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Abstract—A main task to solve while designing a radio in
terferometer is the location of the antenna-elements, a problem 
that defines the interferometer response. The solution determines 
which points of the Fourier plane (or uv plane) will be sampled, 
together with their density. These characteristics are extremely 
important because the antenna locations, in turn, define the 
synthesized beam or point spread function (PSF) of the whole 
instrument. An inadequate array configuration implies an ill- 
constructed synthesized beam. Consequences of inadequate ar
rays are for example the need to delete measures over a range of 
spatial frequencies due to low signal-to-noise ratio (SNR), or, at 
the data reduction stage, to degrade spatial resolution in order 
to get a cleaner image. In this work, we implement a method to 
optimize the antenna locations, starting with an initial random 
configuration and a desired or objective sample density function, 
taking into account if there are terrain constraints.

Index Terms—interferometric instrumentation, optimization, 
numerical methods.

I. Introduction

A radio interferometer is an array of antennas which, via 
correlation between pairs of them, sample components of the 
Fourier transform plane (or uv plane) of an astronomical 
source. The more covered the uv plane is, the better the image 
quality will be. The aim is then, to cover as best, according 
to the circumstances, the uv plane, in order to get as much 
information as possible to build the image.

On designing an interferometer array there are mainly three 
problems to face, namely: determining the antenna locations, 
building an appropriate correlator, and synchronizating the 
data acquisition and data transfer systems. This work focuses 
on the antenna location problem. One approach to solve this 
problem is using optimization methods.

Regarding the optimization methods, as radio inteferometers 
were built around the world, different methods were also 
developed in order to optimize different characteristics of 
the instrument. One case of optimization is for linear array, 
radio interferometers where the antennas are located along a 
straight line. In this case, there is a configuration where the 
resolution is maximum and the number of times that a sample 
of the measured astronomical source is minimum, named as 
minimum-redundancy linear arrays [1]. Due to Earth rotation 
and changes in the interferometer response made by changes 
on the declination celestial coordinate, this strategy cannot 
be applied to bi-dimensional arrays. Keto [2] developed a 
method with neural networks, where the antennas are moved 
in order to minimize the distance between the points on the 
uv plane of the desired distribution and the one generated 
by the antennas. This method was developed for short time 
observations (snapshots), but it can be extended to optimize 
long track observations. Kogan [3] used a different approach, 
where the optimization minimizes the sidelobes of the PSF, 
which is an advantage in the steps on imaging but does not 
bring any information about how the points are sampled on 
the uv plane.

The Argentine Institute of Radio Astronomy (IAR) is work
ing with a project to install the first radio interferometer in 
Argentina, which will be called the Multipurpose Interferom
eter Array (MIA). This interferometer will be placed in the 
Andes foothills region and will consist of 64 antennas. Given 
this particular problem with a certain number of antennas 
and geographic location, one aim is to find the optimal 
distribution for the antenna locations. The objective of this 
work is to reimplement an existing optimization method for
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the later use on MIA [4], understanding in detail the algorithm, 
implementing it in Python, testing it and, if possible, even 
improve the algorithm. The decision to do the implementation 
in Python relies on the coding simplicity, and on being an 
open source environment that has packages like NumPy with 
high performance implementations for managing arrays and 
matrices.

The results of this first implementation were validated by 
optimizing the arrays with AntConfig [5], a software that 
uses the same base method that the one used in this paper 
but applying tomographic projection to reduce the problem 
dimension into a one-dimensional one. AntConfig was chosen 
to be the comparison software because it has the same base 
method, and also was the software used to optimize the dis
tribution of interferometric arrays like ASKAP [6] and KAT-7 
[7], The decision to do our new implementation is to solve 
the optimization problem without reducing the dimension and 
also, for later improvement, to approach the problem of long 
observations in a way more related to the operation mode of 
a radio interferometer.

This paper is divided in different sections: section II ex
plains how the samples are distributed over the uv plane 
from the place where the array is located, the antenna relative 
locations, and the desired astronomical source. In a subsection 
we explain the relationship between the uv density distribution 
and the PSF, outlining the array characteristics on this distri
bution. In section III, we introduce the gradient’s optimization 
method [8]. The application of this method is described in 
section IV for a simplified case of MIA. Finally, conclusions 
and future work are outlined.

II. The Antenna Location Problem

To determine the optimal location of the antennas, first 
the desired characteristics of the radio interferometer have 
to be detailed, such as the angular resolution or the type of 
astronomical sources that the array will observe. Depending on 
the approach, these characteristics can be described in terms of 
the ground plane (North-East position of the antennas domain), 
or the uv plane (the transformed domain).

A. uv sample distribution
A simple radio interferometer consists of a pair of antenna

elements that make a baseline. This baseline, projected to the 
direction of the desired astronomical source, samples a pair 
of points on the uv plane. These points are symmetric respect 
to the plane’s origin because two antenna-elements make two 
baselines when changing the reference antenna. Due to the 
Earth rotation, this projected baseline changes with time, and 
the sampled points describe two ellipsoidal branches in the 
uv plane. These long time observations are named as Earth 
synthesis rotation.

Eq. 1 shows the expression that relates the sampled points 
of the uv plane with the baselines [9]:

sin (fl")
—sm(ó) cos(H)

cos(H) 
sin(5) sin(H)

0 
cos(5) Da,

(1)

where H is the hour angle, 8 is the declination, and Da is the 
baseline vector, normalized to the observation wavelength A, 
and expressed in an Earth-based Cartesian system (Fig 1), so 
the latitude where the array is located is involved.

It is important to highlight how an observation becomes 
more difficult to make when the declination module increases, 
because the v component becomes foreshortened.

Summarizing, the interferometer response is not only a 
function of the array geometry, but also of the source location 
and the observation time length. Therefore, in the antenna 
location problem, it is important to define the measurement 
conditions, the declination observation range, and the hour 
angle range.

Fig. 1. Earth-based Cartesian system. In this system the z = 0 plane 
corresponds to the Earth's equator, the y = 0 plane is the meridian plane, 
the y axis points to the east and the 2 axis points to the North Pole. Because 
of the system definition, the geographical latitude </> measure matches the 
declination.

B. uv sample density
Due the amount of antenna-elements of an array, or the 

measurement time, there may be points of the uv plane which 
are sampled more than one time. Because of this, it can be 
defined a sample density function D(u, v) whose value at a 
given (u, v) point is the amount of times which that point 
is sampled by all the baselines on the observation. Then, the 
spatial transfer function is defined in a similar way as D(u, v), 
but instead of the times that a point is sampled, its value is 1 
at each sampled point; and the Fourier transform of the spatial 
trasnfer function is the PSF [9].

As the array perfomance may be analized from the ground 
plane, the same can be done with the density function. One 
way to see this is thinking the (u, v) points of the plane as a 
linear transformation of the baselines. The angular resolution 
is given by the points of the uv plane that are farthest from 
the origin, that correspond to the longest baselines. Sub-arrays 
with lower angular resolution (in order to observe extended 
sources, i.e. with larger angular size, or sources with extended 
emission) correspond to regions of the uv plane near the 
origin.

There is an important relationship between the shape of 
the PSF and the shape of the density function. One example
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Fig. 2. Example of how some parameters of the instrument can be interpreted 
by means of the uv coverage.

Baseline (m)
---------- 3Om diameter single dish 
—----- 5m diameter - 35m baseline
- - - 5m diameter - 45 m baseline

Fig. 3. Example of the relation between single dish and interferometric 
observations with MIA parameters in terms of responsivity. The antennas 
from MIA have a 5m diameter dish and a single dish with a diameter of 
30m.

of this is an exponential sample density function, which 
corresponds to an exponential PSF shape. The exponential 
is a remarkable shape because it has no sidelobes but, for 
a given angular resolution, it requires longer baselines than 
other shapes. Another important characteristic is the signal- 
to-noise ratio (SNR) of the sampled points, which for the 
exponential case is highest at the origin and lowest at the 
farthest regions. The second example is the uniform coverage 
or the disk density function, with constant SNR everywhere 
and with a PSF that corresponds to a jinc function [9]. The 
jinc function is like the sine function but instead of a sine 
in the numerator, it is the zero species and first order Bessel 
function. This transformation can be achieved via the Hankel 
transform, because of the radial symmetry [10]. Intermediate 
densities between these examples, starting with the uniform 
case, lead to PSFs with lower sidelobes, lower SNR in the 
outer regions and higher angular resolutions.

The maximum baseline defines the angular resolution of 
a radio interferometer, and the minimum baseline defines 
the range of the extended emission that the instrument can 
measure (Fig. 2). There is also a minimum distance between 
antennas to avoid problems like shadowing, which also depend 
on the declination at a given observation. One possibility is 
complementing an observation with single dish observations 
[11] [12]. In that case, a single dish antenna can sample points 
from the origin to the diameter of the dish (Fig 3), covering the 
short baselines that can not be covered by the interferometer. A 
circular mask can be added to the model density to impose the 
minimum baseline condition and/or single dish observations 
can be used as a complement.

In conclusion, at the stage of defining the desired charac
teristics of the radio interferometer, these can be defined both 
on the ground plane domain and on the uv plane. Related to 
the antenna location problem, the first approach represents the 
direct method, and the second represents the indirect method. 
In this work we focus on the indirect method.

III. Gradient based optimization

Given an unconstrained function / (x), where /(x) : Rn / 
R, a way to minimize it is changing x in the direction —V/(x) 
until reaching the minimum, known as the gradient descent 
method. If the function is convex and differentiable, there will 
be a minimum when V/(x) = 0, and x will be the optimal 
point because there is only one global minimum [8]. This 
optimization method consists of iterations over the calculation 
of Eq. 2

x/. i = x/, - gV/(xfe), (2)

until the gradient reaches either zero or some stop condition, 
where it is considered that the minimum was found. The 
constant g, with g e R, is a step gain which can be defined 
by the user or calculated as the optimal step towards the 
minimum. When giving a value to g, it has to be observed 
that for high values, /(x) may oscillate around the problem 
solution. But for low values of g, it will require more iterations 
for the optimization to reach the optimal x.

For the antenna location problem, this method was previ
ously implemented [4], defining /(x), as

/($) = G(u,u) = D(u,u) — Dm(u,vY (3)

where D(u,v) is the sample density and Dm(u,v) is the 
desired or model density. For a given array with n antenna
elements, there are n — 1 samples related to one antenna in an 
instant of the observation, situation that has to be considered 
when displacing the antennas. Therefore, the optimization is 
rebuilt as

xy.k+i = xjik - g MVG^*,,'), (4)
tito

where (uy, Vy) is the point of the uv plane which correspond 
to the baseline made by the antenna z and the antenna j. M
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is the transformation matrix from the uv plane to the ground 
plane, defined as [9]:

(
sin(5) sin(<^)cos(/7) + cos(5) eos(<^) sin(/7) sin(<^) \

eos(5 — ri) eos(5 — <^)
sin(/7) sin(5) cos(/7) ’

cos(5 — <j>) cos(5 — <^>) /

where <j> is the latitude. M is a constant for snapshot cases and 
a function of H for long track observations. The sum in Eq. 
4 considers the direction of the minimum for all the baselines

in order to include the angular resolution 6res in the model, 
it was used the relationship between this parameter and the 
longest baseline Bmax given by

9 res p ■ (6)
^max

Then, it can be found the radius of the disk using the 
transformation between the baseline vector to the r¿u plane 
as:

for each antenna. Then, in each iteration, the antennas are 
displaced in the average direction of the minimum of G(u, v\ 
An intuitive analysis of the convergence of the method and 
avoidance of local minima is found in [4],

Another important point is the grid used in the numerical 
methods. If the grid is too small for a particular case, the 
sample density accumulates a lower number of (u, v) points, 
so there will be densities with null value and then, the 
numerical derivates will be also null. Therefore the antennas 
will not move and the method will not converge to the 
optimal distribution. A larger size of the grid will delete 
the smoothness of the model density function, and therefore 
the final distribution will produce a different density to the 
expected one. For example, when using a coarser grid for a 
uniform density coverage, it can be seen that the edges of 
the disk turn into straight lines, so the final distribution will 
describe straight lines in the circle instead the expected curve 
for this model. In conclusion, the grid also has to be taken into 
account, because it affects the convergence of the method. This 
trade-off of the grid size is an example of an implementation 
detail addressed in this work that was not described in the 
literature.

u2 + v2 (7)

IV. Implementation

Our implementation was coded on a Jupyter Notebook, 
where we included the feature of adding terrain constraints. 
At each iteration, the algorithm checks if any antenna is inside 
a forbidden region and if that happens, that antenna is pulled 
out to the nearest border.

After the implementation, we simulated a simple version of 
the MIA case, with these characteristics:

• Geographical latitude of —34.5 deg (it is the value where 
the array will be placed).

e Equatorial declination of —34.5 deg.
• Angular resolution of 1 arcsec with a center wavelength 

of 21 cm.
e Snapshot observation.
e Uniform disk uv plane coverage.
MIA, as the name says, has to be a multipurpose inter

ferometer, so it must be optimal to carry out observations in 
both long tracks in the case of Earth synthesis rotation, and 
in short observations like in the case of snapshots. For these 
first optimization cases, only simulations for snapshots were 
carried out. Three model cases were simulated for testing: 
the uniform coverage, a gaussian coverage, and a uniform 
coverage with terrain constraints. Starting with the first case,

which is around 262 x 106A.
Fig. 4 depicts the initial distribution of the antenna array 

with blue dots (each dot represents an antenna), which is 
given by a random distribution, and the optimized distribution 
with red dots. The light blue circumference is given by the 
longest baseline, calculated from the farthest (u, v) point to 
the origin. It can be seen that most of the antennas lie around 
this circumference, which diameter corresponds to the angular 
resolution of the instrument (around 55.54 km); while the rest 
of the antennas are inside the circle to cover the intermediate 
baselines. These results have been previously observed [9] 
[4] [2], so this simulation was also a way to check if our 
implementation was working properly. In the first row of Fig. 
5 we show the final density distribution and the horizontal 
PSF for the uniform case, where only one profile is plotted 
because of the radial symmetry. Regarding the density, it can 
be seen that it has uniform coverage except at the borders 
of the circle, where the density is a little bit lower than 
at the origin of the plane. About the PSF, it shows some 
weak side lobes, a characteristic of this distribution as it was 
explained in section II. Additionally, the achieved angular 
resolution was 0.8 arcsec, lower than the desired characteristic 
for the interferometer, because the largest (u, v) sample in the 
calculation with Eq. 7 was rounded to the next integer value.

In the second simulation, we used a Gaussian density model 
with zero mean and variance cr given by

, , z , 180 * 60 * 60 A
2V2H2)----------------------—
_________________ 7T______
' FWHM (8)

expression used in the simulator AntConfig, software devel
oped by De Villiers [5]. The optimized distribution for this 
distribution can be seen in the second row of Fig. 5. Note 
that the antenna distribution also has an exponential baseline 
distribution on the ground plane. This is because the density 
is larger near the uv plane origin (shorter baselines). Then, 
the density decreases when moving away from the origin, 
so the antenna distribution must have less density of longer 
baselines. In the second row of Fig. 5 it can be seen that 
the final distribution approaches the model density. Regarding 
the PSF, the 1 arcsec of angular resolution is achieved, at the 
expenses of adding longer baselines than in the first case of an 
uniform density coverage, being the longest baseline of 65.17 
km. As an advantage of the Gaussian distribution, the PSF has
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Offset East [km]

Fig. 4. Initial and final antenna distributions for a uniform coverage density 
model.

no sidelobes, which impacts later in the processing time of the 
images.

In the last simulation, the same model Dm(u, u) of the first 
simulation was used, with the addition of two rectangular areas 
as terrain constraints. In Fig. 7 the final antenna distribution is 
depicted together with the rectangles. At the borders of these 
rectangles it can be seen a few antennas which felt inside, and 
were pulled out to the nearest border. This case shows that the 
algorithm to contemplate terrain constraints works properly.

With these three previous simulations we checked that our 
implementation of the gradient-based method works correctly. 
It was tested for different models and in one case with 
terrain constraints. All the optimizations were carried out with 
500 iterations and a fixed gain of g = 0.1. In this first 
implementation of the method, we used a uniform rectangular 
grid with size 10À x 10A. The computation time was between 
1 min and 1 min 30 s for all the cases. Therefore, with this 
first grid and a large amount of antennas like the MIA case 
with 64 antennas, the implementation requires a low time to 
optimize the distribution. It has to be outlined that this kind 
of grid is not always the optimal one, and because the sample 
density usually has radial symmetry, polar grids will be a 
future improvement for the method, because it will not delete 
the smoothness and may be increase the grid size range for 
the problem.

In the previous simulation, M was a constant because the 
optimizations were planned for snapshot observations. In case 
of designing an optimization for long track observations, M 
becomes a function of the hour angle H. The calculation 
of x/. i will require more time, because there will be one 
gradient to compute and one n — 1 sum for each value of H.

The optimization of the uniform distribution case was made 
also in AntConfig, where the final distribution is depicted in

Fig. 8. It can be seen that the AntConfig distribution fits a little 
bit more with the circumference than our implementation. The 
resulting optimization in both cases were uniform but, making 
the comparison with the standard deviation, of the difference 
between the model density and the density of the optimized 
array for both cases, the result was 0.42 for the AntConfig 
case and 0.38 for our implementation. This result leads to 
conclude that our implementation has a similar performance 
than AntConfig.

Summarizing, our implementation of the method can handle 
not only cases like the previous ones, but this can be improved 
in order to handle situations with more requirements.

V. Conclusion and future work

We successfully implemented the gradient descent optimiza
tion method in Python, applied it to optimize the antenna 
distribution of a radio interferometric array for three different 
distributions, and carried out a simulation for a real case such 
as the MIA. Our future work will include different features to 
the implementation such as:

• Define the gain g to be the optimal step gain in the 
calculation of x^+i [8].

• Include the polar grid type which size may increase 
depending on the uv plane region under consideration, 
as suggested in [4].

• In the calculation of Xk+i, redefine the multiplication 
MG(u,v) in order to account M as a function of the 
angle hour H, and then include optimizations for longer 
time observations.

• Including a decomposition of the model density Dm(u, v) 
in a sum of many model densities, in order to include 
sub-array optimizations.

• Another point to treat is to include optimizations, either 
for snapshots or long tracks, for different declinations, 
because it is desired that the final antenna distribution 
performs well for a declination range, and not only for 
one specific declination [13].
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Fig. 5. Plots of the simulation results with the models for each case. The first row corresponds to uniform coverage while the second row corresponds to the 
gaussian samples density. In the first column are the density models, in the second column the final densities of the optimized distributions, and in the third 
column the horizontal PSF profiles.
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Fig. 6. Initial and final antenna distributions for a Gaussian coverage density 
model.

Fig. 7. Final antenna distribution for a uniform coverage density model and 
terrain constraints.
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Fig. 8. Optimized antenna distributions for a u-u plane uniform density 
coverage, made with AntConfig and with our implementation.
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