
PHYSICAL REVIEW B 92, 224422 (2015)

Nontransverse factorizing fields and entanglement in finite spin systems
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We determine the conditions for the existence of nontransverse factorizing magnetic fields in general spin
arrays with anisotropic XYZ couplings of arbitrary range. It is first shown that a uniform, maximally aligned,
completely separable eigenstate can exist just for fields hs parallel to a principal plane and forming four straight
lines in the field space, with the alignment direction different from that of hs and determined by the anisotropy.
Such a state always becomes a nondegenerate ground state for sufficiently strong (yet finite) fields along these
lines, in both ferromagnetic and antiferromagnetic-type systems. In antiferromagnetic chains, this field coexists
with the nontransverse factorizing field h′

s associated with a degenerate Néel-type separable ground state, which
is shown to arise at a level crossing in a finite chain. It is also demonstrated for arbitrary spin that pairwise
entanglement reaches full range in the vicinity of both hs and h′

s , vanishing at hs but approaching small yet
finite side limits at h′

s , which are analytically determined. The behavior of the block entropy and entanglement
spectrum in their vicinity is also analyzed.
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I. INTRODUCTION

The ground state (GS) of strongly interacting spin systems
immersed in a magnetic field h can exhibit, under certain
conditions, the remarkable phenomenon of factorization [1],
i.e., of becoming a product of single spin states. Such exact
factorization can occur at finite fields despite the strong
couplings existing between the spins, albeit at very specific
values (and orientations) of the field. In the seminal work in
Ref. [1], it was shown that antiferromagnetic (AFM) chains
with first-neighbor XYZ couplings possess a separable Néel-
type ground state (NGS) if the field vector lies on the surface
of an ellipsoid determined by the couplings. Factorization
was then investigated in other models with transverse fields
[2–20], with a general formalism for describing factorization
introduced and discussed in Refs. [7–9].

In Refs. [10,11,14] we have shown that in finite XYZ

chains, the transverse factorizing field (TFF) hzs pointing
along a principal axis (z) actually corresponds to the last
ground state (GS) Sz-parity transition (level crossing). The
ensuing separable GS is twofold degenerate, breaking a basic
symmetry of the Hamiltonian (Sz parity). The nontransverse
factorizing fields (NTFFs) h′

s of Ref. [1] will be shown also
to belong to this class in finite cyclic chains; i.e., they arise
at the last GS level crossing and determine a degenerate
separable GS that breaks translational invariance (TI). In
finite systems the underlying mechanism of factorization in
these cases is the existence of separable linear combinations
of the symmetry-preserving entangled crossing states.

In this work we first determine the general conditions for
exact factorization under nontransverse fields. It is then shown
that a uniform nondegenerate separable GS (UGS) does exist
at a field hs which does not belong in general to the ellipsoid
of Ref. [1] and does not correspond to a level crossing. This
GS actually arises in both AFM- and ferromagnetic (FM)-type
systems, even for couplings of arbitrary range, provided there
is a fixed anisotropy ratio, but only for fields parallel to
a principal plane, with the set of fields hs forming four
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straight lines. Factorization emerges here from the splitting
of the degenerate separable eigenstates existing at the TFF
hzs . Unlike h′

s , hs can be arbitrarily strong, allowing the
separation of the UGS from the remaining spectrum. This
enables easy preparation of an exactly separable state, which
can be useful for quantum information applications (a product
initial state is assumed in the standard model of quantum
computation [21]).

The second but no less important aspect of factorization
is that it corresponds to an entanglement transition: In
the transverse case, the factorizing field is, remarkably, the
point where pairwise entanglement reaches full range in its
immediate vicinity and changes its type [5,6,10,11,14]. We
had previously shown that the entanglement between any two
spins reaches, in a finite chain, weak yet finite common side
limits at the transverse field hzs , irrespective of the separation
or coupling range [10,11], arising from the entangled crossing
states. This type of limit also occurs at the NTFF h′

s of
Ref. [1], as shown here. But in addition, we prove that
pairwise entanglement also reaches full range in the vicinity
of the NTFF hs leading to a nondegenerate UGS. Here the
entanglement between any two spins, though 0 at hs , is turned
on as hs is approached from either side, with the concurrence
then vanishing linearly with |h − hs |. The underlying reason
is essentially the monogamy of entanglement [22,23], which
prevents distant pairs from becoming entangled if first or
close neighbors are strongly entangled. In the vicinity of hs ,
close-neighbor entanglement decreases strongly, allowing the
emergence of weak yet nonzero entanglement between distant
pairs. The behavior of the block entanglement entropy in the
vicinity of the NTFF is also analyzed. It is shown to vanish
essentially quadratically at hs , while at h′

s it will approach
finite side limits in a finite chain, which are analytically
determined. The entanglement spectrum will indicate, as
expected, just one nonzero eigenvalue at hs , although at the
side limits of h′

s two nonzero eigenvalues will remain.
The general equations for NTFFs and their uniform and

Néel-type solutions are derived and discussed in Sec. II,
whereas entanglement, together with illustrative results for the
pairwise concurrence, block entropy, entanglement spectrum,
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and magnetization, in FM and AFM chains with XY and XYZ

couplings under nontransverse fields are discussed in Sec. III.
Conclusions are derived in Sec. IV.

II. FACTORIZATION IN NONTRANSVERSE FIELDS

A. General equations

We consider an array of n spins Si , not necessarily equal,
interacting through XYZ Heisenberg couplings of arbitrary
range in the presence of a general magnetic field hi =
(hi

x,h
i
y,h

i
z), not necessarily uniform. The Hamiltonian reads

H = −
∑
i,μ

hi
μS

μ

i − 1

2

∑
i �=j,μ

J ij
μ S

μ

i S
μ

j , (1)

where i and j label the sites in the array; S
μ

i , μ = x,y,z,
the spin components at site i; and J

ij
μ , the coupling strengths

between spin i and spin j (J ij
μ � 0 corresponds to the FM case;

J
ij
μ � 0, to the AFM case). In the transverse case hi

x = hi
y =

0 ∀ i, H conserves the Sz parity Pz = exp[ıπ
∑

i(S
z
i + Si)]

([H,Pz] = 0). This symmetry no longer holds for nontrans-
verse fields.

We now determine the general conditions for which H

possesses a completely separable eigenstate of the form

|�〉 = ⊗n
i=1Ri |0i〉, Ri = exp

[−ıφiS
z
i

]
exp

[−ıθiS
y

i

]
, (2)

where |0i〉 denotes the local state with maximum spin along
z (Sz

i |0i〉 = Si |0i〉) and Ri rotates this state to direction
ni = (sin θi cos φi, sin θi sin φi, cos θi). The equation H |�〉 =
E�|�〉 leads, after writing H in terms of the rotated spins
S

μ′
i = RiS

μ

i R
†
i , to the following equations:

(i) The field-independent equations,

J ij
y (cos φi cos φj − cos θi sin φi cos θj sin φj )

= J ij
x (cos θi cos φi cos θj cos φj − sin φi sin φj )

+ J ij
z sin θi sin θj , (3)

J ij
y (cos θi sin φi cos φj + cos φi cos θj sin φj )

= J ij
x (cos θi cos φi sin φj

+ sin φi cos θj cos φj ), (4)

which are also independent of spin and are responsible
for canceling all elements connecting |�〉 with two-spin
excitations.

(ii) The field-dependent equations,

hi
z sin θi − cos θi

(
hi

x cos φi + hi
y sin φi

)

=
∑
j �=i

Sj

[
cos θi sin θj

(
J ij

x cos φi cos φj + J ij
y sin φi sin φj

)

− J ij
z sin θi cos θj

]
, (5)

hi
x sin φi − hi

y cos φi =
∑
j �=i

Sj sin θj

[−J ij
x sin φi cos φj

+ J ij
y cos φi sin φj

]
, (6)

which cancel all elements connecting |�〉 with single spin
excitations and are just the mean-field stationary equations
∂θi

〈H 〉 = 0, ∂φi
〈H 〉 = 0, where

〈H 〉 ≡ 〈�|H |�〉 = −
∑

i

〈Si〉 ·
⎛
⎝hi + 1

2

∑
j

J ij 〈Sj 〉
⎞
⎠,

(7)

with 〈Si〉 = Sini and J ij a diagonal matrix of elements J
ij
μ . If

Eqs. (3) and (4) are satisfied ∀ i,j , Eqs. (5) and (6) determine
the set of factorizing fields.

In terms of the alignment directions ni (≡nz′
i ) and

the orthogonal unit vectors nx ′
i = (cos θi cos φi, cos θi sin φi,

− sin θi), ny ′
i = (− sin φi, cos φi,0), we may also express Eqs.

(3) and (4) as

nx ′
i · J ij nx ′

j = ny ′
i · J ij ny ′

j , (8)

nx ′
i · J ij ny ′

j = −ny ′
i · J ij nx ′

j , (9)

which imply J
ij

x ′x ′ = J
ij

y ′y ′ and J
ij

x ′y ′ = −J
ij

y ′x ′ when writing

the coupling in (1) in terms of the rotated spins S
μ′
i ;

i.e.,
∑

μ J
ij
μ S

μ

i S
μ

j = ∑
μ,ν J

ij

μ′ν ′S
μ′
i Sν ′

j . And Eqs. (5) and (6)
become

nμ′
i ·

⎛
⎝hi +

∑
j

J ij 〈Sj 〉
⎞
⎠ = 0, μ′ = x ′,y ′, (10)

implying that hi should cancel the components of
∑

j J ij 〈Sj 〉
orthogonal to the alignment direction, such that

hi +
∑

j

J ij 〈Sj 〉 ∝ ni .

The general solution for the NTFF at site i is then

hi
s = hi

‖ + hi
⊥, (11)

where hi
‖ = hi

‖ni is an arbitrary field parallel to the local
alignment direction, which just shifts the energy, (7), and

hi
⊥ = −

∑
j

[ J ij 〈Sj 〉 − ni(ni · J ij 〈Sj 〉)] (12)

is a field orthogonal to the alignment direction (ni · hi
⊥ = 0),

representing the NTFF of lowest magnitude. Nonetheless, a
finite hi

‖ will normally be required in order for |�〉 to be a
GS (see Sec. II C). Let us remark, finally, that Eqs. (8)–(10)
remain valid for general couplings

∑
μ,ν J

ij
μνS

μ

i Sν
j in (1).

B. Uniform solution

Equations (3)–(6) [or (8)–(10)] are quite general and
describe a wide range of interesting scenarios. We examine
first the possibility of a uniform solution with θi = θ , φi = φ

∀ i (Fig. 1), such that |�〉 is a maximum spin state: |〈∑i Si〉| =∑
i Si . This solution preserves TI and then has the possibility

of being a nondegenerate GS in systems with this invariance
under a uniform field.

Equation (4) becomes (J ij
x − J

ij
y ) cos θ sin 2φ = 0, imply-

ing, if J
ij
x − J

ij
y �= 0 for at least one pair, that the spin vector
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FIG. 1. (Color online) Schematic representation of the uniform
solution.

〈Si〉 should be parallel to a principal plane (xz if φ = 0, yz

if φ = π/2, and xy if θ = π/2). Without loss of generality,
we can assume φ = 0 (the other choices are rotations of this
case). Equation (3) then leads to

cos2 θ = J
ij
y − J

ij
z

J
ij
x − J

ij
z

= χ (13)

if J
ij
x �= J

ij
z , implying a constant anisotropy ratio χ for these

pairs and an isotropic coupling J
ij
μ = J ij ∀ μ if J

ij
x = J

ij
z .

The condition 0 � χ � 1 imposes the restriction

J ij
x � J ij

y � J ij
z or J ij

x � J ij
y � J ij

z . (14)

Equations (13) and (14) entail that the J
ij
μ should be of the

form

J ij
μ = J ij + rij Jμ, (15)

with the Jμ’s satisfying (14). The state |�〉 will then depend
only on χ = Jy−Jz

Jx−Jz
, being independent of the coupling range

determined by J ij and rij . Note that Eq. (13) leads to four
possible alignment directions in the xz plane, corresponding
to the solutions ±θ and ±(π − θ ), with θ ∈ (0,π/2).

We remark that in the fully isotropic case rij = 0 ∀ i,j

in (15) (rotationally invariant coupling), θ and φ remain
obviously arbitrary under Eqs. (3) and (4), whereas in the
XX case J

ij
x = J

ij
y ∀ ij (coupling invariant under any rotation

around the z axis), Eq. (4) is trivially satisfied while (3) leads
to sin θ = 0 if J

ij
x �= J

ij
z for at least one pair, in agreement with

(13), implying alignment only in the z direction. We focus in
what follows on the anisotropic case 0 < χ < 1, where the
alignment direction is nontrivial [θ ∈ (0,π/2)].

For φ = 0, Eq. (6) [or (10)] implies that hi
y = 0; i.e., the

field at each site should be parallel to the corresponding
principal plane (xz). Equation (5) then becomes

hi
z sin θ − hi

x cos θ = hi
⊥, (16)

where

hi
⊥ = sin θ cos θ

∑
j �=i

Sj

(
J ij

x − J ij
z

)
. (17)

Setting nθ = ni = (sin θ,0, cos θ ) and n⊥
θ = (− cos θ,0,

sin θ ), Eqs. (16) and (17) imply that the NTFF is given by

hi
s = hi

‖nθ + hi
⊥n⊥

θ , (18)

in agreement with (11), with hi
‖ arbitrary and hi

⊥n⊥
θ orthogonal

to the alignment direction. Equations (17) and (18) give rise

FIG. 2. (Color online) Factorizing fields for ferromagnetic (FM;
left) and antiferromagnetic (AFM; right) XYZ chains in the xz

principal plane of the field space. Solid straight lines depict fields
determining a uniform ground state (UGS); dashed straight lines,
fields determining a uniform excited eigenstate (UES). The ellipse
depicts fields corresponding to a Néel-type ground state (NGS;
solid lines) or excited eigenstate (NES; dashed line). The plot
corresponds to Jz = 0 and Jx > 0 (Jx < 0) in the FM (AFM) case,
with 0 < Jy/Jx < 1. The arrow indicates a direction of the external
field along which one (FM) or two (AFM) GS factorizing fields are
encountered as its magnitude increases. The field direction nγ differs
from the spin alignment direction nθ . Insets: Decomposition, (18),
of the nontransverse factorizing field for the UGS in both diagrams,
with the dashed arrow indicating the transverse factorizing field hzs .

to a family of NTFFs lying along four straight lines (Fig. 2),
one for each alignment direction.

Note that the field and spin directions cannot be parallel
if hi

⊥ �= 0: at a fixed field direction nγ = (sin γ,0, cos γ ), i.e.,
hi

s = hi
s(γ )nγ , Eq. (18) leads to

hi
s(γ ) = hi

⊥
sin(θ − γ )

, (19)

which diverges for γ → θ . When the four values of θ are
considered, Eq. (19) leads to two distinct values of |hi

s | at
fixed γ �= ±θ , which merge at the principal axes (Fig. 2).

For γ = 0, we recover from (19) the TFF [10,11],

hi
zs = hi

s(0) = hi
⊥

sin θ
, (20)

which is the solution of (16) for hi
x = 0. We can then also

express Eq. (18) as [nz = (0,0,1)]

hi
s = hinθ + hi

zsnz, (21)

where hi = hi
‖ − hi

⊥/ tan θ . Hence, we can also consider hi
s as

the sum of the TFF hi
zs = hi

zsnz plus a nontransverse field of
arbitrary magnitude hi along the spin alignment direction nθ ,
which just shifts the energy E�.

In systems with TI (i.e., infinite or cyclic), Si = S and
hi

⊥ = h⊥ ∀ i, implying a uniform factorizing field hs(γ ) at
fixed orientation γ . Nonetheless, Eqs. (19)–(21) show that the
uniform solution remains feasible even in the absence of TI,
provided the hi

μ at each site can be controlled independently. In
particular, in open finite uniform chains or lattices with short-
range couplings, the uniform separable solution requires just
border corrections to the otherwise uniform bulk factorizing
field.
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C. Uniform ground state

For the uniform solution, the energy, (7), becomes

E� = −1

2

∑
i,j

SiSj

(
J ij

x − J ij
y + J ij

z

) −
∑

i

Sih
i
‖ (22)

= −1

2

∑
i,j

SiSj

(
J ij

x + J ij
y − J ij

z

) −
∑

i

Sih
i . (23)

It is then apparent that |�〉 will be the GS if the fields hi
‖nθ

(or, equivalently, hinθ ) along the spin alignment direction are
sufficiently strong, since no other state has an energy which
decreases more rapidly with the applied field. Therefore, a
transition to this uniform separable GS (UGS) will always
arise as hi

‖ increases, in both FM- and AFM-type systems, as
can be appreciated in Fig. 2 (transition from dashed to solid
along the straight lines). Before this transition, |�〉 is an excited
eigenstate (no other state can increase its energy more rapidly
for decreasing hi’s).

We now show that if Eq. (13) is satisfied and ∀ i,j ,

J ij
x �

∣∣J ij
y

∣∣, (24)

this transition occurs at the TFF hi
zs ; i.e., |�〉 will be the GS ∀

hi � 0 in (21) (Fig. 2, left panel).
Proof. We first note that if φi = 0 and θi = θ ∀ i,

Eq. (2) leads to |�〉 = ⊗i(
∑2Si

k=0

(2Si

k

)1/2
cos2Si−k θ

2 sink θ
2 |ki〉),

where Sz
i |ki〉 = (Si − k)|ki〉. Equation (24) implies that the

interaction in H will contain just negative or 0 off-diagonal
elements in the standard basis {⊗i |ki〉}, as seen by writing (1)
in terms of S±

i = Sx
i ± iS

y

i . The same holds for H if hi
y = 0

and hi
x � 0 ∀ i. A GS with expansion coefficients real and of

the same sign in this basis will then exist, as different signs
will not decrease 〈H 〉. But this GS cannot be orthogonal to
|�〉 if θ ∈ (0,π ) [implying that hi � 0 in (21) if hi

x � 0], so
that it must coincide with |�〉 when |�〉 is an exact eigenstate.
The case hi

x � 0 can be reduced to the previous one by a
rotation of angle π around the z axis, which leaves the rest of
H unchanged.

Besides, in the transverse case hi = 0 ∀ i, the states |�〉 and
|−�〉 = Pz|�〉, obtained for θ = ±|θ |, become degenerate
[Eq. (23)]. The TFF hi

zs then determines a pair of degenerate
UGSs |±�〉 when (24) holds [10], and the addition of a field
parallel to nθ (n−θ ) removes this degeneracy, leaving just |�〉
(|−�〉) as the GS. The transition to the UGS then takes place
at hi

zs . �
The gap to the first excited state can then be made arbitrarily

large by increasing the fields hi [Eq. (23)]. Note that the similar
case J

ij
z � |J ij

y | ∀ i,j can be reduced to the previous one after a
π/2 rotation around the y axis. Hence, in this case the transition
takes place at the transverse field along x, hi

xs = hi
⊥/ cos θ =

hi
zs tan θ .

D. Néel-type solutions

In addition to the uniform solution, other solutions of Eqs.
(3)–(6) can exist, which break TI. This is the case of the
Néel-type separable eigenstates determined in Ref. [1] for the
AFM chain with first-neighbor couplings in a uniform field
[Jij = 0, rij = δi,j±1 in (14), with Jμ � 0 for μ = x,y,z],

where θi and φi have alternating values. In a finite cyclic chain
(with an even number n of spins), this solution must then be
twofold degenerate, arising at the crossing of two nonseparable
TI eigenstates. The mechanism is then similar to that of the
TFF for the uniform solution [10]. The associated NTFF h′

s

points to the surface of an ellipsoid [1], given for S = 1/2 by

h′
s

2
x

(Jx + Jy)(Jx + Jz)
+ h′

s
2
y

(Jy + Jz)(Jy + Jx)

+ h′
s

2
z

(Jz + Jx)(Jz + Jy)
= 1. (25)

Within the xz plane, h′
s = h′

s(γ )nγ describes an ellipse
(Fig. 2), satisfying

|h′
s(γ )|2 = (Jx + Jz)(Jx + Jy)(Jz + Jy)

(Jx + Jy) cos2 γ + (Jz + Jy) sin2 γ
. (26)

While in an FM-type chain this solution also exists but
corresponds to an excited eigenstate (Fig. 2; left panel), in
the AFM case it is a GS which coexists with the previous UGS
in the xz-field plane (Fig. 2; right panel). For instance, they can
arise for the same field orientation at different field magnitudes.
This possibility is related to the existence of different solutions
for the local unitary operations, which can leave an eigenstate
invariant under the treatment in Refs. [7–9]. Moreover, the
point where the straight line of the uniform solution crosses the
ellipsoid (hs = h′

s) is precisely that beyond which the uniform
solution becomes the GS (at this point the Néel-type solution
becomes uniform, coinciding with the UGS). Hence, within
the first quadrant, the UGS arises for field angles 0 � γ < θ

in the FM case but θ < γ � γm in the AFM case, with

tan γm = Jx + Jy

Jy + Jz

tan θ. (27)

Within this window, the GS of the AFM chain then exhibits
two distinct factorizing fields as h increases at fixed nγ

(Fig. 2; right panel), a result which has not yet been reported.
Equation (25) may also determine a hyperboloid when

Jx , Jy , and Jz do not have all the same signs, as shown in
Fig. 3, where all (nonequivalent) possible combinations of
couplings for case (14) are considered. When |Jz| increases
from 0, the diagrams in Fig. 2 remain essentially unchanged
if |Jz| < |Jy | (Fig. 3; middle panels), both in the proper
FM and AFM cases (all couplings of the same sign) and
in those where Jz has the opposite sign of Jx . However,
when |Jz| > |Jy | [with (14) still holding, e.g., Jx < Jy <

0 and Jz > −Jy], the ellipsoid turns into a hyperboloid
and the Néel-type state ceases to be the GS in the origi-
nally AFM case (Jx and Jy negative), as indicated in the
top- and bottom-right panels. Yet the uniform separable
eigenstate remains the GS for both Jx > 0 and Jx < 0
[Fig. 3; solid (blue) lines in the bottom panels]. This is still
the case when |Jz| increases beyond |Jx |, as indicated in the
top panels. We just mention that the cases Jx > 0 > Jy > Jz

and Jx < 0 < Jy < Jz are equivalent, respectively, to Jz >

0 > Jy > Jx and Jx > Jy > 0 > Jz, after rotation around the
y axis. Furthermore, cases where Eq. (14) does not hold can
be transformed to the present situation by a suitable rotation.
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FIG. 3. (Color online) Factorization diagram (top panels) and
factorizing fields (middle and bottom panels) for XYZ couplings
satisfying Eq. (14), with Jx > 0 (Jx < 0) in the left (right) panels and
Jy of the same sign as Jx . The different combinations of couplings
are indicated (see also the text). For Jx < Jy < 0, the Néel separable
eigenstate ceases to be the GS when Jz � −Jy , although the uniform
separable eigenstate remains the GS for appropriate fields, as shown
in the top- and bottom-right panels. Equation (25) may determine a
hyperboloid when the couplings have different signs, as shown in the
top and bottom panels.

III. ENTANGLEMENT IN THE VICINITY
OF FACTORIZATION

A. Entanglement in the vicinity of the UGS

Let us now discuss entanglement in the vicinity of the NTFF
hs leading to the uniform GS |�〉. For simplicity we consider
here a uniform field h in a spin S system with TI, where the
reduced two-spin density matrix ρij = Tri,j |GS〉〈GS| (Tri,j
denotes the trace over the complementary subsystem) depends
only on the separation between the two spins. This reduced
state will in general be a mixed state when |GS〉 is entangled.
And this mixed state is said to be entangled if it cannot be
written as a convex mixture of product states ρi ⊗ ρj [24],
i.e., if it cannot be generated by local operations and classical
communication [21].

We first show that pairwise entanglement reaches full range
in the vicinity of the factorizing field hs .

Proof. For h close to hs , the GS can be ob-
tained by considering first-order perturbative corrections

to |�〉,

|GS〉 ≈ |�〉 +
∑

ν

〈ν|(h − hs) · (∑
i Si

)|�〉
Eν − E�

|ν〉

= |�〉 +
⎛
⎝α

∑
i

S−′
i +

∑
i,j

βij S
−′
i S−′

j + . . .

⎞
⎠|�〉,

(28)

where |ν〉 are the exact excited eigenstates at hs (H |ν〉 =
Eν |ν〉, 〈ν|�〉 = 0), normally entangled, and S−′

i = RiS
−
i R

†
i

the rotated lowering operators, with α, βij , and all remaining
terms of order δh⊥ if h − hs = δh⊥n⊥

θ + δh‖nθ . In the
rotated standard basis {⊗i |k′

i〉} (Si
z′ |k′

i〉 = (Si − k)|k′
i〉) and

considering first S = 1/2, Eq. (28) leads to

ρij ≈

⎛
⎜⎝

1 α α βij

α 0 0 0
α 0 0 0
βij 0 0 0

⎞
⎟⎠ + O(δh2

⊥). (29)

According to the positive partial transposition criterion
[25,26], this state will be entangled if its partial transpose ρ

Tj

ij

is nonpositive, i.e., if it has at least one negative eigenvalue.
But the partial transpose of (29) has eigenvalues 1, 0, and ±βij

up to O(δh⊥), so that ρij will be entangled if βij �= 0. And
the exact coefficients βij obtained from (28) are not strictly
0 for any pair i,j linked by successive applications of the
couplings in H , due to the two spin excitations present in the
exact eigenstates |ν〉.

For higher spins S, ρij will be more complex [of (2S +
1)2 × (2S + 1)2] but will still contain a first submatrix of the
form (29). Hence, it will also be entangled if βij �= 0, since the
partial transpose of this block is the first block of the full partial
transpose ρ

Tj

ij and is nonpositive at O(δh⊥). This prevents the

full ρ
Tj

ij from being positive semidefinite (in which case all
principal submatrices should also be so). �

For S = 1/2, the entanglement between spin i and spin j

can be measured through the concurrence [27] Cij = 2λmax −
TrMij , where λmax is the largest eigenvalue of the matrix Mij =
[ρ1/2

ij ρ̃ij ρ
1/2
ij ]1/2, with ρ̃ij = σy ⊗ σyρ

∗
ij σy ⊗ σy in the standard

basis. Up to O(δh⊥), Eq. (29) then leads to

Cij ≈ 2|βij | ∝ |δh⊥|. (30)

Note that at this order, α in (29) has no effect on the
eigenvalues of ρ

Tj

ij or on Cij . Equation (30) implies that Cij ,
while acquiring finite positive values in the neighborhood
of hs , will vanish linearly (as |δh⊥|) as h → hs , i.e., as
it crosses the straight line of factorizing fields at a fixed
direction nγ . The corresponding entanglement of formation

[27], Eij = −∑
ν=± pν log2 pν , with p± = 1±

√
1−C2

ij

2 , is just
a convex increasing function of Cij , which vanishes as
− 1

4C2
ij log2(C2

ij /4e) for Cij → 0. Hence, for h → hs it will
vanish essentially as −δh2

⊥ log2 |δh⊥|.
It is also seen from (29) that the eigenvalues of ρij will be

either 1 [with negative O(δh2
⊥) corrections] or small [O(δh2

⊥)].
Hence, the entropy S(ρij ) = −Trρij log2 ρij , which measures
the entanglement between the pair and the rest of the system
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[28], will also vanish essentially as −δh2
⊥ log2 |δh⊥| for h →

hs . The same behavior at hs will be exhibited by the single
spin entropy S[ρ(1)], where ρ(1) = ρi = Trj ρij denotes the
single spin reduced state, and also by the block entropy [29]
S[ρ(m)] of m contiguous spins, where ρ(m) denotes their
reduced state. Factorization can in fact be directly seen through
the entanglement spectrum [19,30], i.e., the set of eigenvalues
of the reduced states ρ(m). At h = hs , ρ(m) will have just
one nonzero eigenvalue p1 = 1, whereas in its vicinity the
remaining eigenvalues will be small, of order O(δh2

⊥).

B. Entanglement in the vicinity of the NGS

We first recall that in the transverse case h = hnz, the
behavior of Cij close to the TFF hzs in the GS of a finite
FM-type chain [10,11] is different from that described above.
Since in the transverse case the Sz parity Pz is conserved, the
exact GS of a finite spin chain has a definite parity, exhibiting
parity transitions (the last one at the TFF hzs) as the transverse
field is increased [10]. This implies that for h → h±

zs , it actually
approaches the entangled definite parity degenerate side limits
|�±〉 = |�〉±|−�〉√

2(1±〈−�|�〉) , with |−�〉 = Pz|�〉. These states lead
to common finite side limits C± of the concurrence Cij for any
pair i �= j , given, for S = 1/2, by [10]

C± =
∣∣∣∣
sin2 θ cosn−2 θ

1 ± cosn θ

∣∣∣∣, (31)

where n is the number of spins and cos θ is determined by
(13), with 〈−�|�〉 = cosn θ . For finite n, a small but finite
discontinuity in Cij is then encountered as the transverse
field h crosses hzs , reflecting the parity change of the GS
at hzs . Of course, exactly at h = hzs , the GS is twofold
degenerate and entanglement depends on the choice of GS,
as in general degenerate systems [31]. Factorization implies
that the minimum entanglement at this point is 0 (obtained
when choosing |±�〉 as the GS), even though the side limits
are finite.

Remarkably, in the AFM chain, Eq. (31) remains formally
valid for the side limits of Cij at the Néel NTFF h′

s , i.e., as h at
a fixed orientation nγ crosses the ellipsoid of factorizing fields

h′
s . The reason is that the exact GS of a finite cyclic AFM chain

in a uniform field preserves TI away from crossing points, and
hence, for h → h′±

s it approaches the entangled TI side limits,

|�±
N 〉 = |�N 〉 ± |−�N 〉√

2(1 ± 〈−�N |�N 〉) , (32)

where |�N 〉= |θ1φ1,θ2φ2, . . .〉, |−�N 〉=|θ2φ2,θ1φ1, . . .〉=
T |�N 〉 denote the degenerate Néel-type separable GSs at h′

s

(T denotes the one-site translation operator, with T |�±
N 〉 =

±|�±
N 〉). And these states |�±

N 〉 lead to similar side limits for
the concurrence Cij between any two spins i �= j [see (35)];
i.e.,

C± =
∣∣∣∣
sin2 θ ′ cosn−2 θ ′

1 ± cosn θ ′

∣∣∣∣, (33)

where θ ′ is half the difference between the alternating angles
of the Néel solution. This angle is determined by [1]

cos2 θ ′ = (Jz + Jy)(Jx + Jy)

Jx + Jz

× (Jx + Jy) cos2 γ + (Jz + Jy) sin2 γ

(Jx + Jy)2 cos2 γ + (Jz + Jy)2 sin2 γ
(34)

if |γ | < γm [Eq. (27)], as in the case in Fig. 4 [cos2 θ ′ is given
by the inverse of (34) if γm < γ < π − γm]. Hence, in finite
chains small yet finite side limits together with a discontinuity
will be exhibited by the concurrences Cij as h crosses h′

s at a
fixed orientation, as verified in the top-right panel in Fig. 4.

We can extend Eq. (33) to general spin S > 1/2 by still
considering the reduced states ρ±

ij arising from |�±
N 〉 as those

of two effective qubits, stemming from the single-site states
|�±

Ni〉, |�±
Nj 〉, as done in Ref. [11] for the TFF. The generalized

expression is obtained by replacing cos θ ′ → cos2S θ ′ and
sin2 θ ′ → 1 − cos4S θ ′ in (33). The negativity can be similarly
evaluated [11].

The side limits at h′
s of the reduced state of m given spins,

ρ±(m), can be directly obtained from the exact side limits,
(32), of the full GS. They will be rank 2 mixed states (and not
rank 1 states, i.e., pure states, as in hs) of the form

ρ±(m) =
∣∣�m

N

〉〈
�m

N

∣∣ + ∣∣−�m
N

〉〈−�m
N

∣∣ ± (∣∣�m
N

〉〈−�m
N

∣∣〈−�n−m
N

∣∣�n−m
〉 + H.c.

)
2(1 ± 〈−�N |�N 〉) , (35)

where |±�m
N 〉 denote the reduced states of the m spins in the

Néel states |±�N 〉 and 〈−�N |�N 〉 = cosn θ ′, 〈−�m
N |�m

N 〉 =
cosm θ ′, with cos2 θ ′ given by (34) for |γ | < γm. The exact
eigenvalues of ρ±(m) are p±(m) and 1 − p±(m), with

p±(m) = (1 + cosm θ ′)(1 ± cosn−m θ ′)
2(1 ± cosn θ ′)

. (36)

The spectrum of ρ(m) will then reduce to these two eigenvalues
for h → h′±

s . These side limits are independent of the choice
of the m spins, i.e., the same for m contiguous or separated
spins, as in the UGS in the transverse case [11]. For general
spin S, we should just replace cos θ ′ → cos2S θ ′ in (36).

The ensuing side limits at h′
s of the entanglement entropy

S[ρ(m)] are then

S[ρ±(m)] = −p±(m) log2 p±(m)

− [1 − p±(m)] log2[1 − p±(m)]. (37)

For sufficiently large m � n/2, the overlap 〈−�m
N |�m

N 〉 van-
ishes and p±(m) → 1/2, S[ρ±(m)] → 1. For m = 2 we also
obtain from (35) the side limits of the reduced state of a spin
pair, which lead to the separation-independent limits, (33), of
the concurrence.
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FIG. 4. (Color online) Concurrences Cl between spin i and spin i + l (top) in an FM (left) and an AFM (right) finite spin-1/2 XY chain
with χ = Jy/Jx = 1/2, as a function of the magnitude h = |h| of the nontransverse field at a fixed orientation nγ = (sin γ, cos γ ) in the
xz plane, with γ = 0.02π (FM) and γ = 0.36π (AFM). For these values there is a single factorizing field, |hs | ≈ 0.76Jx [Eq. (19)], in the FM
case, determining a UGS and two factorizing fields, |h′

s | ≈ 1.06|Jx | [Eq. (26)] and |hs | ≈ 1.43|Jx |, in the AFM case, corresponding to an NGS
and a UGS, respectively. Insets: Details in the vicinity of these fields, showing that all Cl’s vanish linearly at hs [Eq. (30)] and approach the
finite l-independent side limits, (33), at h′

s . All pairs are entangled in the vicinity of hs and h′
s , remaining so between both fields in the AFM

case considered. All labels are dimensionless.

C. Discussion

In Figs. 4–6 we show illustrative exact results for a cyclic
FM (left) and AFM (right) spin-1/2 chain of n = 12 spins
interacting through first-neighbor XY couplings (Jz = 0) with
χ = Jy/Jx = 1/2, immersed in a nontransverse field, where
all previous effects can be clearly appreciated and verified.
The numerical results were obtained through diagonalization
(note that an exact analytic solution of the XY chain through
the Jordan-Wigner fermionization [32] is feasible just for
transverse fields [14]). All quantities are depicted as a function

of the scaled magnitude |h|/|Jx | of the nontransverse field at
a fixed orientation in the xz plane (γ = 0.02π in the FM
case, γ = 0.36π in the AFM case). For these orientations
there is a single NTFF hs in the FM case, determining a UGS,
whereas in the AFM case there are two NTFFs, the first one, h′

s ,
corresponding to an NGS and the second one, hs , to a UGS.

It is first verified in the top panels in Fig. 4 that while at
weak fields just the first-neighbor concurrence C1 is finite in
the present FM and AFM cases, all concurrences Cl become
nonzero in the proximity of the factorizing fields. As shown

FIG. 5. (Color online) Block entropies S(m) = S[ρ(m)] of m contiguous spins (top) and eigenvalues pi (entanglement spectrum) of the
corresponding reduced states ρ(m) for m = 5, in the same FM (left) and AFM (right) systems as in Fig. 4. At hs (UGS), S(m) and all but one
(p1) of the eigenvalues of ρ(m) vanish, while for h → h′±

s (NGS), S(m) approaches the finite side limits, (37) (indicated for m = n/2), and two
eigenvalues (p1 and p2) remain nonzero, with p1 approaching the indicated side limits, (36). Insets: Details in the vicinity of the factorizing
fields.
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FIG. 6. (Color online) Scaled intensive magnetizations mμ = ∑
i 2〈Sμ

i 〉/n and m ≡ |m| (top) and scaled energy gap between the ground
and the first two excited states (bottom) in the same FM (left) and AFM (right) systems as in Fig. 4. Note that m = 1 at the NTFF hs determining
the UGS, as shown in the insets. The energy gap shows that the UGS is well separated from the first excited state, while the NGS is twofold
degenerate. All labels are dimensionless.

in the insets, in the vicinity of hs their behavior is correctly
described by Eq. (30), all vanishing linearly with |h − hs |
for h → hs [βij ∝ δh⊥η−|i−j | (η > 1) in the case in Fig. 4,
changing sign as h crosses hs]. On the other hand, in the
AFM case they all approach the finite l-independent distinct
side limits, (33), at h′

s (here cos θ ′ ≈ 0.92 and C− ≈ 0.11,
C+ ≈ 0.049). Both factorizing fields appear successively as
the field increases along orientations θ < γ < γm, leading to
a rather broad interval of “long-range” pairwise entanglement
located between h′

s and hs , as demonstrated in the right
panel. It is also shown that all Cl exhibit jumps for |h| < |h′

s |,
the last one at h′

s , which reflect the n/2 translational parity
transitions of the exact GS, as discussed below. We remark
that while the side limits, (33), at h′

s diminish as the number n

of spins increases, the finite values of the Cl’s in the vicinity
of both h′

s and hs persist for larger sizes.

The block entanglement entropies of m contiguous spins are
depicted in Fig. 5. Block entropies in XY or XYZ spin chains
have been studied in detail just for zero or transverse fields
[19,29,33], including also block Renyi entropies [19,34,35]. It
is first verified that the von Neumann entropies S[ρ(m)] vanish
essentially quadratically in the vicinity of hs , whereas in the
AFM case they approach the finite side limits, (37), at the Néel
factorizing field h′

s (here S[ρ+(m)] ≈ 0.31, while S[ρ−(m)] =
1 for m = n/2; note from (36) that p−(m) = 1/2 for m =
n/2 ∀ n). In the FM case these entropies rapidly saturate as
m increases for all nonzero fields, then showing noncritical
behavior, whereas in the AFM case, while above |hs | they
become small (<0.01) and also rapidly saturate, below |h′

s |
they are larger and show an appreciable dependence on block
size.

FIG. 7. (Color online) Concurrences Cl between spin i and spin i + l in FM and AFM XYZ chains with Jy/Jx = 1/2, Jz = 0.2|Jx |,
and Jx > 0 (Jx < 0) in the left (right) panel. The orientation of the applied magnetic field in each panel is the same as that in Figs. 4–6.
The factorizing fields are now |hs | ≈ 0.52Jx in the FM case, where χ = 0.375, and |hs | ≈ 1.39Jx , |h′

s | ≈ 0.84Jx in the AFM case, where
χ = 0.583. The side limits, (33), at h′

s and the linear vanishing of all concurrences at hs are again verified.
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The behavior of these entropies can be better understood
by means of the entanglement spectrum, shown in the bottom
panels in Fig. 5, where the eigenvalues pi of ρ(m) for m = 5
are depicted. Results for other m > 1 are similar. In the FM
case, there are three dominant eigenvalues, with p1 close to
1, and the behavior of p2 and p3 resembles that of S(m): all
eigenvalues except p1 vanish (quadratically) at hs . However,
in the AFM case it is shown that for |h| < |h′

s |, both p1

and p2 are significant and comparable, indicating roughly an
approximately rank 2 reduced state. When h → h′±

s , ρ(m)
becomes exactly a rank 2 state and just p1 and p2 are nonzero,
in agreement with Eqs. (35) and (36). The behavior is similar
to that observed for a transverse field [19]. As expected, the
GS transitions taking place in this sector are clearly visible
in both the block entropy and the entanglement spectrum. For
|h| > h′

s there are just three dominant eigenvalues, with p1

much larger than the rest, as in the FM case. All but p1 vanish
again at the second factorizing field hs .

Let us remark that at zero field, the results for any
entanglement measure in the FM and AFM XY chains with
first-neighbor couplings are strictly coincident, since the
corresponding Hamiltonians can be transformed into each
other by a local rotation of angle π around the z axis at all
even sites, which does not affect entanglement measures. This
fact explains the pronounced increase in the block entropies in
the FM case as the field vanishes, since they approach in this
limit the higher AFM values. This symmetry no longer holds
for finite fields not pointing along the z axis.

In spin-1/2 systems, the magnetization can be used as a
separability witness: The quantity m = 2

∑
i |〈Si〉|/n satisfies

m < 1 in any pure entangled state of this system, with m = 1
if and only if the pure state is completely separable. For
a state with TI, m = 2|M|/n, with M = 〈∑i Si〉 the total
magnetization. Hence m = 1 at the NTFF hs , as verified in
the top panels in Fig. 5, entailing nonmonotonous behavior
of m for increasing fields, as shown in the insets. We
have numerically checked that such nonmonotonous behavior
persists for larger sizes, indicating that it is not a finite-size
effect. Therefore, through careful measurement of M or the
associated susceptibility as a function of the applied field, one
could be able to identify the NTFF hs .

In the bottom panels in Fig. 5 it is shown that the UGS at
hs is nondegenerate and well separated from the first excited
state, whereas the NGS at h′

s is twofold degenerate. Actually,
as shown by the energy gap and also by the magnetization
and previous entanglement measures, while no transitions are
observed in the FM case, in the AFM case the exact GS
exhibits n/2 transitions as |h| increases at fixed γ , the last one
taking place at h′

s . They correspond to “translational parity”
transitions |GS±〉 → |GS∓〉, with |GS±〉 the exact TI ground
states, which satisfy T |GS±〉 = ±|GS±〉 (T is the one-site
translation operator). These transitions are similar to those
observed for transverse fields in both AFM and FM systems
[10,11,14,19], where they are related to spin-parity transitions
and also end at the corresponding TFF [10,11,14]. Hence, h′

s

still represents, in the nontransverse case, a critical field for
the finite system, indicating the passage to a different regime.

Finally, we depict in Fig. 7 results for the pairwise
concurrence in a chain with full XYZ couplings, a system
which cannot be mapped to independent fermions even in the

transverse case [32,35]. We have set Jz = 0.2|Jx | in both the
FM (Jx > Jy > 0) and the AFM (Jx < Jy < 0) cases, using
the same previous field orientations. The behavior is quite
similar to that in Fig. 4, with the GS translational parity
transitions also present in the AFM case. One just notes
the higher values of Cl above the factorizing fields in both
cases, and the closer side limits at h′

s in the AFM case (now
C− ≈ 0.036, C+ ≈ 0.032), due to the different value of the
anisotropy ratio χ . The values at zero field are again still
strictly coincident due to the same sign of Jz. Results for the
block entropy and entanglement spectrum for the finite case
considered are also qualitatively similar to the previous results.

IV. CONCLUSIONS

We have first determined the general conditions for the
existence of separable eigenstates with maximum spin at
each site in general arrays with anisotropic XYZ couplings
immersed in a nontransverse field. The set of factorizing
fields can be characterized by the local fields orthogonal to
the local alignment direction, plus arbitrary fields parallel
to the latter. We have next identified the possibility of a
uniform nondegenerate separable GS in quite general systems
of arbitrary spin, including FM- and AFM-type chains and
arrays, for fields parallel to a principal plane (Fig. 2). The
coupling range can be arbitrary, provided the anisotropy ratio χ

is constant. In AFM XYZ chains with first-neighbor couplings,
this separable solution coexists in the field space with the
Néel-type separable solution.

We have also demonstrated, for arbitrary spin, that pairwise
entanglement reaches full range in a finite array in the vicinity
of the factorizing field determining the uniform solution,
with the concurrence vanishing linearly in this field. Full
range is also reached at the Néel NTFF, although here it
was shown that in finite cyclic even chains, the pairwise
concurrence reaches finite side limits in its vicinity, which were
analytically evaluated. This NTFF was shown to correspond
to the last parity transition of the GS in the finite cyclic
chain. Block entropies were also analyzed and shown to vanish
quadratically at the uniform NTFF, while again reaching finite
(and analytically determined) side limits at the Néel NTFF in
these finite chains.

The present results and limits are also applicable to more
complex systems, like dimerized chains and arrays [12,14,36].
The recent possibility of performing quantum simulations
of spin chains and lattices with tunable couplings through
cold atoms in optical lattices [37–39] or trapped ions [39–43]
augments the potential of the present results. Such experiments
could then provide valuable insights into the remarkable
phenomenon of factorization and its relation to entanglement
and criticality in finite many-body systems.
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