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R©SUm©n / La automatización en la segmentación de imágenes es crucial para estudiar la morfología de galaxias 
en relevamientos de gran escala. En este trabajo utilizamos el conjunto de datos de Galaxy Zoo 3D para entrenar 
una serie de redes neuronales convolucionales capaces de detectar brazos espirales en imágenes de galaxias. Se 
contruyeron seis modelos de aprendizaje profundo según el diferente grado de confianza que se tiene para la región 
marcada como brazo. Utilizamos redes neuronales con arquitectura U-Net, capaces de generar máscaras binarias 
de brazos espirales con un alto grado de precisión. Esto permite, no solo identificar qué galaxias tienen brazos 
espirales, sino también ubicarlos a nivel de los píxeles que ocupan y medir su tamaño relativo para seis grados de 
certeza distintos.

Abstract / Automation in image segmentation is crucial to study the morphology of galaxies from large-scale 
surveys. In this work we use the Galaxy Zoo 3D dataset to train a series of convolutional neural networks for 
spiral arms detection in galaxy images. Six different deep-learning models were built according to the levels of 
confidence for the region marked as an arm. Using an architecture called U-Net, we trained an algorithm capable 
of generating spiral arms binary masks over a new set of images with high precision. This allows, not only to 
identify which galaxies have spiral arms, but to easily position the pixels from the spiral arms and measure their 
relative size for six different degrees of certainty.
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1. Introduction
Being able to analyze in a fast and efficient way mas­
sive amount of data has become of utmost importance 
in the era of Big Data. The advent of extensive sur­
veys will deliver millions of quality images of galaxies, 
and the morphological study of these immense datasets 
can no longer be carried out only via human inspec­
tion. However, deep-learning algorithms can perform 
this task automatically and in reasonable times with 
the use of GPUs. This is specially advantageous for 
extremely labor-intensive tasks, such as semantic seg­
mentation of images.

In this work, we focus on using a convolutional neu­
ral network (CNN or neural network) to perform image 
segmentation of galaxies in order to detect spiral arms. 
Our goal is that, after training these machine learning 
algorithms, we will be able to predict which pixels in a 
galaxy image belong to a spiral arm. This information 
can be used in future works to correlate the presence 
of spiral arms with star formation rates for different re­
gions of galaxies, along with other physical properties.

2. Dataset: Galaxy Zoo 3D
In order to train the neural network for spiral arms de­
tection, the first step was to obtain a proper dataset. 
The Galaxy Zoo 3D (GZ:3D) is a project that aimed 
to study the morphology and internal structure (Mas­
ters et al., 2021) for ~30 000 target galaxies of the 
Mapping Nearby Galaxies at Apache Point Observatory

Figure 1: Example of a galaxy from the dataset. MaNGA 
ID: 1-575229. a) Original image shown to the volunteers, 
b) Mask voted by the volunteers, c) Mask with pixels that 
have 3 or more votes, d) Final binary mask used to train 
the model with th = 3.

(MaNGA) survey (Bundy et al., 2015), part of the Sloan

Poster contribution

253

tomasreydeutschQgmail.com


BAAA, Vol. 64, 2022

Digital Sky Survey, or SDSS IV, (Blanton et al., 2017). 
To accomplish this, images of these galaxies were shown 
to volunteers, who noted down the the positions for cen­
ter of the galaxy, foreground stars, bars and spiral-arms. 
Each galaxy was annotated by 15 volunteers, complet­
ing a total of 29 813 images classified, 7193 (~ 24%) of 
which had at least one pixel marked as belonging to a 
spiral arm.

With this information, we were able to generate 
training masks for spiral arms detection, as seen in Fig­
ure 1. Images b) and c) show the original mask acquired 
from GZ:3D and the mask obtained considering only 
pixels with 3 or more votes towards the spiral arm cat­
egory, respectively. The colormap used represents the 
amount of votes each pixel received (V), as indicated 
by the bar on the right. However, in this work, we train 
our CNNs with binary masks to test their performance. 
These masks are created by choosing a fixed threshold 
value (th) as shown in Sub-figures c) and d). If a pixel 
has a number of votes N > th, then it belongs to a spi­
ral arm, and we assign it a value of 1 (yellow pixels in 
the example). If V < th, then the pixel value is set to 
0 (violet pixels).

We constructed six training datasets, each one of 
them with a respective value of th = 1,2, 3,4, 5 and 6. 
For the larger values of th, the binary masks used for 
training have less annotated pixels but more confidence 
that they belong to a spiral arm. Each dataset was used 
to train an independent neural network from scratch, 
resulting in six models, each with different sensitivities 
to the presence of spiral arms.

3. Neural Networks Architecture: U-Net
All our models use the image of a galaxy as an input 
and produce a mask with the segmented spiral arms as 
an output (if there are any). The specific architecture 
used for our neural networks, U-Net (Ronneberger et al., 
2015), was developed in 2015 and is widely used for 
image segmentation. Previous work has shown that this 
architecture can be used particularly for segmentation 
of simulated galaxies (Bekki, 2021) but has never been 
used in real images. All the models trained in this work 
have 38 hidden layers (Figure 2) with a total of 34.5 
million parameters, which are adjusted during training 
using the Sparse Categorical Cross-Entropy (SCCE) as 
loss function.

The original images that were used in the GZ:3D

project are customs cutouts of images from the SDSS- 
I/II legacy imaging described in the target selection of 
the MaNGA project (Wake et al., 2017). The six models 
described were trained using a 15GB RAM GPU from 
the Google Colab free cloud service, which allowed each 
model to take less than three hours to be trained.

4. Training
The original dataset was divided into a training set with 
75% of the images (22 360 in total) and a test set with 
the remaining 25% (7453 images), which is used to eval­
uate the performance of each neural network.

Every model was trained for a fixed number of 
epochs. In each epoch our deep-learning method sep­
arates our training dataset in batches and predicts the 
potential location of spiral arms for every image in the 
batch. These predictions are compared with the ground 
truth annotated by the volunteers and the binary cross­
entropy loss is minimized using back-propagation. The 
top graph in Figure 3 shows an example with the evo­
lution of the loss function at every epoch during the 
training process of a model (blue line). We also track the 
accuracy of the model during training for each epoch. 
Just as we are looking to minimize the loss function we 
are also looking to maximize the accuracy. Figure 3 also 
shows the evolution of these metrics for the test set.

Figure 3: Evolution of the loss function and the accuracy for 
an example model with th = 3, as a function of the epoch. 
In blue, the training curves. In orange, the progress of these 
functions with test data that was not used for training.

Figure 2: Representation of the U-Net architecture used in 
this work. Each type of layer has a different color and the 
relative size between them is respected.

This test set is used to assess the performance of the 
trained model with new data (not used for training). We 
can see that around the 18th epoch the training and the 
test curves separate. All the models exhibit a similar 
behavior. This is the point where the neural network 
starts overfitting the data and the model cannot improve 
its performance even if it is trained for a larger number 
of epochs. By that point, models already exhibit a high 
level of accuracy (~ 98%) on the test set. We visually 
inspect each training curve to determine the optimal 
epoch from where to extract the final snapshot for our 
models.

BAAA, 64, 2023

254



Rey Deutsch et al.

5. Predictions
After training, we analyzed the performance of the pre­
dictions made by the models. Figure 4 shows an exam­
ple of a galaxy with two spiral arms where we show the 
ground truth binary masks and the binary masks pre­
dicted by the neural networks for the six different values 
of th. It can be seen that our U-Nets detect both of the 
spiral arms in every case and that they are in general 
agreement with the masks annotated by the volunteers. 
As the threshold value increases, both the ground truth 
mask and the predicted mask span a smaller area, as 
expected since bigger values of th means that only the 
pixels with more votes are being selected.

In order to evaluate the quality of a prediction and 
therefore to assess the performance of the models, we 
analyzed different metrics: accuracy, precision and the 
Jaccard score. All of them are defined from taking the 
voted mask as the truth labels, the mask from the neu­
ral network as the predicted labels and calculating the 
confusion matrix. Figure 5 shows as an example the 
distribution of these metrics for the same model with 
th = 3 from before. We focus on this particular model 
because it is precisely at the middle range in terms of 
how selective it is in determining spiral arms pixels. The 
masks from the test set used to build the histograms are 
only those where the volunteers and U-Net agreed that 
there was a spiral arm, since, in most cases (73% of the 
total 7 453), they both agreed that there was none. This 
left a total of 1 347 galaxies with their score computed

Figure 5: Distributions of the 1 347 images used to asses the 
neural networks performance. The model shown as an ex­
ample is the one trained with th = 3.

Figured: Example of a galaxy with two spiral arms, MaNGA 
ID: 1-590142. For every model with different th we plot 
the ground truth binary mask voted by the volunteers and 
the one predicted by our neural networks from the original 
image.

(18%) for this particular th.
The high and narrow peak value in the accuracy dis­

tribution is due to the fact that most of the pixels in 
both masks belong to the background sky (violet pixels 
in Figures 1 and 4) and are correctly classified. On the 
other hand, we can see from the peak of the precision 
distribution that there is also a high proportion of pixels 
predicted as belonging to a spiral arm that are well clas­
sified. Finally, the Jaccard score (TP/[TP+FN+FP]) 
indicates that the correctly classified pixels represent, 
in average, the 34% of the region that results from join­
ing the spiral arms of the volunteers and U-Net. Table 
1 shows the mean values for this example.

Table 1: Mean values of the metrics from the example in 
Fig. 5 with their respective standard deviations.

Accuracy Precision Jaccard Score
0.95 ± 0.04 0.71 ±0.27 0.34 ±0.20

6. Conclusions
We were able to train six convolutional neural networks 
that identify spiral arms with different levels of confi­
dence and a high value of precision. We expect to use 
these models in future works to study the physical prop­
erties of spiral armed galaxies over new images.

References
Bekki K., 2021, A&A, 647, A120
Blanton M.R., et al., 2017, AJ, 154, 28
Bundy K., et al., 2015, ApJ, 798, 7
Masters K.L., et al., 2021, MNRAS, 507, 3923
Ronneberger O., Fischer P., Brox T., 2015, U-net: Convolu­

tional networks for biomedical image segmentation
Wake D.A., et al., 2017, AJ, 154, 86

BAAA, 64, 2023

255


