to be stored, the processing logic must
include a “data valid” signal, which is set high on every clock
cycle that the result is valid. This scheme is used at all stages of
processing to ensure its correct synchronization, and is known
in the Intel-Altera documentation as an “Avalon Streaming”
interface. It’s use is not limited to Altera’s hardware.

FIFO memories were implemented using Altera IP blocks,
with an “Avalon Streaming” input interface, and an “Avalon
Memory Mapped” output interface [14]. This input interface
allows directly adapting the memories with the designer’s own
logic, as long as it complies with the rules described earlier.
This text will not delve into the “Avalon Memory Mapped”
interface, other than to say it is the one that allows the control
element to correctly read the memories. The interested reader
can find more about this interfaces in [15].

B. Signal source stage

The signal source stage, represented on Fig. 3, controls the
input signals for processing. These can be digital, for testing
proposes, or analog, incoming from some analog to digital
converter (ADC).

1) Digital Signal: The digital sinusoidal signal is generated
from a look-up table, and optionally contaminated with uni-
form noise, through a pseudo-random sequence. The module
provides a signal sample on each rising clock edge on which
the enable signal is high. The designer can configure the
number of points per cycle used to generate the sinusoid, the
method to obtain the pseudo-random sequence that simulates
the uniform noise, and its amplitude.

The pseudo-random sequence can be generated using an
algorithm called linear feedback shift register (LFSR) [16],



Fig. 3. Signal source module.

or by a typical linear congruential generator, given by the
equation 1. In this equation the operator % represents the
modulus operation, and the parameters used are: c = 1,
a = 69069, m = 232, which are ones used by old versions of
the GNU C library (glibc) [17].

Ni+1 = (aNi + c)%m (1)

Once the pseudo-random sequence is generated, it is scaled
according to the requested noise amplitude and added to the
sinusoidal signal. In this way sinusoidal signals with different
levels of signal-to-noise ratio can be generated. This can be
useful to test the immunity of the different algorithms against
noise, for example.

2) Analog Signal: To obtain analog signals for further
processing two different ADC drivers are included. The design
allows them to be operated at different frequencies through
the clock circuitry and provides synchronization with other
modules through an Avalon Streaming Interface.

The first one is the ADC LTC2308 [18], a 12-bit reso-
lution and 500kHz maximum sample rate with eight mul-
tiplexed channels, usually included in Terasic platforms.
Its operation is through an SPI bus, which needs a clock
of 40 MHz of frequency at maximum. The sampling fre-
quency of this module can be configured by the designer.
The output signal, “data adc 2308”, includes its respective
“data adc 2308 valid” signal.

The other one is an AD9248 [19], a 14-bit resolution ADC
with 65 Msps maximum sample rate and two independent
channels, included in the “High-speed A/D and D/A Devel-
opment Kit” platform, also from Terasic [20] .This ADC is
controlled by a parallel interface, so it can operate at the
clock provided by the “clk adc hs”, which can be connected
to the system clock generated on the control stage. The output
signals “data adc hs a” and “data adc hs b” also include
their respective “data adc hs valid” signal.

Additionally, the system provides the driver for a digital to
analog converter: The AD9767 [21], which is a 125 Mmps,
14-bit resolution converter. This converter is operated through
a parallel interface, so it can be operated directly at “clk dac”
speed. The controller included in the design converts to analog

Fig. 4. Signal processing module.

each sample that enters the module through the “data in dac”
bus, as long as the “data in dac valid” signal is high. This
can be used for example to generate a waveform using an
internally stored lookup table, or to convert back to analog
the results of the processing on the incoming signal.

If other ADCs are to be connected to the system the de-
signer’s logic has to provide two signals: a “generic adc data”
bus, and a “generic adc data valid” wire, guaranteeing that
the driver provides a valid sample in the first one at each
clock cycle where the latter is in high state.

C. Signal processing stage

Regardless of which signal source is selected, data enters
the signal processing stage one sample at a time for each
clock cycle that “data valid” is high. This stage, which has
the input and output interface shown in Fig. 4 is where
the programmers may implement their algorithms. These can
be further subdivided on different sub-stages or sub-systems,
with each one working as an enablement for the next. The
stages can be parameterized at execution time, through the
different configurable parameters, and once the processing is
finished they must set the completion signal high to inform
the control module of the availability of the results. An extra
signal, represented as “ready to calculate” in Fig. 4, tells
other modules that the signal processing stage is ready to start
receiving the data samples. This is useful when this module has
to update parameters, or clean internal buffers before starting
to process the signal, for example.

III. SIGNAL PROCESSING EXAMPLE

In order to test the system a setup like the one shown in
Fig. 5 was implemented. In this configuration the signal is
generated with the SR865 lockin and acquired by the AD9248
at a configurable sampling frequency, up to 65 MHz. Then
it passes through a 32th order FIR filter, with configurable
coefficients. This filter follows the classic FIR filter equations,
shown in equation 2 where the bi are its coefficients, which
enter the processing module as 16 bit integer numbers through
the parameter control module.

Yn =

nX
i=n−M

bixi (2)

The microprocessor implements a C++ program which con-
trols the operation and runs directly on its operating system:



Fig. 5. Testing setup.

a Linux with an Ubuntu distribution. This program can be
executed from a terminal connected to a personal computer
through a serial interface, or directly from the SoC-FPGA, if
a monitor and keyboard is connected. For this configuration,
which is the one selected for this demonstration, a graphical
user interface (GUI) was designed in C#, and executed
through the Mono implementation of the .Net framework [22].
This GUI, shown in Fig. 6 allows the user to easily set up the
operation, and implements named pipes to configure the FPGA
through the C++ HAL.

Using this program the user can configure the filter coeffi-
cients and the sampling frequency. In this way the same system
can be used to implement different type of filters, at different
cut-off frequencies. Once processed, the signal is fed to the
DAC, in order to see the input and output signals together on
an oscilloscope, and also stored on the FIFO memories, so the
user can read them directly on his or her computer screen. The
GUI uses this information to plot fragments of the signal, so
the user can verify the operation without further equipment.
Finally, the SR865 lockin is used to measure the amplitude of
the output analog signal, in order to verify the operation of
the whole system.

The filter coefficients for this demonstration were selected
to implement low-pass and high-pass filter of different normal-
ized cutoff frequencies (0 < ω < 1.0). The coefficients enter
the processing module as 16 bit integer numbers, through the
parameter control module. To convert the coefficients provided
by some signal processing toolbox (Python’s numpy or Matlab,
for example), one simply has to multiply the coefficients by
216 and then round the number to the nearest integer. The final
cutoff frequency of the filter depends on the selected ω and
the sampling frequency, as shown in equation 3.

Fig. 6. Graphical User Interface.

Fig. 7. Testing Setup.

fcut = ωfsampling/2; (3)

A photo of the testing system is shown in Fig.7.

IV. RESULTS

A. Resource utilization

The resource utilization of the proposed system depends on
the election of the control element. If the microprocessor is to
be used considerable memory blocks can be saved, but more
logic elements are needed. On the other hand, if the Nios
processor is selected, the system needs a significant amount
of extra memory blocks, as the Nios 2’s program memory is
implemented directly on them. Finally, for the FIR demonstra-
tion, the system needs many DSP blocks, which are used to
implement the multiplications efficiently. It’s operation could,
however, be replaced by multipliers implemented with logical
elements, with an important reduction of time efficiency and an
increase in area. This could be a good choice for devices with
less embedded multipliers. The resource utilization summary
for each mode of operation is shown in Table I.

B. Timing measurements

For each system’s configuration the maximum achievable
clock frequency was calculated using the tools provided by
Intel Altera. In all the cases the maximum required frequency
for this demonstration (65 MHz) was achieved. In the cases
where the FIR filter is not implemented the achievable fre-
quency is limited by the few Altera’s IP used in the design.
In the cases were the FIR filter is implemented it’s the filter
who limits the frequency. If a greater speed is to be achieved
other filter architectures must be considered.

TABLE I
RESOURCE UTILIZATION

Resource With µP With NIOS Full system
LE (in ALMS) 3875 (12%) 2212 (7%) 6992 (22%)

Registers 5937 3170 11282
Memory blocks 262272 (6%) 1473536 (36%) 1342592 (33%)

RAM blocks 30 (8%) 195 (49%) 183 (46%)
DSP blocks 0 0 67 (77%)

Pins 157 (34%) 85 (19%) 157 (34%)
PLLs 1 (6%) 1 (6%) 1 (6%)

*Percentages calculated for Cyclone V 5CSEMA5F31C6N device
*Full system: µP + NIOS + 32th order FIR filter



TABLE II
ACHIEVABLE CLOCK FREQUENCY

Nios processor µP FIR filter Achievable Frequency
✓ - - 115 MHz
✓ - ✓ 82.31 MHz
- ✓ - 97.82 MHz
- ✓ ✓ 87 MHz
✓ ✓ ✓ 85 MHz

As the data flows through the system it is registered in
several modules, implementing a pipeline. This pipeline allows
the maximum frequency of the clock to reach the levels
described earlier, but produces a latency in the output signal.
This latency can be estimated by following the signal path,
schematically shown in Fig. 8. Firstly the signal is acquired
by the AD9248, which has a pipeline delay of 7 clock cycles,
according to its data-sheet [19]. Then it is registered on
the ADC driver module, which takes 2 clock cycles. The
FIR filter registers the signal, then calculates the 32 required
multiplications and finally sums the results. This produces a
pipeline delay of 3 clock cycles. Then the DAC driver registers
the output data and conditions the signal, in a total amount of
3 clock cycles. Finally the AD9767 latchs the output, 1 clock
cycle later. The signal path sums for a total amount of 16
clock cycles.

To measure the latency in the signal the FIR filter was
bypassed, by tuning all its coefficients to 0 except of the
first one. This produces no change in the incoming signal,
except the delay produced by the system’s pipeline. Then
the time distance between the input and output signal was
measured with an oscilloscope, as shown in Fig. 9. For a
sampling frequency of 10 MHz a delay of approximately 1.6
µS was obtained, which is consistent with the estimated 16
clock cycles.

C. Filter’s response

With the setup described earlier, a low-pass and a high-pass
filter were implemented and tested. Both filters were designed
with a cutoff frequency of ω = 0.05, and a sampling frequency
of 1 MHz was selected. With these parameters a cutoff
frequency of 25 kHz is achieved, as expected from equation
3. The coefficients selected for the filters were obtained from
Python’s “numpy” signal processing toolbox.

With this configuration the amplitude of the transfer func-
tions | H(f) | of both filters was measured with the SR865,

Fig. 8. Signal path.

Fig. 9. Timing delay measurment.

and then compared with the theoretic transference of the filters.
The results are shown in Fig. 10, and Fig. 11.

CONCLUSIONS

In this paper a SoC-FPGA design intended for signal pro-
cessing was developed, providing a well structured design that
developers can follow. The result is an open-source system,
with options to adapt it to different Intel Altera’s SoC-FPGAs,
and with core concepts that are transferable to other vendors
architectures.

The design was tested implementing a 32th order FIR filter
that operates in real time with high frequency signals, a system
with speed and data throughput requirements restrictive for
most traditional microprocessors. The filter’s transfer charac-
teristic was measured using a SR865 lock-in, verifying that it
meets the expected theoretical response.

We believe that this work has a great number of industrial
and educational applications, as it simplifies the heavy work-
flow usually associated with these state-of-the-art embedded
systems. The future work on this subject will be related
with the design of other signal processing modules, with
the objective of improving this open-source signal processing
platform.
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A Study on the State of High-Level Synthesis”, in IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 38,
no. 5, pp. 898-911, May 2019, doi: 10.1109/TCAD.2018.2834439.

[8] M. J. Oliva. “Signal processing in FPGA”. [Online] https://github.com
/ushikawa93/signal processing fpga (accessed on November 2022).

[9] Intel Corporation. “Cyclone V Device Overview”. [Online] https://ww
w.intel.com/content/www/us/en/docs/programmable/683694/current/cyc
lone-v-device-overview.html (accessed on November 2022).

[10] Terasic Technologies Inc. “DE1-SoC User Manual”. [Online] www.tera
sic.com.tw/ (accessed on November 2022).

[11] Intel Corporation. “Nios® II Software Developer’s Handbook”. [Online]
https://www.intel.com/content/www/us/en/docs/programmable/6835
25/21-3/software-developer-s-handbook-revision.html (accessed on
November 2022).

[12] Intel Corporation. “Altera IP Core user guide”. [Online] https://www.in
tel.com/content/www/us/en/docs/programmable/683359/17-0/altera-pha
se-locked-loop-ip-core-user-guide.html (accessed on November 2022)

[13] Intel Corporation. “Implementing Fractional PLL Reconfiguration with
Altera PLL and Altera PLL Reconfig IP Cores”. [Online] https://ww
w.intel.com/content/www/us/en/docs/programmable/683640/current/i
mplementing-fractional-pll-reconfiguration-33682.html (accessed on
November 2022).

[14] Intel Corporation. “Intel FPGA Avalon FIFO Memory Core”. [Online]
https://www.intel.com/content/www/us/en/docs/programmable/683130

/21-4/intel-fpga-avalon-fifo-memory-core.html (accessed on November
2022).

[15] Intel Corporation. “Avalon® Interface Specifications”. [Online] https:
//www.intel.com/content/www/us/en/docs/programmable/683091/20-1/i
ntroduction-to-the-interface-specifications.html (accessed on November
2022).

[16] Hathwalia, Shruti, and Meenakshi Yadav. “Design and analysis of a 32
bit linear feedback shift register using VHDL”. Indian Journal of Pure
and Applied Physics (IJPAP), 2015, vol. 52, no 3, p. 203-209.

[17] “GNU Scientific Library: Other random number generators”. [Online ]
https://www.gnu.org/software/gsl/doc/html/rng.html#other-random-num
ber-generators (accessed on November 2022).

[18] Linear Technology. “LTC2308 - Low Noise, 500ksps, 8-Channel, 12-Bit
ADC”. [Online] https://www.analog.com/media/en/technical-documen
tation/data-sheets/2308fc.pdf (accessed on November 2022).

[19] Analog Devices. “AD9248 (Rev. B)”. [Online] https://www.analog.com
/media/en/technical-documentation/data-sheets/AD9248.pdf (accessed
on November 2022).

[20] Terasic Technologies Inc. “THDB-ADA High-Speed A/D and D/A
Development Kit User Manual”. [Online] https://www.terasic.com.tw/
(accessed November 2022).

[21] Analog Devices. “AD9763/AD9765/AD9767 (Rev. G)”. [Online] https:
//www.analog.com/media/en/technical-documentation/data-sheets/AD
9763 9765 9767.pdf (accessed on November 2022).

[22] Mono Project. [Online] https://www.mono-project.com/ (accessed on
November 2022).


