

 XVI Workshop de Innovación en Sistemas de Software

> Full Papers Página | 409

A Prototypical Tool for Analyzing Functional

Dependencies Induced from Spreadsheets

Sergio Alejandro Gómez1,2 and Pablo Rubén Fillottrani1,2

1 Laboratorio de I+D en Ingeniería de Software y Sistemas de Información (LISSI)

Departamento de Ciencias e Ingeniería en Computación

Universidad Nacional del Sur

San Andrés 800, (8000) Bahía Blanca, Argentina

{sag,prf}@cs.uns.edu.ar
2 Comisión de Investigaciones Científicas de la Provincia de Buenos Aires

Abstract. We present an extension to the GF framework for OntologyBased Data

Access with the aim of determining the functional dependencies that hold in a

spreadsheet. Spreadsheets are restricted to a single table expressed as a CSV text
file. An initial set of tentative functional dependencies is computed using the

TANE datamining algorithm. This set is then presented to the user who is used as

an oracle to revise it. Given a functional dependency, the user can see the tuples

from the spreadsheet justifying it. The user can revise the validity of the functional
dependency with the help of our system, which will generate tuples not present

in the dataset by using values already present in the table. The user can then add

some of the new records to the table when he considers their feasibility and rerun

the miner to see if the functional dependency still holds. We present a running
example along with a downloadable JAVA-based application with source code of

the miner in the C programming language and the files used in our experiments

to help with the reproducibility of our results.

Keywords. Spreadsheets, TANE, Functional dependencies, Databases.

1. Introduction

Spreadsheets are an essential tool for organizations as they provide a simple and

flexible way to store, analyze, and visualize data. They allow for efficient data

management, calculations and data analysis, enabling informed decision-making. They

also support collaboration, allowing multiple users to work together on the same data

set. Data in spreadsheet tables can sometimes face challenges in terms of organization

due to several reasons. Firstly, spreadsheet tables lack the structure and strict constraints

of a database, making it easier for inconsistencies and errors to occur. Without

predefined data types and constraints, it becomes more challenging to ensure data

integrity and enforce data organization rules.

Thus, while spreadsheets offer convenience and flexibility, they are not inherently

optimized for data organization. To overcome these challenges, organizations often rely

on more robust data management systems, such as databases, that provide structured

schemas, data validation, and stronger organization capabilities. Normalized databases

play a crucial role in data management by reducing redundancy and improving data

integrity. The discovery of functional dependencies is an essential step in the

normalization process. Functional dependencies are relationships between attributes in

 XVI Workshop de Innovación en Sistemas de Software

> Full Papers Página | 410

a database. They identify the dependencies between the values of one set of attributes

on another set of attributes. By discovering and analyzing these dependencies, we can

identify the key determinants in a dataset and eliminate data redundancy. Normalization

helps in achieving a more efficient and organized database structure. It eliminates data

anomalies such as update, insertion, and deletion anomalies that can occur due to

redundant or inconsistent data. Thus, the discovery of functional dependencies plays a

crucial role in achieving these benefits and establishing a well-structured and optimized

database design.

Algorithms for the discovery of functional dependencies, such as TANE

(Topological Attribute Noise Elimination) [1], are essential tools in data management

and database design. They play a crucial role in identifying and understanding the

relationships between attributes in a dataset, enabling data cleaning and normalization

processes and assisting in the identification of candidate keys, which are essential for

designing well-structured relational databases.

In this paper, our goal is to tackle the problem of finding functional dependencies

in a spreadsheet table. In brief, our semi-automatic proposal consists of: first, the

spreadsheet table is represented as single datasource D comprised of a CSV plain text

file with fields separated by either commas or semicolons; second, we run the TANE

datamining algorithm over D to obtain a set S of candidate functional dependencies

supported by the data; third, the set S is presented to the user who will act as an oracle

in determining the viability of each candidate functional dependency in S. For this, the

user can select a particular functional dependency f and the system shows the projection

P of the current tuples (restricted to the fields referenced in f) in D supporting the

functional dependency and also generates a new set N of potential tuples that are not

currently present in D. The user can select a subset SN of N containing some of these

potential tuples add them to the tuples already present in D, building in fact a new set

P ∪SN. The TANE algorithm is then executed against P ∪SN for determining if f is still

valid and what new functional dependencies Nf are discovered. The user has now the

chance of determining if he wants to delete f from S and also if he wants to add some

of the elements of Nf to the set S of candidate functional dependencies. Thus, the main

contribution of this work is (i) proposing a method for determining a set of functional

dependencies from a single spreadsheet table; (ii) provinding a functional prototypical

implementation of the proposed approach, comprised of JAVA stand-alone program

integrated into our GF framework for ontology based- data access; (iii) a set of

examples to show how the approach works, and (iv) a modification of a third-party

implementation of the TANE algorithm for being used independently from our system.

We include source code and a functional executable file published online along with

the data files to reproduce the results presented here. A running example is provided to

illustrate our approach.

The rest of the paper is structured as follows. In Sect. 2, we briefly revisit the notion

of CSV file. In Sect. 3, we discuss how to find functional dependencies in CSV files

and the modifications we made to a third-party data miner published online. In Sect. 4,

we present the module added to GF to revise functional dependencies in the CSV file.

In Sect. 5, we review related work. In Sect. 6, we conclude and foresee future work.

 XVI Workshop de Innovación en Sistemas de Software

> Full Papers Página | 411

2. Spreadsheets as CSV Files

Excel is a popular spreadsheet software developed by Microsoft. They consist of

multiple worksheets, each containing a grid of cells organized into rows and columns.

These cells can hold various types of data, such as numbers, text, formulas, and

functions. Excel spreadsheets offer a wide range of features and functionalities for data

manipulation, analysis, and visualization, including formatting options, sorting and

filtering capabilities, and chart creation. In Fig. (1.a), we show a simple Excel table for

representing information of owners of cars along with information of the cars

themselves. The information of the owners is comprised of the columns IDPerson and

Name. Cars are represented by the columns IDCar, CarBrand and CarPerception.

Notice that the column CarPerception represents the perception of the particular brand

by a particular user.

IDPerson;Name;IDCar;CarBrand;CarPerception
1;John;1;Aston Martin;high
2;Mary;2;Fiat;low
3;Paul;3;Audi;medium
1;John;4;BMW;medium
1;John;5;Chevrolet;low

 (a) (b)

Fig.1. (a) Spreadsheet for owners of cars and (b) CSV code of the spreadsheet

CSV files are a simpler and more universally compatible format for tabular data.

CSV files are plain text files that store tabular data as a series of values, with each value

separated by a comma. Each line in the file represents a row of data, and the comma

acts as a delimiter to separate individual values within each row. CSV files do not

support formatting, formulas, or multiple worksheets like Excel spreadsheets. However,

they are lightweight, easy to read and write, and can be opened by various software

applications, making them widely used for data exchange between different programs

and systems. For instance, in Fig. (1.b), we present the CSV version of the Excel table

of Fig. (1.a). Notice that in this particular case, the field separator is the semicolon

character.

In previous publications ([2] and references there in), we have been reporting about

the development of a framework for Ontology-Based Data Access called GF. In this

work, we extend such framework with the aim of solving the problem of finding

functional dependencies hidden in CSV tabular data. The proposal presented in this

work has been integrated with such application. A closedsource stand-alone JAVA

application is available online1 to reproduce the results presented here. Also an open

source extension of the TANE miner described in the next section is available for

downloading and use.

3. Finding Functional Dependencies in Spreadsheets

1 See http://cs.uns.edu.ar/~sag/cacic2023

 XVI Workshop de Innovación en Sistemas de Software

> Full Papers Página | 412

In the context of relational databases, a functional dependency is a relationship

between two sets of attributes within a database table, that describes the dependence of

one set of attributes (known as the dependent attributes) on another set of attributes

(known as the determinant attributes). That is, given the values of the determinant

attributes, the values of the dependent attributes can be determined. Functional

dependencies play a crucial role in database design and normalization, helping to ensure

data integrity and minimize data redundancy.

TANE (Topological Attribute Noise Elimination) [1] is an algorithm used for

mining functional dependencies from a given relational database table. It is based on

the concept of the topological sort and utilizes pruning techniques to efficiently

discover all the non-redundant functional dependencies within the table. A brief

explanation of the TANE algorithm is as follows:

1. Input: The algorithm takes a relational database table as input, consisting of a set

of attributes and their corresponding values.

2. Candidate Generation: Initially, TANE starts with a set of candidate functional

dependencies that include individual attributes and pairs of attributes. For example,

if the table has attributes A, B, and C, the initial set candidates would be {A → B,A

→ C,B → A,B → C,C → A,C → B}.

3. Pruning: The algorithm employs pruning techniques to eliminate redundant

candidates. It checks if each candidate can be further extended by adding more

attributes without violating the closure property. If a candidate is found to be

redundant, it is removed from the set of candidates.

4. Topological Sorting: TANE performs a topological sorting of the attributes based

on their dependencies to ensure that dependencies are discovered in a particular

order. It determines the dependencies between attributes by computing the closures

of attribute sets. The closure of an attribute set is the set of all attributes that can

be determined based on the given set of attributes.

5. Dependency Discovery: TANE iterates through the topologically sorted attribute

order and discovers functional dependencies by checking if each candidate is

satisfied by the current set of attributes. If a candidate is satisfied, it is considered

a valid functional dependency and added to the result set.

6. Closure Pruning: After discovering each dependency, TANE applies closure

pruning to eliminate any remaining redundant candidates that are no longer

necessary based on the dependencies found so far.

7. Repeat Step: Steps 4 to 6 are repeated until no more dependencies can be

discovered.

8. Output: The final result set contains all the non-redundant functional dependencies

that have been mined from the input table.

Our approach to finding the functional dependencies holding in a spreadsheet starts

by running a TANE miner on the CSV file contents. For doing this, we adapted an

already existing TANE implementation.2 That implementation is a console application

based on the C programming language. It takes as input a CSV file and as output it

2 See https://github.com/getterk96/Database-Functional-Dependency-Digging-Algorithms.

 XVI Workshop de Innovación en Sistemas de Software

> Full Papers Página | 413

prints to the screen the functional dependencies that it has found. The dependencies

found are listed as field indexes.

From that starting point, we extended that miner for having a more friendly interface

that allows to use it as parameterized command-line application where the input file,

output file, temporary file, and field-separator character can be specified by a

prospector user. In Fig. 2, we can see an example of how to use the improved utility on

the data presented in Fig. (1.b). The input file named Owner-Car.csv is preceded by the

-i switch. Notice that the temporary file (preceded by the -t switch) is needed to redirect

the original output of the miner and the output file (preceded by the -o switch) is only

useful to a client/user. Additionally, the -s switch allows to specify a separator character

for fields (viz., either a semicolon or a comma).

The functional dependencies found with the miner are presented in Fig. 3. We call

these dependencies, tentative functional dependencies. Notice that some of these

functional dependencies are the true ones (e.g. IDPerson → Name) but other ones are

just contingent on the values present in the data (e.g. Name → IDPerson). The revision

of these dependencies to discard the false ones from the set of tentative functional

dependencies is the subject that the module that we have added to GF deals with, and

that is the matter of the next section.

TANE-Sergio.exe -i “Owner-Car.csv” -o “result-owner-car.txt” -t

“temporal-owner-car.txt” -s “;”

Fig.2. Improved interface for the TANE miner

 IDPerson → Name
 IDPersonCarPerception → IDCar
 IDPersonCarPerception → CarBrand

 Name → IDPerson

 NameCarPerception → IDCar
 NameCarPerception → CarBrand

 IDCar → IDPerson

IDCar → Name

 IDCar → CarBrand
 IDCar → CarPerception
CarBrand → IDPerson

CarBrand → Name

CarBrand → IDCar
CarBrand → CarPerception

Fig.3. Functional dependencies found by the TANE miner in the CarOwner

spreadsheet

4. Revising Functional Dependencies

Here, we present the new module in GF that allows a user to interactively revise

functional dependencies computed from a CSV datasource. In Fig. 4, we present the

user interface for using the new module.

 XVI Workshop de Innovación en Sistemas de Software

> Full Papers Página | 414

Fig.4. Module for mining and validating functional dependencies in CSV files

The controls in the GUI are enabled in a strict order that allows the user to unlock

functionalities when input data is available for using them. This order is specified by

the state diagram in Fig. 5. The usual workflow a user would follow when using the

application will be: (1) opening the form takes him to state q0; (2) specifying the

datasource by selecting the particular CSV file he wants to work with (thus going into

state q1); (3) at any time the data from the data source can be explored; (4) running the

dataminer as the one described in Sect. 3 computes the functional dependencies that are

shown on the list on the left (notice that the miner program can be changed for an

alternative program provided that it satisfies the interface as explained in Fig. 2), this

will take the user to state q2; (5) once the list is filled with the functional dependencies

computed from the current data in the CSV, which we chose to call tentative functional

dependencies, as they are contingent on current data, the user can select one of them

getting to state q3; (6) once in q3, the user can optionally chose directly delete a tentative

functional dependency or else to see the projection of the table limited to the columns

mentioned in the selected functional dependency to determine if some combination of

values is missing, determining so by pressing the button labeled “Revise FD” will take

him to state q4; (7) in q4 the application will open a new form showing to the user

invented tuples that are not currently in the table by producing random combinations

with data already present in the table according to the algorithm in Fig. 7; (8) in q5, the

user can select one or more than one alternative tuples to add to the already existing

tuples in the projected table, and then go to q6; (9) in q6, the miner is run on the projected

table to validate if the revised dependency still holds or new ones appear, this new

computed dependencies are displayed on the list located on the right, leading the system

to state q7; (10) in q7, the user can delete the revised funtional dependency or select

some of the newly found functional dependencies and copy them to the list on the left

pane, and, (11) finally, the user can clear the process to return to state q0.

Regarding step (2), our approach assumes that all fields are considered string typed,

that no field delimiters are present and the user can choose only between comma and

semicolon characters as field separators. Step (4) was already discussed in Sect. 3. To

illustrate how steps (5)–(10) are intended to be used, we continue the preceding

example. Consider the tentative functional dependency CarBrand → CarPerception

computed in (4). The projection of the tuples restricted to its fields, and without

duplicate data, is shown in Fig. (6.a). For example, suppose that the user considers that

 XVI Workshop de Innovación en Sistemas de Software

> Full Papers Página | 415

the perception of Chevrolet must be high instead of low. The user can ask the system to

generate unseen tuples in steps (6)-(7). This new invented tuples are generated using

the algorithm in Fig. 7. Once the user explores the invented tuples, he can select the

appropriate ones to be added to the projection (see Fig. 6.b). Then, after running again

the miner, in this particular case, there are no functional dependencies that hold in this

view of the table with the invented record that were selected. So the user can decide to

delete the functional dependency under consideration. Conversely, as the system

generates those potential scenarios, it lets the user deciding to keep or discard the

proposed functional dependency. When the user observes that a suggested combination

of data from the domain that respects the functional dependency is not consistent with

his view of the domain, he can opt for discarding the suggested dependency. Besides,

if other functional dependencies were discovered to hold in this new dataset, they will

be shown in the list of right side of the screen, and then the user can decide to add to

the main set of tentative functional dependencies.

5. Discussion and Related Work

Cunha et al. [3] present techniques and tools to transform spreadsheets into

relational databases and back. A set of data refinement rules is introduced to map a

tabular datatype into a relational database schema. Having expressed the transformation

of the two data models as data refinements, they obtain for free the functions that

migrate the data usin well-known relational database techniques to optimize and query

the data. Because data refinements define bi-directional transformations, they can map

such database back to an optimized spreadsheet. They implemented the data refinement

rules and constructed Haskell-based tools to manipulate, optimize and refactor Excel-

like spreadsheets. In our prototypical approach deals with Excel files but expressed as

CSV tables, GF has the functionality to load Excel files and this feature can be added

in the future. In our application, CSV files are handled internally as H2 tables but the

data miner that we use as an external tool handles it as plain text. The work of Cunha

et al. uses the set of functional dependencies to generate a normalized relational

Fig.5. State diagram describing the usage of the GUI controls

q 0

q 1

q 2

q 3

q 4

q 5

q 6 q 7

Selectdatasource

Showdata

Runminer

Sortdependencies

SelectFD

ShowdatasupportingFD

DeleteFD

ReviseFD Selecttuplestoadd

Addrevisedtuples

SelectrevisedFD

←

Clearall
start

 XVI Workshop de Innovación en Sistemas de Software

> Full Papers Página | 416

 (a) (b)

Fig.6. (a) Records justifying functional dependency CarBrand → CarPerception and (b)

Invented records with alternative values

Algorithm GenerateAlternatives(Table T, FunctionalDependency C1...Cn → D)

Let values be a (n + 1)-size vector of sets

for i := 1 to n do
valuesi := executeQuery(SELECT DISTINCT Ci FROM T)

valuesn+1 := executeQuery(SELECT DISTINCT D FROM T)

Let script be an empty sequence of strings
script.addLine(CREATE TABLE aux(C1 VARCHAR(100), ..., Cn VARCHAR(100), D

VARCHAR(100));)
for epoch := 1 to MAX TUPLES do

 Let x be a vector of n + 1 components

 for i := 1 to n + 1 do xi := randomElementFrom(valuesi)

 if x is a previously unseen combination of values then
result := executeQuery(SELECT COUNT (*) AS Result FROM T

WHERE C1 = x1 AND ...AND Cn = xn AND D = xn+1)
if result = 0 then

 script.addLine(INSERT INTO aux(C1, ..., Cn, D) VALUES (x1, ...,

xn+1);)
ExecuteSQLScriptToGenerateTableAndShow(script)

Fig.7. Algorithm for generating unknown alternatives from table T w.r.t. functional

dependency C1 ...Cn→ D

database from the contents of the spreadsheet. Our application does not do that yet and

adding that functionality remains a future work. They use the FUN mining technique

and we use the TANE mining technique. As our approach is fully customizable, we

could employ the FUN miner in the future provided a functioning version of it is

available. In particular, Cunha et al. present an example that considers a spreadsheet for

representing a property renting system (see [3, Fig. 1]). In the accompanying files

published online with our executable application, we provide a recreation of that file,

named book.csv, showing that our system can compute the functional dependencies

shown in that work.

Despite the ubiquity of spreadsheets, the problem of dealing with transformations

of spreadsheet data to more formal data formats is still relevant. Müller and Mertov´a

[4] justify and propose a lightweight recording-based solution to the tracing of the steps

for transforming spreadsheets into ontologies that works on a wide variety of

spreadsheet programs, from Microsoft Excel to Google Docs. GF can transform

spreadsheets into ontologies but in this particular work we are concentrated in

functional dependencies emerging from tables within spreadsheet data.

 XVI Workshop de Innovación en Sistemas de Software

> Full Papers Página | 417

Salem and Abdo [5] propose two techniques for mining accurate conditional

functional dependencies rules from such databases to be employed for data cleaning.

The idea of the proposed techniques is to mine firstly maximal closed frequent patterns,

then mine the dependable conditional functional dependencies rules with the help of

lift measure. That approach is complementary to ours because in the current status of

our work, we assume that the data is accurate. Their approach could be used to extend

our solution with a data-cleaning preprocess for capturing semantic errors.

6. Conclusions and Future Work

In this paper we tackled the problem of finding functional dependencies in a

spreadsheet table. We relied on the TANE datamining algorithm integrating it with our

GF framework for ontology-based data access. We presented a running example that

showed how our approach assists the user so he can revise a tentative set of functional

dependencies computed with TANE using possible tuples not already present in the

table that are computed by our system. The limitations of our approach are all fields are

considered string typed, that no field delimiters are present and the used can choose

only between comma and semicolon characters as field separators. The solution is

customizable provided that a miner is provided satisfying a very precise command-line

interface.

Possible research avenues for extending the work presented here include generating

a normalized data base using the functional dependencies computed by the miner and

later revised by the user with the assistance of our system, and then exporting this

database as an ontology. Other possible paths to be explored are the adaptation of the

mining algorithms to different data types and constraints.

Acknowledgments. This work was supported by Secretaría General de Ciencia y

Técnica, Universidad Nacional del Sur, Argentina, and by Comisión de Investigaciones

Científicas de la Provincia de Buenos Aires (CIC-PBA).

References

1. Huhtala, Y., Kärkkäinen, J., Porkka, P., Toivonen, H.: TANE–An efficient algorithm for

discovering functional and approximate dependencies. The Computer Journal 42(2) (1999)

100–111
2. Gómez, S.A., Fillottrani, P.R.: A Query-By-Example Approach to Compose SPARQL

Queries in the GF Framework for Ontology-Based Data cmdAccess. In Pesado, P., ed.: 28th

Argentine Congress, CACIC 2022 – Revised Selected Papers. Springer (2023) 211–226

3. Cunha, J., Saraiva, J., Visser, J.: From spreadsheets to relational databases and back. In:
PEPM ’09: Proceedings of the 2009 ACM SIGPLAN workshop on Partial evaluation and

program manipulation. ACM (jan 2009) 179–188

4. Müller, W., Mertová, L.: ReStoRunT: Simple Recording, Storing, Running and Tracing

changes in Spreadsheets. In et al., B.K.R., ed.: BTW 2023, Lecture Notes in Informatics
(LNI), Gesellschaft für Informatik. LNI (2023) 865–877

5. Salem, R., Abdo, A.: Fixing rules for data cleaning based on conditional functional

dependency. Future Computing and Informatics Journal 1(1) (2016) 10–26

	XVI Workshop de Innovación en Sistemas de Software > Full Papers
	A Prototypical Tool for Analyzing Functional Dependencies Induced from Spreadsheets
	1. Introduction
	2. Spreadsheets as CSV Files
	3. Finding Functional Dependencies in Spreadsheets
	4. Revising Functional Dependencies
	5. Discussion and Related Work
	6. Conclusions and Future Work
	References

