Supplementary Materials for:

Article

Crude Glycerol Hydrogenolysis to Bio-Propylene Glycol: Effect of Its Impurities on Activity, Selectivity and Stability

Martín N. Gatti ^{1,2}, Francisco Pompeo ^{1,2}, Nora N. Nichio ^{1,2}, Gerardo F. Santori ^{1,2,*}

² Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), Calle 1 esq. 47, La Plata 1900, Argentina

¹ Centro de Investigación y Desarrollo en Ciencias Aplicadas (CINDECA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)-CONICET, Calle 47, 257, La Plata 1900, Argentina; martin.gatti@ing.unlp.edu.ar (M.N.G.); fpompeo@quimica.unlp.edu.ar (F.P.); nnichio@quimica.unlp.edu.ar (N.N.N)

^{*} Correspondence: santori@quimica.unlp.edu.ar

Figure S1. N₂ adsorption-desorption isotherms of SC (\bullet), Ni/SC (\circ) and Ni/SC^{*} (\blacktriangle).

Figure S2. Potentiometric titration curves with n-butylamine in acetonitrile of SC (\bullet), Ni/SC (\circ) and Ni/SC^{*} (\blacktriangle).

Figure S3. TEM micrographs for the reduced catalysts (a) fresh Ni/SC (b) used Ni/SC*

Figure S4. XRD patterns of SC, Ni/SC reduced fresh catalyst and used Ni/SC* catalyst. Symbols are referred to metallic nickel (\blacktriangle), silicon carbide (Δ) and graphitic carbon (\circ).

Figure S5. Analysis of elements by SEM-EDAX for the used catalyst after three reaction cycles in the presence of the crude glycerol sample D. Reaction conditions: 30 wt.% aqueous glycerol solution, 260 °C, 2 MPa, 2 h, m_c/m_{gly} = 0.24 (mass ratio).

Figure S6. XRD patterns of Ni/SC reduced fresh catalyst and used Ni/SC* catalyst. Symbols are referred to planes (2 0 0) at 31.69° and (2 2 0) at 45.45° of crystalline cubic NaCl (\blacklozenge) (JCPDS 05-0628).

Figure S7. (a) Glycerol conversion vs temperature **(b)** Selectivity to liquid products vs temperature. Reaction conditions: 30 wt.% aqueous glycerol solution, 2 h, 2 MPa H₂, $m_c/m_{gly} = 0.24$ (mass ratio).

Figure S8. (a) Glycerol conversion vs partial pressure of H₂ (b) Selectivity to liquid products vs partial pressure of H₂. Reaction conditions: 30 wt.% aqueous glycerol solution, 260 °C, 2 h, $m_c/m_{gly} = 0.24$ (mass ratio).

Figure S9. (a) Glycerol conversion vs glycerol initial concentration **(b)** Selectivity to liquid products vs initial glycerol concentration. Reaction conditions: 30-80 wt.% aqueous glycerol solutions, 260 °C, 2 MPa de H₂, 2 h, m_c/m_{gly} = 0.08-0.24 (mass ratio).

11

Figure S10. Fitting of experimental data by linear regression to obtain the reaction orders with respect to glycerol and hydrogen for **(a)** Gly **(b, b')** 1,2-PG **(c, c')** AcOH **(d, d')** EG **(e, e')** MeOH **(f, f')** EtOH **(g, g')** 1-POH. Reaction conditions: 30 wt.% aqueous glycerol solution, 260 °C, 1-2 MPa H₂, 0.5-1 h, m_c/m_{gly} = 0.24 (mass ratio).

Figure S11. Fitting of experimental data by linear regression to obtain ln (k_{oj}) y Ea_j (a) Gly (b) 1,2-PG (c) AcOH (d) EG (e) MeOH (f) EtOH (g) 1-POH. Reaction conditions: 30 wt.% aqueous glycerol solution, 220-260 °C, 2 MPa H₂, 2 h, m_c/m_{gly}= 0.24 (mass ratio).

Figure S12. Fitting of experimental data by linear regression to obtain the individual activity factors (ai) for (a) NaOH (b) NaCOOH (c) NaCl (d) MeOH. Reaction conditions: 30 wt.% aqueous glycerol solution, 260 °C, 2 MPa H₂, 2 h, m_c/m_{gly}= 0.24 (mass ratio).