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Abstract. Running HPC applications in the cloud has proven to be a viable 

option to conventional parallel or distributed architectures, which require a high 
degree of management as well as poor resource scaling. The traditional approach 

for a user is to usually use the Cloud provider to provision resources to virtual 

machines (VMs), using them in a similar way to an on-premises infrastructure, 

with the consequent problem of resource management coupled with the 
degradation of application performance due to contextualization of virtualized 

environments. Serverless computing allows a user to run code written in the 

programming language of their choice, without first having to provision a virtual 

machine. On the other hand, elasticity, availability, scalability, and fault tolerance 
are provided transparently by the cloud provider. This way it is possible to reduce 

the complexity of infrastructure management for the developer, allowing him to 

focus on the logic of the application. Also, economic advantages arise, when just 

paying for usage time. The work focuses on the challenge of evaluating the cost, 
not only monetary but also of performance, of migrating HPC applications to 

serverless environments. This evaluation will allow the decision to be made 

REGARDING which infrastructure will be used, in order to obtain the best 

performance benefit.  

Keywords: IoT, Cloud Computing, HPC Serverles Computing, FaaS, GCP, 

Cloud Function.  

1.  Introduction  

The increasing popularity of IoT and the massification of cloud infrastructures have 

recently opened up a world of possibilities for HPC applications. This is due to the huge 

quantity of data that IoT devices generate, which makes it impractical to treat them with 

traditional paradigms. To achieve the adequate processing of this kind of data with 

significant speed and size characteristics, it is mandatory to dispense with traditional 

programming paradigms [1]. Therefore, it is necessary to apply algorithms to take 

advantage of the scalability of computing and data processing resources [2] [3]. In this 

sense, it is proposed high performance computing techniques (HPC) as a solution to 

data processing coming from IoT so as to increase processing performance.  

Although HPC architectures have evolved to get better response times for 

applications, they have the drawback of scaling computing resources, which is why 

migrating to the cloud becomes a reasonable alternative [4].  

mailto:lebejoaquin@gmail.com
mailto:marite@unsj-cuim.edu.ar
mailto:nelson@iinfo.unsj.edu.ar
mailto:adrianamartin1@gmail.com


 

 XXIV Workshop de Procesamiento Distribuido y Paralelo 

> Full Papers  Página | 502 

Like any other service, Cloud Computing has been characterized as a technology 

focused on providing on-demand computing, which is an advantage for assembling 

applications where intensive processing is necessary [5].  

Cloud providers claim many advantages in HPC application migration, such as fast 

access to resources, lower costs and flexibility in sourcing and provisioning [6]. 

However, the cloud has two major disadvantages, the first one being the degradation of 

the applications performance when assembled on virtualized architecture, since it 

generates overhead in the contextualization of virtual machines; and the second 

disadvantage when deploying applications in the cloud, is that the organization must be 

responsible for keeping the infrastructure needed to deploy the applications working 

properly, which leads to charging costs on the budget for its maintenance and support 

[7].  

In this sense, the emergence of Serverless Computing [8] means that developers do 

not have to worry about infrastructure provisioning and scaling, so they can focus on 

their applications logic. In this way, it is possible to achieve the abstraction of server 

management (provisioning, configuration, scaling, etc.) so that users, in this case 

developers, can focus on the aforementioned logic.  

2. Related jobs  

The advantages and disadvantages of migrating HPC applications to the cloud have 

been mentioned in previous paragraphs. However, the time and effort required to 

configure the virtual resources may be greater than the actual time and effort spent 

doing the calculations. On the other hand, if the serverless paradigm is used it will be 

possible to have more granular control over the service provided, leaving infrastructure 

management in the hands of the cloud provider.  

In [9], a systematic mapping of 89 use cases has been carried out where the 

serverless paradigm was applied to solve mostly HPC-related problems. But there is 

little information on a performance comparison between the applications running on 

the serverless paradigm versus the same applications running on a traditional cloud 

infrastructure, in which a behaviour analysis can be done to later decide which the best 

solution to run HPC applications is.  

This work uses [10] as a starting point and deepens the research tasks based on [11], 

[12], [13] among others in recent years, in which it has been explored and evaluated the 

performance of the use of serverless in HPC applications. While these studies show that 

serverless is easy to use and inexpensive, its effectiveness over the conventional 

approach to cloud applications has not yet been quantified.  

3. Work Scenarios  

Three scenarios are proposed: two main scenarios and another secondary one; in 

which it will be evaluated: Contextualization time, Execution time and Price. The 

implementations and study were carried out in the Google cloud (Google Cloud 

Platform).  
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The first evaluation scenario is the "traditional" cloud. This scenario is made on a 

resource that functions as PaaS for which Datproc will be used, that allows to operate 

a cluster with Spark of 4 nodes, 3 workers and 1 master, with a maximum of 8 vCPUs 

in all. On the cluster the interfaces provided by Google are used to operate with the 

cluster, mainly the REST resource to send jobs via HTTP and the Jupyter notebook.  

The second scenario runs on Cloud Functions, it consists of 4 nodes, 3 workers and 

1 master to make an equivalence with a cluster of 3 workers and 1 master of the 

Dataproc configuration. The master node will be responsible for triggering the worker 

function 3 times to boot 3 instances "simultaneously" and then collect the results 

obtained by each of those instances, to figure out a unique result that will be the final 

result of the problem to solve. To solve each part of the problem, the worker function 

will use Pandas to work the data file as a dataframe.  

The third scenario is a combination of the previous PaaS (Dataproc) scenarios and 

"on-demand" FaaS (Cloud Functions) cluster. Through an event, in this case an HTTP 

request, a function is executed which, in turn, generates a template for automatic cluster 

generation that is sent to the Dataproc API. After that cluster creation, you start 

executing processing and then shut down and remove the cluster.  

4. Problem to solve and configuration behaviour  

The problem to be solved is to determine, based on historical data obtained by 

sensors from 2009 to 2022, the time of day when the amount of CO (carbon monoxide) 

is lowest. For this purpose, a dataset from open data provided by the government of 

Buenos Aires on the site https://data.buenosaires.gob.ar/dataset/calidad-aire is used. 

The dataset has 110,000 records (one record for each time of day, from 2009 to 2022 in 

Centenario, Córdoba and La Boca cities). It was performed a record cleaning without 

data, after which it was obtained a dataset with 70,000 records.   

To make a valid comparison, the resolution of the problem must be compared with 

two equivalent configurations. The minimum resource configuration for each node in 

Dataproc is 1 vCPU and 3.5GB of RAM; therefore, the evaluation will be made on 

customized machines with these resources on the first and third configuration, and on 

instances of 2GB of RAM and 1 vCPU on the second configuration since it is an even 

number of resources that is compared despite there being a difference in RAM.  

4.1 Scenario 1: PaaS setup   

The aspects evaluated in this configuration are considered once the cluster is in 

operation, the time from when the cluster is created until it shuts down will be taken 

into account in scenario 3 that corresponds to the PaaS Configuration with executing 

function.  

  

Execution time. To obtain an accurate execution time, the average execution time 

of 10 jobs is considered (see Fig.1), where the resulting average time is 56 seconds.  
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Fig.1. Execution time of 10 jobs. 

 

Price of the solution. Having the necessary resources provisioned only involves 

solving the problem and it is the price per second of having an n1-standard-1 instance 

running: 0.00001319444 U$D. If the cluster consists of 4 instances of this type and is 

running for 56 seconds, the total cost of the 4 instances in Cloud Engine is: 

0.00001319444 U$D / s * 56 s * 4 = 0.003166664 U$D. If the cost of the Dataproc fee 

is added, the final cost of having the cluster running for 56 seconds is: 0.0006222222 

U$D + 0.003166664 U$D = 0.00378888884 U$D.  

4.2 Scenario 2: FaaS Configuration  

What it has been observed in this configuration covers all the aspects, since they 

are measurable from it and it does not require another particular scenario for an 

accurate measurement.  

  

Contextualization time. A new function instance is started in two cases: When 

the function is deployed or when a new function instance is automatically created to 

scale up (vertically) to the load, or occasionally, to replace an existing instance. 

Starting a new function instance involves loading the runtime environment and code. 

Requests that include the launch of function instances, called cold starts, may be 

slower than those routed to existing function instances. The occurrence of an error in 

the execution of the code implies a restart of the instance and therefore its 

corresponding cold start.   

In Fig. 2, you can see the difference in execution times between a hot and a cold 

instance, you can see that the light blue instance is a hot instance because the INIT 

log does not appear, in addition to the fact that the execution takes only 462ms. 

Although in the three, the execution of the function took approximately 450 ms, it 

can be seen that in the last two ones, since the initialization time is also added, the 

final execution time is 3322 ms and 3378 ms respectively.  

 



 

 XXIV Workshop de Procesamiento Distribuido y Paralelo 

> Full Papers  Página | 505 

 

Fig. 2. Initialization time of a function instance. 

  

The hot instance corresponds to the same instance that was initialized when 

updating the function, so the call of the first worker is routed to that instance, which of 

course also had its initialization time, but in a previous execution as shown in Fig.3.  
  

 
Fig. 3. Detailed logs showing that the execution of the light blue instance corresponds to a 

previous initialization of the instance. 

 

The contextualization time of the functions, calculated as the average of 12 

initializations, resulted in: 2.02986383438 seconds, for this case.  

  

Execution time. Since contextualization time is different for both hot and cold 

instances, the execution time is calculated for both types of instances. To obtain an 

execution time, 10 executions of the master function are considered.  

Hot run executions. Hot run executions are those that already have the execution 

environment and the code loaded, so there is no contextualization time in them. Next, 

it will be described what was observed when solving the problem with hot functions.  

• Master instances: After carrying out 10 executions of the master function, the 

average execution time obtained is 295.3 ms.  

• Worker instances: The execution time for the worker instances was calculated with 

the time resulting from each execution in the total number of worker instances 

executed by calling the master instance 10 times. The time resulting from the 
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calculation of the average in 30 instances is 177.4 ms.  

 

Cold run executions. Cold executions require an extra contextualization time to the 

time necessary for the execution of the function.  

• Master instances: it was obtained by averaging the times of 10 executions carried 

out, and the resulting time was 4423 ms.  

• Worker instances: it was calculated from the 30 executions carried out by the 

master function. The time resulting from the calculation of the average in 30 

instances is 2701 ms. This value considers the initialization time of the cold 

function, removing the initialization time from this equation, the average final 

execution time of the 30 executions is: 0.38844459056 s.  

Price of the solution. The price calculated for the FaaS solution takes into account 

the runtime of the cold instances. In Cloud Functions, the price of having each worker 

instance running for 2700 milliseconds is charged to the nearest 100 milliseconds: 27 * 

0.000005800 USD = 0.0001566 USD. The solution to the problem requires 3 worker 

instances and 1 master instance, so the final price is: 0.0001566 U$D * 3 +  

0.000012501 U$D = 0.000482301 U$D  

4.3 Scenario 3: PaaS configuration with executor function  

This configuration has as its main objective to measure the times involved in the 

contextualization and shutdown of the cluster, it is a configuration that complements 

what cannot be observed in scenario 1.  

  

Contextualization time. An important aspect to take into account is that the cluster 

does not start working at the time the job starts executing, but rather it has a 

provisioning and contextualization time at the beginning, another one when it is turned 

off, during which it cannot be used, and also to be taken into account at the time it is 

charged.  

As the objective of this configuration is to know the time dedicated to provisioning, 

contextualization of the cluster and next shutdown after processing the jobs, 10 

executions of this configuration are carried out to obtain, on average, what is the time 

dedicated to these processes that go unnoticed when running a cluster.  

• Cluster startup and resource provisioning time: 228 s = 3m48s  

• Cluster removal time: 61 s = 1m01s  

Making a sum of these times and the average execution time of a job (56 s) obtained 

in the first configuration results in a total time of: 4m49s + 56s = 5m45s  

  

Execution time. To know the final execution time the cluster takes to solve the 

problem considering provisioning, contextualization, processing and next deletion, the 

average of 10 executions was calculated. The total average duration of the execution of 

the cluster obtained was: 340.5 s = 5m40s  

In other words, considering the average execution of a job in the PaaS Configuration 

of scenario 1 and the contextualization and cluster removal times of the current 

Configuration, it coincides with a 5-second error since it is an average of the total 
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execution time of the cluster with the sum of the provisioning, running, and removed 

averages.  

Another aspect to take into account is that this time is the time required one to create, 

provision, process, stop and delete. Once the cluster is provisioned, since creation is 

not required, the startup time decreases a significant portion of the initial time required.  

  

Price of the solution. The price per second of having an instance of type n1-

standard1 running is $0.00001319444. If the cluster is on for 5m 40s on average and 

consists of 4 instances, then the final price of the four instances on Compute Engine is 

0.00001319444 U$D / s * 340 s * 4 = 0.01792333318 U$D. To this situation the 

Dataproc fee must be added, the final price of running a cluster for 340 seconds is 

0.00377777777 U$D + 0.01792333318 U$D = 0.02170111095 U$D  

4.4 Comparison of what was observed  

When solving the problem with the different configurations, important differences 

were observed in the aspects studied.  

  

Contextualization time. When comparing contextualization times of both 

configurations (see Fig.4), it is observed that the PaaS Configuration takes almost 5 

minutes, adding the cluster provisioning and shutdown time after processing the job. 

On the other hand, the FaaS Configuration, when considering cold runs, have a 

contextualization time of 2 seconds.  

 

 

Fig.4. Contextualization time of each configuration. 

  

Execution time. The PaaS Configuration requires 56 seconds on average, while the 

FaaS Configuration requires 366 milliseconds, being this less than 1% of the time that 

it takes the first configuration (see Fig.5). Also, the time required by FaaS is mainly 

dedicated to reading the file from storage.  
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Fig.5. Runtime with stacked times. 

 

Price. Finally, price is the aspect where there is a notable difference in using each 

of the configurations. As above, the price of PaaS Configuration exceeds the price of 

FaaS Configuration.  

4.5 FaaS in detail  

Next, some aspects and limitations of FaaS will be described, in addition to making 

some comparisons with some aspects of the scenario traditionally used in order to 

conclude if it is possible to build HPC environments based on FaaS and to what extent 

it would be feasible to do so.  

 

Function execution time. Execution time is a key aspect for the resolution of a 

problem and this aspect in FaaS is limited; the maximum time that a function can be 

running is 540 seconds in GCP and varies depending on the provider.  

 

Memory limit. Each instance of a function has a memory limit that is set when 

configuring it, function memory capacity can go from 128MB to 8GB.  

To evaluate the behaviour of the functions in an HPC environment, it is necessary 

to take this aspect into account. The evaluation started by processing 2GB (56,999,943 

rows) with each instance within the 1 master and 3 worker configurations, that is, each 

of the 3 worker instances read a 2GB file and processed it. From this first evaluation, it 

turned out  that from 11 processes that were carried out (66 GB of data) only 3 of them 

responded correctly, that is, 27% of the total number of executions carried out (see 

Fig.6).  
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Fig.6. Percentage of correctness of the configuration. 

 

Later on, the capacity of the worker separated from the complete configuration is 

evaluated to know the capacity of the running instance separated from the 

configuration. To do this, the percentage of executions that responded correctly with 

different loads was evaluated for 10 minutes, to know the point at which the percentage 

of correctness is 100%. The loads used, from highest to lowest, were 2 GB (56,999,943 

rows), 1.3 GB (37,205,301 rows), 1 GB (29,999,971 rows), 500 MB (14,999,986 rows).  

That is, for this particular problem with the processing that is done and the libraries 

that you use, for a function of 8 GB and 2 vCPU per instance, the optimal file size is 

500 MB.  

 

Higher scales and elasticity. Considering that the optimal file size for an 8 GB 

function is 500 MB, for each configuration of 1 master and 3 workers 1.5GB is 

processed.   

As FaaS are self-scalable in terms of the number of received requests, it is possible 

to execute up to 10,000 instances simultaneously. For this case, 60 instances of the 

master function were executed simultaneously and, as it can be seen in Fig.7, the 

number of running instances can go from 0 instances to 60 almost instantly; so if each 

configuration of 1 master and 3 workers processes 1.5 GB, with 60 runs 90 GB are 

processed.  

 

 
Fig.7. Number of instances of the master function running concurrently. 

  

Large amount of data processed in a limited time. As seen above, 60 instances of 

the master function were executed, which involved processing 90 GB in all. The 

important thing about this is that, since FaaS runs in a different environment than the 

rest of the other executions of the same function, executions can overlap and manage 

to process large amounts of data in a short period of time. In Fig 8., it is shown that the 

average time taken to execute each processing in each execution is 29 seconds.  
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Fig.8. Duration of http request to master function. 

 

That is, if the average execution took 30 seconds, and 60 simultaneous executions 

were launched, as each execution processes 1.5 GB, 90 GB of data was processed in 30 

seconds.  

  

Costs of the processing performed. The price per 100 ms of running an instance 

of an 8 GB function is 0.000006800 U$D. If each instance ran on average 30 seconds, 

the price per instance is 0.000006800 U$D * 300 = 0.00204 U$D. If 60 instances of the 

master function were executed and each master function executes 3 instances of the 

worker function, then the total cost for processing 90 GB in 30 seconds is 0.00204 U$D 

* 60 * 3 = 0.3672 U$D. Adding to this, the cost of running the 60 master instances that 

are 128MB the total price for running the environment for 30 seconds is 0.3672 U$D + 

0.004158 = 0.371358 U$D  

5. Conclusions  

It is possible to build an HPC environment in Functions as a Service, but depending 

on the problem to be solved, it may or may not be a viable solution.  

Positive points for which it could be viable to build an environment based on 

Functions:  

• Fast processing of medium loads.  

• Elasticity, allowing large amounts of data to be processed with multiple instances 

running simultaneously.  

• Saving on costs.  

• Automation and integration with external services.  

  

Negative points by which Functions as a Service are not a reliable alternative to 

build an HPC environment:  

• While the user does not take over the infrastructure, there is no actual autoscaling, 

he must know approximately the number of instances to run.  

• With little flexibility, making changes to the processing code could cause the 

environment to require an increase in resources or be destroyed if it reaches the 

maximum.  
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• Inability to make an analysis of the data; an external application is required to view 

the results.  

• Technically it works only for weakly coupled problems and specific cases.  

• There are limitations of time and memory imposed by technology.  

• It takes extra effort to develop the environment to solve a problem with some 

degree of coupling.  

• Limitations in the amount of data that can be processed (5 TB) considering the 

limit of 10,000 running instances.  

• The possible cost reduction translates into the rigidity of the environment, its 

development, maintenance and its possible disablement in case of a change in the 

characteristics of the problem to be solved.  

• Limited customization of instances.  

For all these aspects, depending on the problem that is sought to be solved, it may 

be feasible to build the environment based on FaaS. The most important benefits are 

the speed and elasticity of the functions, which require a loosely coupled or 

zerocoupling problem of low-medium load (up to 1TB) to work optimally. The 

monetary benefit can be considered, but it is not the main thing that should be 

considered when building an HPC environment.  
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