

 XXIV Workshop de Procesamiento Distribuido y Paralelo

> Full Papers Página | 501

Evaluation of FaaS as an alternative to build HPC

environments

María Murazzo, Joaquín Lebetti, Nelson Rodríguez, Adriana Martin

Departamento e Instituto de Informática - F.C.E.F. y N. - U.N.S.J.

Complejo Islas Malvinas. Cereceto y Meglioli. 5400. Rivadavia. San Juan,

lebejoaquin@gmail.com, marite@unsj-cuim.edu.ar,

nelson@iinfo.unsj.edu.ar , adrianamartin1@gmail.com

Abstract. Running HPC applications in the cloud has proven to be a viable

option to conventional parallel or distributed architectures, which require a high
degree of management as well as poor resource scaling. The traditional approach

for a user is to usually use the Cloud provider to provision resources to virtual

machines (VMs), using them in a similar way to an on-premises infrastructure,

with the consequent problem of resource management coupled with the
degradation of application performance due to contextualization of virtualized

environments. Serverless computing allows a user to run code written in the

programming language of their choice, without first having to provision a virtual

machine. On the other hand, elasticity, availability, scalability, and fault tolerance
are provided transparently by the cloud provider. This way it is possible to reduce

the complexity of infrastructure management for the developer, allowing him to

focus on the logic of the application. Also, economic advantages arise, when just

paying for usage time. The work focuses on the challenge of evaluating the cost,
not only monetary but also of performance, of migrating HPC applications to

serverless environments. This evaluation will allow the decision to be made

REGARDING which infrastructure will be used, in order to obtain the best

performance benefit.

Keywords: IoT, Cloud Computing, HPC Serverles Computing, FaaS, GCP,

Cloud Function.

1. Introduction

The increasing popularity of IoT and the massification of cloud infrastructures have

recently opened up a world of possibilities for HPC applications. This is due to the huge

quantity of data that IoT devices generate, which makes it impractical to treat them with

traditional paradigms. To achieve the adequate processing of this kind of data with

significant speed and size characteristics, it is mandatory to dispense with traditional

programming paradigms [1]. Therefore, it is necessary to apply algorithms to take

advantage of the scalability of computing and data processing resources [2] [3]. In this

sense, it is proposed high performance computing techniques (HPC) as a solution to

data processing coming from IoT so as to increase processing performance.

Although HPC architectures have evolved to get better response times for

applications, they have the drawback of scaling computing resources, which is why

migrating to the cloud becomes a reasonable alternative [4].

mailto:lebejoaquin@gmail.com
mailto:marite@unsj-cuim.edu.ar
mailto:nelson@iinfo.unsj.edu.ar
mailto:adrianamartin1@gmail.com

 XXIV Workshop de Procesamiento Distribuido y Paralelo

> Full Papers Página | 502

Like any other service, Cloud Computing has been characterized as a technology

focused on providing on-demand computing, which is an advantage for assembling

applications where intensive processing is necessary [5].

Cloud providers claim many advantages in HPC application migration, such as fast

access to resources, lower costs and flexibility in sourcing and provisioning [6].

However, the cloud has two major disadvantages, the first one being the degradation of

the applications performance when assembled on virtualized architecture, since it

generates overhead in the contextualization of virtual machines; and the second

disadvantage when deploying applications in the cloud, is that the organization must be

responsible for keeping the infrastructure needed to deploy the applications working

properly, which leads to charging costs on the budget for its maintenance and support

[7].

In this sense, the emergence of Serverless Computing [8] means that developers do

not have to worry about infrastructure provisioning and scaling, so they can focus on

their applications logic. In this way, it is possible to achieve the abstraction of server

management (provisioning, configuration, scaling, etc.) so that users, in this case

developers, can focus on the aforementioned logic.

2. Related jobs

The advantages and disadvantages of migrating HPC applications to the cloud have

been mentioned in previous paragraphs. However, the time and effort required to

configure the virtual resources may be greater than the actual time and effort spent

doing the calculations. On the other hand, if the serverless paradigm is used it will be

possible to have more granular control over the service provided, leaving infrastructure

management in the hands of the cloud provider.

In [9], a systematic mapping of 89 use cases has been carried out where the

serverless paradigm was applied to solve mostly HPC-related problems. But there is

little information on a performance comparison between the applications running on

the serverless paradigm versus the same applications running on a traditional cloud

infrastructure, in which a behaviour analysis can be done to later decide which the best

solution to run HPC applications is.

This work uses [10] as a starting point and deepens the research tasks based on [11],

[12], [13] among others in recent years, in which it has been explored and evaluated the

performance of the use of serverless in HPC applications. While these studies show that

serverless is easy to use and inexpensive, its effectiveness over the conventional

approach to cloud applications has not yet been quantified.

3. Work Scenarios

Three scenarios are proposed: two main scenarios and another secondary one; in

which it will be evaluated: Contextualization time, Execution time and Price. The

implementations and study were carried out in the Google cloud (Google Cloud

Platform).

 XXIV Workshop de Procesamiento Distribuido y Paralelo

> Full Papers Página | 503

The first evaluation scenario is the "traditional" cloud. This scenario is made on a

resource that functions as PaaS for which Datproc will be used, that allows to operate

a cluster with Spark of 4 nodes, 3 workers and 1 master, with a maximum of 8 vCPUs

in all. On the cluster the interfaces provided by Google are used to operate with the

cluster, mainly the REST resource to send jobs via HTTP and the Jupyter notebook.

The second scenario runs on Cloud Functions, it consists of 4 nodes, 3 workers and

1 master to make an equivalence with a cluster of 3 workers and 1 master of the

Dataproc configuration. The master node will be responsible for triggering the worker

function 3 times to boot 3 instances "simultaneously" and then collect the results

obtained by each of those instances, to figure out a unique result that will be the final

result of the problem to solve. To solve each part of the problem, the worker function

will use Pandas to work the data file as a dataframe.

The third scenario is a combination of the previous PaaS (Dataproc) scenarios and

"on-demand" FaaS (Cloud Functions) cluster. Through an event, in this case an HTTP

request, a function is executed which, in turn, generates a template for automatic cluster

generation that is sent to the Dataproc API. After that cluster creation, you start

executing processing and then shut down and remove the cluster.

4. Problem to solve and configuration behaviour

The problem to be solved is to determine, based on historical data obtained by

sensors from 2009 to 2022, the time of day when the amount of CO (carbon monoxide)

is lowest. For this purpose, a dataset from open data provided by the government of

Buenos Aires on the site https://data.buenosaires.gob.ar/dataset/calidad-aire is used.

The dataset has 110,000 records (one record for each time of day, from 2009 to 2022 in

Centenario, Córdoba and La Boca cities). It was performed a record cleaning without

data, after which it was obtained a dataset with 70,000 records.

To make a valid comparison, the resolution of the problem must be compared with

two equivalent configurations. The minimum resource configuration for each node in

Dataproc is 1 vCPU and 3.5GB of RAM; therefore, the evaluation will be made on

customized machines with these resources on the first and third configuration, and on

instances of 2GB of RAM and 1 vCPU on the second configuration since it is an even

number of resources that is compared despite there being a difference in RAM.

4.1 Scenario 1: PaaS setup

The aspects evaluated in this configuration are considered once the cluster is in

operation, the time from when the cluster is created until it shuts down will be taken

into account in scenario 3 that corresponds to the PaaS Configuration with executing

function.

Execution time. To obtain an accurate execution time, the average execution time

of 10 jobs is considered (see Fig.1), where the resulting average time is 56 seconds.

 XXIV Workshop de Procesamiento Distribuido y Paralelo

> Full Papers Página | 504

Fig.1. Execution time of 10 jobs.

Price of the solution. Having the necessary resources provisioned only involves

solving the problem and it is the price per second of having an n1-standard-1 instance

running: 0.00001319444 U$D. If the cluster consists of 4 instances of this type and is

running for 56 seconds, the total cost of the 4 instances in Cloud Engine is:

0.00001319444 U$D / s * 56 s * 4 = 0.003166664 U$D. If the cost of the Dataproc fee

is added, the final cost of having the cluster running for 56 seconds is: 0.0006222222

U$D + 0.003166664 U$D = 0.00378888884 U$D.

4.2 Scenario 2: FaaS Configuration

What it has been observed in this configuration covers all the aspects, since they

are measurable from it and it does not require another particular scenario for an

accurate measurement.

Contextualization time. A new function instance is started in two cases: When

the function is deployed or when a new function instance is automatically created to

scale up (vertically) to the load, or occasionally, to replace an existing instance.

Starting a new function instance involves loading the runtime environment and code.

Requests that include the launch of function instances, called cold starts, may be

slower than those routed to existing function instances. The occurrence of an error in

the execution of the code implies a restart of the instance and therefore its

corresponding cold start.

In Fig. 2, you can see the difference in execution times between a hot and a cold

instance, you can see that the light blue instance is a hot instance because the INIT

log does not appear, in addition to the fact that the execution takes only 462ms.

Although in the three, the execution of the function took approximately 450 ms, it

can be seen that in the last two ones, since the initialization time is also added, the

final execution time is 3322 ms and 3378 ms respectively.

 XXIV Workshop de Procesamiento Distribuido y Paralelo

> Full Papers Página | 505

Fig. 2. Initialization time of a function instance.

The hot instance corresponds to the same instance that was initialized when

updating the function, so the call of the first worker is routed to that instance, which of

course also had its initialization time, but in a previous execution as shown in Fig.3.

Fig. 3. Detailed logs showing that the execution of the light blue instance corresponds to a

previous initialization of the instance.

The contextualization time of the functions, calculated as the average of 12

initializations, resulted in: 2.02986383438 seconds, for this case.

Execution time. Since contextualization time is different for both hot and cold

instances, the execution time is calculated for both types of instances. To obtain an

execution time, 10 executions of the master function are considered.

Hot run executions. Hot run executions are those that already have the execution

environment and the code loaded, so there is no contextualization time in them. Next,

it will be described what was observed when solving the problem with hot functions.

• Master instances: After carrying out 10 executions of the master function, the

average execution time obtained is 295.3 ms.

• Worker instances: The execution time for the worker instances was calculated with

the time resulting from each execution in the total number of worker instances

executed by calling the master instance 10 times. The time resulting from the

 XXIV Workshop de Procesamiento Distribuido y Paralelo

> Full Papers Página | 506

calculation of the average in 30 instances is 177.4 ms.

Cold run executions. Cold executions require an extra contextualization time to the

time necessary for the execution of the function.

• Master instances: it was obtained by averaging the times of 10 executions carried

out, and the resulting time was 4423 ms.

• Worker instances: it was calculated from the 30 executions carried out by the

master function. The time resulting from the calculation of the average in 30

instances is 2701 ms. This value considers the initialization time of the cold

function, removing the initialization time from this equation, the average final

execution time of the 30 executions is: 0.38844459056 s.

Price of the solution. The price calculated for the FaaS solution takes into account

the runtime of the cold instances. In Cloud Functions, the price of having each worker

instance running for 2700 milliseconds is charged to the nearest 100 milliseconds: 27 *

0.000005800 USD = 0.0001566 USD. The solution to the problem requires 3 worker

instances and 1 master instance, so the final price is: 0.0001566 U$D * 3 +

0.000012501 U$D = 0.000482301 U$D

4.3 Scenario 3: PaaS configuration with executor function

This configuration has as its main objective to measure the times involved in the

contextualization and shutdown of the cluster, it is a configuration that complements

what cannot be observed in scenario 1.

Contextualization time. An important aspect to take into account is that the cluster

does not start working at the time the job starts executing, but rather it has a

provisioning and contextualization time at the beginning, another one when it is turned

off, during which it cannot be used, and also to be taken into account at the time it is

charged.

As the objective of this configuration is to know the time dedicated to provisioning,

contextualization of the cluster and next shutdown after processing the jobs, 10

executions of this configuration are carried out to obtain, on average, what is the time

dedicated to these processes that go unnoticed when running a cluster.

• Cluster startup and resource provisioning time: 228 s = 3m48s

• Cluster removal time: 61 s = 1m01s

Making a sum of these times and the average execution time of a job (56 s) obtained

in the first configuration results in a total time of: 4m49s + 56s = 5m45s

Execution time. To know the final execution time the cluster takes to solve the

problem considering provisioning, contextualization, processing and next deletion, the

average of 10 executions was calculated. The total average duration of the execution of

the cluster obtained was: 340.5 s = 5m40s

In other words, considering the average execution of a job in the PaaS Configuration

of scenario 1 and the contextualization and cluster removal times of the current

Configuration, it coincides with a 5-second error since it is an average of the total

 XXIV Workshop de Procesamiento Distribuido y Paralelo

> Full Papers Página | 507

execution time of the cluster with the sum of the provisioning, running, and removed

averages.

Another aspect to take into account is that this time is the time required one to create,

provision, process, stop and delete. Once the cluster is provisioned, since creation is

not required, the startup time decreases a significant portion of the initial time required.

Price of the solution. The price per second of having an instance of type n1-

standard1 running is $0.00001319444. If the cluster is on for 5m 40s on average and

consists of 4 instances, then the final price of the four instances on Compute Engine is

0.00001319444 U$D / s * 340 s * 4 = 0.01792333318 U$D. To this situation the

Dataproc fee must be added, the final price of running a cluster for 340 seconds is

0.00377777777 U$D + 0.01792333318 U$D = 0.02170111095 U$D

4.4 Comparison of what was observed

When solving the problem with the different configurations, important differences

were observed in the aspects studied.

Contextualization time. When comparing contextualization times of both

configurations (see Fig.4), it is observed that the PaaS Configuration takes almost 5

minutes, adding the cluster provisioning and shutdown time after processing the job.

On the other hand, the FaaS Configuration, when considering cold runs, have a

contextualization time of 2 seconds.

Fig.4. Contextualization time of each configuration.

Execution time. The PaaS Configuration requires 56 seconds on average, while the

FaaS Configuration requires 366 milliseconds, being this less than 1% of the time that

it takes the first configuration (see Fig.5). Also, the time required by FaaS is mainly

dedicated to reading the file from storage.

 XXIV Workshop de Procesamiento Distribuido y Paralelo

> Full Papers Página | 508

Fig.5. Runtime with stacked times.

Price. Finally, price is the aspect where there is a notable difference in using each

of the configurations. As above, the price of PaaS Configuration exceeds the price of

FaaS Configuration.

4.5 FaaS in detail

Next, some aspects and limitations of FaaS will be described, in addition to making

some comparisons with some aspects of the scenario traditionally used in order to

conclude if it is possible to build HPC environments based on FaaS and to what extent

it would be feasible to do so.

Function execution time. Execution time is a key aspect for the resolution of a

problem and this aspect in FaaS is limited; the maximum time that a function can be

running is 540 seconds in GCP and varies depending on the provider.

Memory limit. Each instance of a function has a memory limit that is set when

configuring it, function memory capacity can go from 128MB to 8GB.

To evaluate the behaviour of the functions in an HPC environment, it is necessary

to take this aspect into account. The evaluation started by processing 2GB (56,999,943

rows) with each instance within the 1 master and 3 worker configurations, that is, each

of the 3 worker instances read a 2GB file and processed it. From this first evaluation, it

turned out that from 11 processes that were carried out (66 GB of data) only 3 of them

responded correctly, that is, 27% of the total number of executions carried out (see

Fig.6).

 XXIV Workshop de Procesamiento Distribuido y Paralelo

> Full Papers Página | 509

Fig.6. Percentage of correctness of the configuration.

Later on, the capacity of the worker separated from the complete configuration is

evaluated to know the capacity of the running instance separated from the

configuration. To do this, the percentage of executions that responded correctly with

different loads was evaluated for 10 minutes, to know the point at which the percentage

of correctness is 100%. The loads used, from highest to lowest, were 2 GB (56,999,943

rows), 1.3 GB (37,205,301 rows), 1 GB (29,999,971 rows), 500 MB (14,999,986 rows).

That is, for this particular problem with the processing that is done and the libraries

that you use, for a function of 8 GB and 2 vCPU per instance, the optimal file size is

500 MB.

Higher scales and elasticity. Considering that the optimal file size for an 8 GB

function is 500 MB, for each configuration of 1 master and 3 workers 1.5GB is

processed.

As FaaS are self-scalable in terms of the number of received requests, it is possible

to execute up to 10,000 instances simultaneously. For this case, 60 instances of the

master function were executed simultaneously and, as it can be seen in Fig.7, the

number of running instances can go from 0 instances to 60 almost instantly; so if each

configuration of 1 master and 3 workers processes 1.5 GB, with 60 runs 90 GB are

processed.

Fig.7. Number of instances of the master function running concurrently.

Large amount of data processed in a limited time. As seen above, 60 instances of

the master function were executed, which involved processing 90 GB in all. The

important thing about this is that, since FaaS runs in a different environment than the

rest of the other executions of the same function, executions can overlap and manage

to process large amounts of data in a short period of time. In Fig 8., it is shown that the

average time taken to execute each processing in each execution is 29 seconds.

 XXIV Workshop de Procesamiento Distribuido y Paralelo

> Full Papers Página | 510

Fig.8. Duration of http request to master function.

That is, if the average execution took 30 seconds, and 60 simultaneous executions

were launched, as each execution processes 1.5 GB, 90 GB of data was processed in 30

seconds.

Costs of the processing performed. The price per 100 ms of running an instance

of an 8 GB function is 0.000006800 U$D. If each instance ran on average 30 seconds,

the price per instance is 0.000006800 U$D * 300 = 0.00204 U$D. If 60 instances of the

master function were executed and each master function executes 3 instances of the

worker function, then the total cost for processing 90 GB in 30 seconds is 0.00204 U$D

* 60 * 3 = 0.3672 U$D. Adding to this, the cost of running the 60 master instances that

are 128MB the total price for running the environment for 30 seconds is 0.3672 U$D +

0.004158 = 0.371358 U$D

5. Conclusions

It is possible to build an HPC environment in Functions as a Service, but depending

on the problem to be solved, it may or may not be a viable solution.

Positive points for which it could be viable to build an environment based on

Functions:

• Fast processing of medium loads.

• Elasticity, allowing large amounts of data to be processed with multiple instances

running simultaneously.

• Saving on costs.

• Automation and integration with external services.

Negative points by which Functions as a Service are not a reliable alternative to

build an HPC environment:

• While the user does not take over the infrastructure, there is no actual autoscaling,

he must know approximately the number of instances to run.

• With little flexibility, making changes to the processing code could cause the

environment to require an increase in resources or be destroyed if it reaches the

maximum.

 XXIV Workshop de Procesamiento Distribuido y Paralelo

> Full Papers Página | 511

• Inability to make an analysis of the data; an external application is required to view

the results.

• Technically it works only for weakly coupled problems and specific cases.

• There are limitations of time and memory imposed by technology.

• It takes extra effort to develop the environment to solve a problem with some

degree of coupling.

• Limitations in the amount of data that can be processed (5 TB) considering the

limit of 10,000 running instances.

• The possible cost reduction translates into the rigidity of the environment, its

development, maintenance and its possible disablement in case of a change in the

characteristics of the problem to be solved.

• Limited customization of instances.

For all these aspects, depending on the problem that is sought to be solved, it may

be feasible to build the environment based on FaaS. The most important benefits are

the speed and elasticity of the functions, which require a loosely coupled or

zerocoupling problem of low-medium load (up to 1TB) to work optimally. The

monetary benefit can be considered, but it is not the main thing that should be

considered when building an HPC environment.

References

1. Farhan, L., Kharel, R., Kaiwartya, O., Quiroz-Castellanos, M., Alissa, A., & Abdulsalam,

M. (2018, July). A concise review on Internet of Things (IoT)-problems, challenges and

opportunities. In 2018 11Th International Symposium On Communication Systems,
Networks & Digital Signal Processing (CSNDSP) (pp. 1-6). IEEE.

2. Medel, D., Murazzo, M. A., Molina, A. L., Sánchez, F., Cornejo, M., Rodríguez, N. R., ...

& Piccoli, M. F. (2019). La Computación de Alta Performance como soporte a los sistemas
altamente distribuidos. In XXI Workshop de Investigadores en Ciencias de la Computación

(WICC 2019, Universidad Nacional de San Juan).

3. Barrionuevo, M., Escalante, J., Lopresti, M., Lucero, M., Miranda, N. C., Murazzo, M. A.,

& Piccoli, M. F. (2020). Solución de grandes problemas aplicando HPC multitecnología. In
XXII Workshop de Investigadores en Ciencias de la Computación (WICC 2020, El Calafate,

Santa Cruz).

4. de Souza Cimino, L., de Resende, J. E. E., Silva, L. H. M., Rocha, S. Q. S., de Oliveira

Correia, M., Monteiro, G. S., ... & de Castro Lima, J. (2017, November). IoT and HPC
integration: revision and perspectives. In 2017 VII Brazilian Symposium on Computing

Systems Engineering (SBESC) (pp. 132-139). IEEE.

5. Biswas, A. R., & Giaffreda, R. (2014, March). IoT and cloud convergence: Opportunities

and challenges. In 2014 IEEE World Forum on Internet of Things (WF-IoT) (pp. 375-376).
IEEE.

6. Añel, J. A., Añel, J. A., Montes, D. P., Iglesias, J. R., & Romano. (2020). Cloud and

Serverless Computing for Scientists. Springer International Publishing.

7. Malla, S., & Christensen, K. (2020). HPC in the cloud: Performance comparison of function
as a service (FaaS) vs infrastructure as a service (IaaS). Internet Technology Letters, 3(1),

e137.

 XXIV Workshop de Procesamiento Distribuido y Paralelo

> Full Papers Página | 512

8. Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S., Ishakian, V., ... & Suter, P. (2017).
Serverless computing: Current trends and open problems. In Research advances in cloud

computing (pp. 1-20). Springer, Singapore.

9. Eismann, S., Scheuner, J., Van Eyk, E., Schwinger, M., Grohmann, J., Herbst, N., ... &

Iosup, A. (2020). A review of serverless use cases and their characteristics. arXiv preprint
arXiv:2008.11110.

10. Rodríguez, N. R., Murazzo, M. A., Medel, D., Parra, L., Molina, A. L., Sánchez, F., ... &

Vargas, L. (2021). Procesamiento paralelo sobre arquitecturas serverless para tratamiento

de datos provenientes del IoT. In XXIII Workshop de Investigadores en Ciencias de la
Computación (WICC 2021, Chilecito, La Rioja).

11. Niu, X., Kumanov, D., Hung, L. H., Lloyd, W., & Yeung, K. Y. (2019, September).

Leveraging serverless computing to improve performance for sequence comparison. In

Proceedings of the 10th ACM International Conference on Bioinformatics, Computational
Biology and Health Informatics (pp. 683-687).

12. Spillner, J., Mateos, C., & Monge, D. A. (2017, September). Faaster, better, cheaper: The

prospect of serverless scientific computing and hpc. In Latin American High Performance

Computing Conference (pp. 154-168). Springer, Cham.
13. Chard, R., Skluzacek, T. J., Li, Z., Babuji, Y., Woodard, A., Blaiszik, B., ... & Chard, K.

(2019). Serverless supercomputing: High performance function as a service for science.

arXiv preprint arXiv:1908.04907.

	XXIV Workshop de Procesamiento Distribuido y Paralelo > Full Papers
	Evaluation of FaaS as an alternative to build HPC environments
	1. Introduction
	2. Related jobs
	3. Work Scenarios
	4. Problem to solve and configuration behaviour
	4.1 Scenario 1: PaaS setup
	4.2 Scenario 2: FaaS Configuration
	4.3 Scenario 3: PaaS configuration with executor function
	4.4 Comparison of what was observed
	4.5 FaaS in detail

	5. Conclusions
	References

	XIV Workshop de Procesamiento de Señales y Sistemas de Tiempo Real > Full Papers

