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Abstract. We present an extension to the GF framework for OntologyBased Data 

Access with the aim of determining the functional dependencies that hold in a 

spreadsheet. Spreadsheets are restricted to a single table expressed as a CSV text 
file. An initial set of tentative functional dependencies is computed using the 

TANE datamining algorithm. This set is then presented to the user who is used as 

an oracle to revise it. Given a functional dependency, the user can see the tuples 

from the spreadsheet justifying it. The user can revise the validity of the functional 
dependency with the help of our system, which will generate tuples not present 

in the dataset by using values already present in the table. The user can then add 

some of the new records to the table when he considers their feasibility and rerun 

the miner to see if the functional dependency still holds. We present a running 
example along with a downloadable JAVA-based application with source code of 

the miner in the C programming language and the files used in our experiments 

to help with the reproducibility of our results. 
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1. Introduction 

Spreadsheets are an essential tool for organizations as they provide a simple and 

flexible way to store, analyze, and visualize data. They allow for efficient data 

management, calculations and data analysis, enabling informed decision-making. They 

also support collaboration, allowing multiple users to work together on the same data 

set. Data in spreadsheet tables can sometimes face challenges in terms of organization 

due to several reasons. Firstly, spreadsheet tables lack the structure and strict constraints 

of a database, making it easier for inconsistencies and errors to occur. Without 

predefined data types and constraints, it becomes more challenging to ensure data 

integrity and enforce data organization rules. 

Thus, while spreadsheets offer convenience and flexibility, they are not inherently 

optimized for data organization. To overcome these challenges, organizations often rely 

on more robust data management systems, such as databases, that provide structured 

schemas, data validation, and stronger organization capabilities. Normalized databases 

play a crucial role in data management by reducing redundancy and improving data 

integrity. The discovery of functional dependencies is an essential step in the 

normalization process. Functional dependencies are relationships between attributes in 
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a database. They identify the dependencies between the values of one set of attributes 

on another set of attributes. By discovering and analyzing these dependencies, we can 

identify the key determinants in a dataset and eliminate data redundancy. Normalization 

helps in achieving a more efficient and organized database structure. It eliminates data 

anomalies such as update, insertion, and deletion anomalies that can occur due to 

redundant or inconsistent data. Thus, the discovery of functional dependencies plays a 

crucial role in achieving these benefits and establishing a well-structured and optimized 

database design. 

Algorithms for the discovery of functional dependencies, such as TANE 

(Topological Attribute Noise Elimination) [1], are essential tools in data management 

and database design. They play a crucial role in identifying and understanding the 

relationships between attributes in a dataset, enabling data cleaning and normalization 

processes and assisting in the identification of candidate keys, which are essential for 

designing well-structured relational databases. 

In this paper, our goal is to tackle the problem of finding functional dependencies 

in a spreadsheet table. In brief, our semi-automatic proposal consists of: first, the 

spreadsheet table is represented as single datasource D comprised of a CSV plain text 

file with fields separated by either commas or semicolons; second, we run the TANE 

datamining algorithm over D to obtain a set S of candidate functional dependencies 

supported by the data; third, the set S is presented to the user who will act as an oracle 

in determining the viability of each candidate functional dependency in S. For this, the 

user can select a particular functional dependency f and the system shows the projection 

P of the current tuples (restricted to the fields referenced in f) in D supporting the 

functional dependency and also generates a new set N of potential tuples that are not 

currently present in D. The user can select a subset SN of N containing some of these 

potential tuples add them to the tuples already present in D, building in fact a new set 

P ∪SN. The TANE algorithm is then executed against P ∪SN for determining if f is still 

valid and what new functional dependencies Nf are discovered. The user has now the 

chance of determining if he wants to delete f from S and also if he wants to add some 

of the elements of Nf to the set S of candidate functional dependencies. Thus, the main 

contribution of this work is (i) proposing a method for determining a set of functional 

dependencies from a single spreadsheet table; (ii) provinding a functional prototypical 

implementation of the proposed approach, comprised of JAVA stand-alone program 

integrated into our GF framework for ontology based- data access; (iii) a set of 

examples to show how the approach works, and (iv) a modification of a third-party 

implementation of the TANE algorithm for being used independently from our system. 

We include source code and a functional executable file published online along with 

the data files to reproduce the results presented here. A running example is provided to 

illustrate our approach. 

The rest of the paper is structured as follows. In Sect. 2, we briefly revisit the notion 

of CSV file. In Sect. 3, we discuss how to find functional dependencies in CSV files 

and the modifications we made to a third-party data miner published online. In Sect. 4, 

we present the module added to GF to revise functional dependencies in the CSV file. 

In Sect. 5, we review related work. In Sect. 6, we conclude and foresee future work. 
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2. Spreadsheets as CSV Files 

Excel is a popular spreadsheet software developed by Microsoft. They consist of 

multiple worksheets, each containing a grid of cells organized into rows and columns. 

These cells can hold various types of data, such as numbers, text, formulas, and 

functions. Excel spreadsheets offer a wide range of features and functionalities for data 

manipulation, analysis, and visualization, including formatting options, sorting and 

filtering capabilities, and chart creation. In Fig. (1.a), we show a simple Excel table for 

representing information of owners of cars along with information of the cars 

themselves. The information of the owners is comprised of the columns IDPerson and 

Name. Cars are represented by the columns IDCar, CarBrand and CarPerception. 

Notice that the column CarPerception represents the perception of the particular brand 

by a particular user. 

 
IDPerson;Name;IDCar;CarBrand;CarPerception 
1;John;1;Aston Martin;high 
2;Mary;2;Fiat;low 
3;Paul;3;Audi;medium 
1;John;4;BMW;medium 
1;John;5;Chevrolet;low 

 (a) (b) 

Fig.1. (a) Spreadsheet for owners of cars and (b) CSV code of the spreadsheet 

 

CSV files are a simpler and more universally compatible format for tabular data. 

CSV files are plain text files that store tabular data as a series of values, with each value 

separated by a comma. Each line in the file represents a row of data, and the comma 

acts as a delimiter to separate individual values within each row. CSV files do not 

support formatting, formulas, or multiple worksheets like Excel spreadsheets. However, 

they are lightweight, easy to read and write, and can be opened by various software 

applications, making them widely used for data exchange between different programs 

and systems. For instance, in Fig. (1.b), we present the CSV version of the Excel table 

of Fig. (1.a). Notice that in this particular case, the field separator is the semicolon 

character. 

In previous publications ([2] and references there in), we have been reporting about 

the development of a framework for Ontology-Based Data Access called GF. In this 

work, we extend such framework with the aim of solving the problem of finding 

functional dependencies hidden in CSV tabular data. The proposal presented in this 

work has been integrated with such application. A closedsource stand-alone JAVA 

application is available online1 to reproduce the results presented here. Also an open 

source extension of the TANE miner described in the next section is available for 

downloading and use. 

3. Finding Functional Dependencies in Spreadsheets 

 
1 See http://cs.uns.edu.ar/~sag/cacic2023 
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In the context of relational databases, a functional dependency is a relationship 

between two sets of attributes within a database table, that describes the dependence of 

one set of attributes (known as the dependent attributes) on another set of attributes 

(known as the determinant attributes). That is, given the values of the determinant 

attributes, the values of the dependent attributes can be determined. Functional 

dependencies play a crucial role in database design and normalization, helping to ensure 

data integrity and minimize data redundancy. 

TANE (Topological Attribute Noise Elimination) [1] is an algorithm used for 

mining functional dependencies from a given relational database table. It is based on 

the concept of the topological sort and utilizes pruning techniques to efficiently 

discover all the non-redundant functional dependencies within the table. A brief 

explanation of the TANE algorithm is as follows: 

1. Input: The algorithm takes a relational database table as input, consisting of a set 

of attributes and their corresponding values. 

2. Candidate Generation: Initially, TANE starts with a set of candidate functional 

dependencies that include individual attributes and pairs of attributes. For example, 

if the table has attributes A, B, and C, the initial set candidates would be {A → B,A 

→ C,B → A,B → C,C → A,C → B}. 

3. Pruning: The algorithm employs pruning techniques to eliminate redundant 

candidates. It checks if each candidate can be further extended by adding more 

attributes without violating the closure property. If a candidate is found to be 

redundant, it is removed from the set of candidates. 

4. Topological Sorting: TANE performs a topological sorting of the attributes based 

on their dependencies to ensure that dependencies are discovered in a particular 

order. It determines the dependencies between attributes by computing the closures 

of attribute sets. The closure of an attribute set is the set of all attributes that can 

be determined based on the given set of attributes. 

5. Dependency Discovery: TANE iterates through the topologically sorted attribute 

order and discovers functional dependencies by checking if each candidate is 

satisfied by the current set of attributes. If a candidate is satisfied, it is considered 

a valid functional dependency and added to the result set. 

6. Closure Pruning: After discovering each dependency, TANE applies closure 

pruning to eliminate any remaining redundant candidates that are no longer 

necessary based on the dependencies found so far. 

7. Repeat Step: Steps 4 to 6 are repeated until no more dependencies can be 

discovered. 

8. Output: The final result set contains all the non-redundant functional dependencies 

that have been mined from the input table. 

Our approach to finding the functional dependencies holding in a spreadsheet starts 

by running a TANE miner on the CSV file contents. For doing this, we adapted an 

already existing TANE implementation.2 That implementation is a console application 

based on the C programming language. It takes as input a CSV file and as output it 

 
2 See https://github.com/getterk96/Database-Functional-Dependency-Digging-Algorithms. 
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prints to the screen the functional dependencies that it has found. The dependencies 

found are listed as field indexes. 

From that starting point, we extended that miner for having a more friendly interface 

that allows to use it as parameterized command-line application where the input file, 

output file, temporary file, and field-separator character can be specified by a 

prospector user. In Fig. 2, we can see an example of how to use the improved utility on 

the data presented in Fig. (1.b). The input file named Owner-Car.csv is preceded by the 

-i switch. Notice that the temporary file (preceded by the -t switch) is needed to redirect 

the original output of the miner and the output file (preceded by the -o switch) is only 

useful to a client/user. Additionally, the -s switch allows to specify a separator character 

for fields (viz., either a semicolon or a comma). 

The functional dependencies found with the miner are presented in Fig. 3. We call 

these dependencies, tentative functional dependencies. Notice that some of these 

functional dependencies are the true ones (e.g. IDPerson → Name) but other ones are 

just contingent on the values present in the data (e.g. Name → IDPerson). The revision 

of these dependencies to discard the false ones from the set of tentative functional 

dependencies is the subject that the module that we have added to GF deals with, and 

that is the matter of the next section. 

 

TANE-Sergio.exe -i “Owner-Car.csv” -o “result-owner-car.txt” -t 

“temporal-owner-car.txt” -s “;” 

Fig.2. Improved interface for the TANE miner 

   
 IDPerson → Name 
 IDPersonCarPerception → IDCar 
 IDPersonCarPerception → CarBrand 

 Name → IDPerson 

 NameCarPerception → IDCar 
 NameCarPerception → CarBrand 

 IDCar → IDPerson 

IDCar → Name 

   IDCar → CarBrand 
   IDCar → CarPerception 
CarBrand → IDPerson 

CarBrand → Name 

CarBrand → IDCar 
CarBrand → CarPerception 

Fig.3. Functional dependencies found by the TANE miner in the CarOwner 

spreadsheet 

4. Revising Functional Dependencies 

Here, we present the new module in GF that allows a user to interactively revise 

functional dependencies computed from a CSV datasource. In Fig. 4, we present the 

user interface for using the new module. 
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Fig.4. Module for mining and validating functional dependencies in CSV files 

 

The controls in the GUI are enabled in a strict order that allows the user to unlock 

functionalities when input data is available for using them. This order is specified by 

the state diagram in Fig. 5. The usual workflow a user would follow when using the 

application will be: (1) opening the form takes him to state q0; (2) specifying the 

datasource by selecting the particular CSV file he wants to work with (thus going into 

state q1); (3) at any time the data from the data source can be explored; (4) running the 

dataminer as the one described in Sect. 3 computes the functional dependencies that are 

shown on the list on the left (notice that the miner program can be changed for an 

alternative program provided that it satisfies the interface as explained in Fig. 2), this 

will take the user to state q2; (5) once the list is filled with the functional dependencies 

computed from the current data in the CSV, which we chose to call tentative functional 

dependencies, as they are contingent on current data, the user can select one of them 

getting to state q3; (6) once in q3, the user can optionally chose directly delete a tentative 

functional dependency or else to see the projection of the table limited to the columns 

mentioned in the selected functional dependency to determine if some combination of 

values is missing, determining so by pressing the button labeled “Revise FD” will take 

him to state q4; (7) in q4 the application will open a new form showing to the user 

invented tuples that are not currently in the table by producing random combinations 

with data already present in the table according to the algorithm in Fig. 7; (8) in q5, the 

user can select one or more than one alternative tuples to add to the already existing 

tuples in the projected table, and then go to q6; (9) in q6, the miner is run on the projected 

table to validate if the revised dependency still holds or new ones appear, this new 

computed dependencies are displayed on the list located on the right, leading the system 

to state q7; (10) in q7, the user can delete the revised funtional dependency or select 

some of the newly found functional dependencies and copy them to the list on the left 

pane, and, (11) finally, the user can clear the process to return to state q0. 

Regarding step (2), our approach assumes that all fields are considered string typed, 

that no field delimiters are present and the user can choose only between comma and 

semicolon characters as field separators. Step (4) was already discussed in Sect. 3. To 

illustrate how steps (5)–(10) are intended to be used, we continue the preceding 

example. Consider the tentative functional dependency CarBrand → CarPerception 

computed in (4). The projection of the tuples restricted to its fields, and without 

duplicate data, is shown in Fig. (6.a). For example, suppose that the user considers that 
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the perception of Chevrolet must be high instead of low. The user can ask the system to 

generate unseen tuples in steps (6)-(7). This new invented tuples are generated using 

the algorithm in Fig. 7. Once the user explores the invented tuples, he can select the 

appropriate ones to be added to the projection (see Fig. 6.b). Then, after running again 

the miner, in this particular case, there are no functional dependencies that hold in this 

view of the table with the invented record that were selected. So the user can decide to 

delete the functional dependency under consideration. Conversely, as the system 

generates those potential scenarios, it lets the user deciding to keep or discard the 

proposed functional dependency. When the user observes that a suggested combination 

of data from the domain that respects the functional dependency is not consistent with 

his view of the domain, he can opt for discarding the suggested dependency. Besides, 

if other functional dependencies were discovered to hold in this new dataset, they will 

be shown in the list of right side of the screen, and then the user can decide to add to 

the main set of tentative functional dependencies. 

5. Discussion and Related Work 

Cunha et al. [3] present techniques and tools to transform spreadsheets into 

relational databases and back. A set of data refinement rules is introduced to map a 

tabular datatype into a relational database schema. Having expressed the transformation 

of the two data models as data refinements, they obtain for free the functions that 

migrate the data usin well-known relational database techniques to optimize and query 

the data. Because data refinements define bi-directional transformations, they can map 

such database back to an optimized spreadsheet. They implemented the data refinement 

rules and constructed Haskell-based tools to manipulate, optimize and refactor Excel-

like spreadsheets. In our prototypical approach deals with Excel files but expressed as 

CSV tables, GF has the functionality to load Excel files and this feature can be added 

in the future. In our application, CSV files are handled internally as H2 tables but the 

data miner that we use as an external tool handles it as plain text. The work of Cunha 

et al. uses the set of functional dependencies to generate a normalized relational 
 

 

Fig.5. State diagram describing the usage of the GUI controls 
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Showdata 

Runminer 
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 (a) (b) 

Fig.6. (a) Records justifying functional dependency CarBrand → CarPerception and (b) 

Invented records with alternative values 

 
Algorithm GenerateAlternatives(Table T, FunctionalDependency C1...Cn → D)  

Let values be a (n + 1)-size vector of sets  

for i := 1 to n do 
valuesi := executeQuery(SELECT DISTINCT Ci FROM T) 

valuesn+1 := executeQuery(SELECT DISTINCT D FROM T)  

Let script be an empty sequence of strings 
script.addLine(CREATE TABLE aux(C1 VARCHAR(100), ..., Cn VARCHAR(100), D 

VARCHAR(100));) 
for epoch := 1 to MAX TUPLES do  

   Let x be a vector of n + 1 components  

   for i := 1 to n + 1 do xi := randomElementFrom(valuesi)  

   if x is a previously unseen combination of values then 
result := executeQuery(SELECT COUNT (*) AS Result FROM T 

WHERE C1 = x1 AND ...AND Cn = xn AND D = xn+1) 
if result = 0 then  

   script.addLine(INSERT INTO aux(C1, ..., Cn, D) VALUES (x1, ..., 

xn+1);) 
ExecuteSQLScriptToGenerateTableAndShow(script) 

Fig.7. Algorithm for generating unknown alternatives from table T w.r.t. functional 

dependency C1 ...Cn→ D 

 

database from the contents of the spreadsheet. Our application does not do that yet and 

adding that functionality remains a future work. They use the FUN mining technique 

and we use the TANE mining technique. As our approach is fully customizable, we 

could employ the FUN miner in the future provided a functioning version of it is 

available. In particular, Cunha et al. present an example that considers a spreadsheet for 

representing a property renting system (see [3, Fig. 1]). In the accompanying files 

published online with our executable application, we provide a recreation of that file, 

named book.csv, showing that our system can compute the functional dependencies 

shown in that work. 

Despite the ubiquity of spreadsheets, the problem of dealing with transformations 

of spreadsheet data to more formal data formats is still relevant. Müller and Mertov´a 

[4] justify and propose a lightweight recording-based solution to the tracing of the steps 

for transforming spreadsheets into ontologies that works on a wide variety of 

spreadsheet programs, from Microsoft Excel to Google Docs. GF can transform 

spreadsheets into ontologies but in this particular work we are concentrated in 

functional dependencies emerging from tables within spreadsheet data. 
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Salem and Abdo [5] propose two techniques for mining accurate conditional 

functional dependencies rules from such databases to be employed for data cleaning. 

The idea of the proposed techniques is to mine firstly maximal closed frequent patterns, 

then mine the dependable conditional functional dependencies rules with the help of 

lift measure. That approach is complementary to ours because in the current status of 

our work, we assume that the data is accurate. Their approach could be used to extend 

our solution with a data-cleaning preprocess for capturing semantic errors. 

6. Conclusions and Future Work 

In this paper we tackled the problem of finding functional dependencies in a 

spreadsheet table. We relied on the TANE datamining algorithm integrating it with our 

GF framework for ontology-based data access. We presented a running example that 

showed how our approach assists the user so he can revise a tentative set of functional 

dependencies computed with TANE using possible tuples not already present in the 

table that are computed by our system. The limitations of our approach are all fields are 

considered string typed, that no field delimiters are present and the used can choose 

only between comma and semicolon characters as field separators. The solution is 

customizable provided that a miner is provided satisfying a very precise command-line 

interface. 

Possible research avenues for extending the work presented here include generating 

a normalized data base using the functional dependencies computed by the miner and 

later revised by the user with the assistance of our system, and then exporting this 

database as an ontology. Other possible paths to be explored are the adaptation of the 

mining algorithms to different data types and constraints. 
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