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0. Introduction.

Several authors have studied the weak convergence of the laws 

of suns of randon variables with the hypothesis of independence 

replaced by less restrictive properties which are expressed through 

certain dependence coefficients (see, for example, Ibraginov and 

Linnik [12], Billingsley [6],[7], Iosifescu and Theodorescu [13], 

Philipp [15]). In this paper we consider certain mixing conditions 

(the so-called φ and ψ-mixing) for triangular arrays of random vectors 

which take values in a separable Banach space and whose rows form 

stationary finite sequences (see Section 1 for the definitions). Our | 

aim is to give necessary and sufficient conditions for the convergence 

of the laws of the row sums of such triangular arrays expressed in 

terms of the individual random vectors and, in principle, without 

moment assumptions. In order to do this, we depart to some extent 

from the usual paths in this area and follow the point of view 

developed by de Acosta, Araujo and Giné [3] for the case of row-wise 

independent infinitesimal triangular arrays. We use some results of 

that article through the technique, standard in the dependent case, 

of grouping random vectors in suitable blocksj an idea due to S. 

Bernstein. The framework that we present for the study of triangular 

arrays under dependence conditions and several of our specific results 

—for example, Corollaries 4.6, 5.Θ, 5.10 and 6.5— appear to be new 

even for the real-valued case.

Section 2 contains some basic inequalities, which are used in 

Section 3 to prove results about compactness and integrability.

In Sections 4, 5 and 6 we deal with necessary and sufficient 

conditions for convergence in a Banach space to a Gaussian, generalized 
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poisson or infinitely divisible law, respectively. In the first two 

cases, the φ-mixing condition is required to hold together with certain 

restrictions about contiguous random vectors: in Section 6, the 

♦-mixing condition is added. For a Hilbert space and assuming some 

specified mixing rates we give sufficient conditions for convergence 

expressed, as far as possible, in terms of individual random vectors 

( see "orollaries 4.5, 5.8 and 6.5: in Philipp [15] there are conditions 

in terms of blocks for convergence to certa in infinitely divisible 

laws for Φ-mixing triangular arrays of real random variables which 

satis*v different hypothesis from the ones given here).

rrom the sufficient conditions for convergence to a Gaussian 

Tww given in Section 4 we can derive a result (Corollary 4.’’) which, 

essentially, is an infinite-dimensional generalization of a theorem 

c* Γ.Α. Ibragimov for real random variables (Theorem 18.5.2 in [12]). 

^n the other hand, we show that by applying methods of de Acosta [21 

we can obtain an almost sure invariance principle for stationary, 

Φ-mixing triangular arrays (Theorem 4.8); from this, following de 

Acosta f21, we can deduce an invariance principle in distribution 

( orcllarv 4.10) which generalizes a result of Eberlein [8].

section c includes a direct theorem of the poisson type

Theorem 5.6) and the proof that the classical conditions for 

convergence to a stable law of the normalized sums of a stationary 

sequence of independen··· random variables are still sufficient for 

certain φ-mixing sequences (Corollary 5.10).
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1.Definitions and notations.

Throughout the paper, B denotes a real separable Banach 

space and the random vectors we consider take values in B.

By a triangular array <Χη^.} we mean a doubly indexed 

family {XR: jS1, . . . , jn ,neN } (N the set of non-zero natural 

numbers) of B-valued random vectors (r.v.'s) defined on a 

common probability space (Ω,<4^Ρ); we will assume always that 

j *·. Given {X we def ine »σ( X . :hsj£k) (the σ-algebra

generated by the indicated set of r.v.'s) for ncN and l¿h¿k¿Jn. 

Analogously, we define for a sequence (X^jjeN) of B-valued r.v.'s 

the σ-algebras lshíks») and also lsh^kin) for a finite

set ί X ,.. .,Xn}.

Given a triangular array {X . :j=l,...,j ,ncN} we defineno n
the dependence coefficient

(kcN); it follows that φ(1)£1 and that (0(k)} is a non-increasing 

sequence. We say that is φ-mixing if φ(Χ)ΨΟ as k+® (the

same letter is used to denote the coefficient and to name the 

property). For a sequence (X^. } define

and then the φ-mixing property for {X^} is defined as above. Given 

a finite set {X1#...,X ) the numbers φ(1) , . . . ,φ(n-1) are defined 

in a similar way.

For a triangular array {Xn^.} we define
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(keN); observe that ψ(1)£+® and that (ip(k)} is a non-increasing 

sequence. We say that (Χ^3 is Ψ-mixing if ip(k)4O as k->®. Also, 

we define these notions for a sequence and the coefficients ty(k) 

for a finite set of r.v.’s. Note that in any case φ(]ς)£ψ(Κ).

The last coefficient we will consider for a triangular array 

{X . ) isnj

(this is not a standard notation); we have ψ*£+® and ψ*£1+ψ(1). 

It is defined analogously for sequences and finite sets of r.v.'s.

For examples of non-independent sequences of random variables 

which are φ-mixing, ψ-mixing or satisfy ψ*<+® see Ibragimov and 

Linnik [12], Billingsley [6],[7], Iosifescu and Theodorescu ;[ 13 ] .
n n1/2

There are examples with φ(η)=Ο(ρ ) or ψ(η)=Ο(ρ ) where 0<p<l.

We say that a finite set {X.,.,.,Χ } of B-valued r.v.’s is 

stationary (with stationary sums) if Z(X^,...,X^)=Z(X^ . ,Xk+h)

<Z(X5♦...+Χ^)=£( Χ^ + ι+...+Xk+h), respectively) for lsh^n , lák^n-h 

( if Z is a random vector, £( Z) denotes its distribution).A triangular 

array is stat ionary (with stationary sums) if each one of its rows 

has this property. We have similar definitions for a sequence of 

r . v . ' s .

Let β denote the Borel σ-algebra of B. If Ae6, 1^ is the 

indicator function of A; for a B-valued r.v. X we write = [|| χ| | < g] » 

X^=X-X. (<5>0, || ·|| is the norm of B). Sometimes we will denote
6
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E[X;XcA] «Ε[ΧΙρχ Αη]. Given a triangular array (X . } we write

if {X .} has stationary sums and μ =Z(X J we write μ* ,)nJ η ni n nk
V

(k«l, . . . , j ). For a probability measure μ on B and kcN, μ denotes 

the k-th convolution power of μ; if v is infinitely divisible, 

{v^ztiO} is the associated weakly continuous convolution semigroup. 

The symbols · and * denote the product and convolution of measures, 

respectively.

We denote by + or w-lim the weak convergence of finite 

measures and by + the convergence in probability of random vectors, 

p is the Prohorov distance between probability measures on B and 

we write σ(Χ)= E[||x|(l+||x || for a B-valued r.v. X.

For the notions and basic properties of infinitely divisible 

probability measure, Gaussian measure, Lévy measure and τ-centered 

Poisson measure in Banach spaces we refer to de Acosta et al [3] 

or Araujo and Giné [5]. If γ is a Gaussian measure on B, denotes 

its covariance. Given an infinitely divisible measure v we will 

take as its Lévy measure μ that one which satisfies μ({0}) = 0.

If μ is a σ-finite measure on B we put (2(μ) = (τ>0:

μ ( {x: II x ||=r}) = 0}; if Acfcthe measure μ|Α is defined by (μ|Α)(Ε) = 

μ(ΑηΕ) (Eeft). δ denotes the point mass at xeB. B* is the dualx
space of B and Br = {xeB:||x || Sr} (r>0).
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2.Seme inequalities for sums of dependent random vectors.

Let us state a simple extension of Lemma (3.5) of Eberlein

[8]. The proof involves a monotone class argument and induction 

over k.

2.1 Proposition. Let (X1,...,XnJ be a set of B-valued r.v.’s.

Let a„....,a. ,b„ , . . . ,b. (keN) be natural numbers such that ISa,1 k 1 k 1
sb <aosb <...<a <b Sn with a.-b. £qeN (i=2>t..,k) and define 12 2 KÍC 11*1.
ζ = Σ X. (h=l,...,k). Then

for every Aeft (the k-fold product σ-algebra of B).

The following version of Ottaviani’s inequality can be proved 

as Lemma 1.1.6 of Iosifescu and Theodorescu [13] (note that it 

requires φ(1)<1).

2.2 Proposition. Let {Χ^^,,.,,Χbe a set of B-valued r.v.’s 

with φ(1)<1 and write S =Σ. .X.. Suppose φ(1)<α<1 and let Ve&be
K j -1 j

a symmetric convex set such that max P[S -S,¿(1/2)V]sl-a.Then 
lSkSn-1 n K

2 3 Proposit ion. Let {X1#...-,X 1 be a set of B-valued r.v.’s with 

φ(1)<1 and write S,=E._1X.. Suppose φ(1)<α<1 and let Vefibe a 

symmetric convex set such that max P[S -S, I(1/4)V]<1-a and
l<ksn-l n *

P[S 1/4)ν]<(α-φ(1 ) )(1-Φ(1 ) ) . Thenn
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Proof. Define Fk=[Xkfl«V,...,X^eV] for k=0,...,n-l and 

then F, eUr Λ for k<n. It follows thatk K+l,n

Now it suffices to note that, writing one has

P[X_.¿V for some j BP[ S Z( 1 / 2 ) V for some k ]«;( α-φ (1))_1 P[ S i (1 /*+) V ] 
Λ H

by Proposition 2.2.0

The following generalization of Lemma 2, p. 383 of Gihman 

and Skorohod [9] will be useful; the proof is similar to that given 

in [9] and uses Proposition 2.2,

2,u Proposition. Let {Χ^,.,.,Χbe a set of B-valued r.v.’s with 

φ(1)*1; write S =Σ^ X,. Suppose φ(1)<α<1, l| X. || SM a.s. (j=l,...,n)
* J “1 J 3

and let t>0, £cN. Then, if max P[|| S -S.|| >t/4]sl-a, it holds that 
l£k<n-l n K

To close this section, we quote three moment inequalities

(see Th. 17.2.3 of Ibragimov and Linnik [12], Lemma 3 of Philipp 

[15] and p. 27 of Billingsley [7]).

2.5 Proposition. Let {Χ^,.,.,Χbe a set of B-valued r.v.’s. Let

h.keN h+k<n and let ζ,η be real random variables which are Λ u
1 ,h

and + n-measurable, respectively. If E | ζ | p < °° and E | n | with
-1 -1p,q>l and p +q =1, then
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2.6 Proposition. Let }, h, k, ξ and n be as above but

with the only assumption that E|ξ|<« and EI η I<®. Then

2.7 Proposition. Let (Χ^,.,.,Χ }, ξ, η, h be as in the previous 

proposition with k = l. Then |E(ξη)|£ψ*Ε|ξ|E|η|.

3. Preliminary results.

In the following result we use some ideas which appear in 

Eberlein [8](proof of Proposition (3.6)) which in turn is inspired 

in Kuelbs ([14 ] , Lemma 1). The second part of the conclusion will 

be used later (see Theorem 4.8).

3.1 Proposition. Let be a φ-mixing triangular array with

stationary sums. Suppose that Χβ1 + 0 and that ZiS^) * v. Then v 

is infinitely divisible and for each peN we have

Proof. Fix peN. Write I(n , p ,k)=[a^»bnk(interval of integer

-1 -1 numbers)and note that it has Cj^p ] or [j^p 3+1 elements (here

[.] is the integer part of a real number).

By hypothesis, σ =σ(Χ . )->0 as n->«. Take a sequence {d }cN n m n
such that d ■*«, d σ +0 and d <[j p ] for all sufficiently large n n n n n Jnr J ®

-1 -1/2 -1 (for example: dn=min([jnp ],[on ^)). Now define b¿k=ank+[ínP J

-d^ and ^nk = sa cj^b’ Xnj <k = 0» · · · »P-1) i bY stationarity of sums
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we have Z( ζ _) = ... =Z( w J=Á„ (say).no n,p-1 n

Since σ( Sn-E^^nk) ^pdnan->° as n*·, it follows that ¿(z£Zj$nk)

+ v. On the other hand, from Proposition 2.1 we obtain for every 

Ai»P

and therefore, for every Cefi,

(*)

which goes to zero as n goes to infinity. Then λρ ♦ v. Hence, by

well known properties of the weak convergence of probability 

measures, we conclude that there exists {x }cB such that (λ *δ } η η x. η 
is relatively compact and then we obtain the relative compactness 

of { λΡ*δ }, {δ }, (δ } and {λ } successively. But if λ is a 

limit point of {λ } then λρ=ν.
n

The arbitrariness of p above shows that v is infinitely

divisible. To obtain the second assertion of our statement, fix

p and apply (3.1) observing that λ -► and σ(Σ. x X .* ** J * n w j€l(n,p,k) nj
-ζ . )sd σ^.Οnk η n

For a triangular array {Xr:j=1,... , jβ,n<N} with stationary 

sums we shall consider the following property:

Remark. Theorem 2.1 of de Acosta [2] shows that this property 

(which may be described as a strong form of infinitesimality) holds 

for a triangular array of B-valued r.v.’s which are row-wise 

independent and equidistributed and whose sums converge weakly.



10

This condition is an hy thesis in ma iy of our statements 

but it is dropped in some results in which we give sufficient 

conditions for convergence (see Corollary 4.5, Theorems 5.6, 5.7 

and Corollary 6.5); next we point out two cases in which it is 

veri f ied.

1) Let (X^.) be a φ-mixing stationary sequence and let {aR} 

be a sequence of real numbers tending to infinity such that

£( 1 Σ ? _ X^. ) } converges weakly. If Xn^.=a”^Xj (j=l,...,n) then

the triangular array { X^_. : j =1, . . . ,n ;neN } satisfies (*)(It can be 

proved by using Th. 2 of Philipp [16] and a theorem of Karamata 

(12, Th.A.1.1]).

2) Let ■XnjJ b® a φ-mixing triangular array with stationary 

sums such that X^ + 0 and Z(X +...tX^) is symmetric for k=l,..«,

ntN. Then, if (XiS^)} converges weakly, (X^,.} has the property (*).

This is a consequence of the following fact: let {X^^.} be a 

Φ-mixing triangular array with stationary sums such that X * 0 

and iZ(S )} converges weakly; then, if {r }<=N, r and r /j *0,n J η . η n nn
(rn ’

there exists (x }cB such that the sequence (y *δχ } is relatively 
n

compact and all its limit points are point masses. To prove this, 

let v be the limit of (Z(S )} and take a sequence {r } as indicated.
η 1 n

[jnP J
Fix peN; by Proposition 3.1, Xn j w V * ^et ση = σ^η1^’

1 1/9 r«
d =winl[j p’^-r ,[σ"Χ/Ζ]}, Y = Σ.η„Χ ., Z =Σ " X . . We haven nr η’ η ’ n 3=1 ng’ n r +d m. η n

MnP J . .
σ'( Σ . A X . —(Y <Z ))£d σ ·+Ό and, applying Proposition 2.1,3=1 ngnnnn » rr j e

(r ) 1Z
for every Ac(B. Then y *Z( Z ) -> v . By a well known result, we η n w
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<Γη) 
deduce that there exists {x JcB such that (u *6 } is relativelyη n xn
compact. Let a be a limit point of this sequence; then is a factor 

of v for every pcN. From this we conclude that {α^*δ :peN} is
yp 

relatively compact for some (y }cB, but this implies that α = δ for
P z

some zeB (see [5,p.33]).

In view of the two cases described above and Theorem 2.1 of 

[21 it is natural to ask if in general:{Xn^} stationary φ-mixing, 

X „ * 0, Z( S ) -► · imply (X .} satisfies (*). We have not been able nl F ’ n w nj

to answer this question.

We shall need sequences of integers with the properties

stated in the following result.

3.2 Lemma. Let {jn)cN, and {φ(n)}c[0,») be sequences such

that ,j ση*θ aRd as n“*‘eo · Then there exists sequences {pR} ,

{qn} in N which tend to infinity such that in^Pn + Qn^

Proof. Observe that if the last condition is verified, the remaining
-1 -1 -1are equivalent to j p -*°°, Φ^ )i p *0 and q σ j p -*0. First, wen Jnrn * n ’nrn ^n n nrn *

find sequences {q )CN and {B }c(o,«) such that B ->-0, (j B )" q +0 ,n η η n ’ J η n Hn ’
-1 -1φ( q )B *0 and q σ B *0. To do this, take {q } such that q ■+·,nn η ^n η η ’ n Hn ’

q σ+O and q for example, one can define q =min{[q”a],[] }^nn ^nJn ’ r ’ n n’Jn

if σ >0 and q =[j 1 if σ =0 ([·] is the integer part of a realη η η n

number) with 0<a<l, 0<b<l. Now define Bn=max{(q^j)u , (φ(q^))v,

w(q o ) } where u, v, w are real numbers in (0,1). Then {q } and (B )η η nn n
have the desired properties and it is sufficient to define p =[η B 1+1 rn Jn n
in order to end the construct ion. □
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Next, we prove a version of Th.2.1 of de Acosta [2] for the 

φ-mixing case; assertion (2) will be repeatedly used combined with 

some inequalities of Section 2.

3.3 Theorem. Let {X^^} b® a Φ-mixing triangular array with stationary 

sums which satisfies condition (*). Suppose that Z( S ) ·* v. ThenF n w

Proof. We only prove (1) because (2) can be deduced from it as in [2]

Let (rn) and t be as in (1). We may suppose that te(0,l);

otherwise, the result follows easily from (*). Let {p^}, {qnJ b®

as in Lemma 3.2 where we have taken σ = σ(Χ .) and writen nl
* -1 ” -1

k =[r (Pn+qn) 1 kn=[(^n”rnpn+qn(C.l denotes the integer
I It

part of a real number); then k ·*«, k -►« as n*®. DefineΓ η n
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The inequalities

’ · -1
show that k (k +k ) *t as n->®. On the other hand, η η n

which goes to zero as n·** by the preceding construction and 
k ’ k”

condition (*). Then Z( Σ n ξ ’ +Σ. n ζ”, ) * v. Since Z( ξ· ) = Z( ζ" ) = 
k=l nk k=l nk w nk nk

(pi ’
u * for each k, Proposition 2.1 gives

(p ) k’+k”
for every ΑεΛ. Hence (un n ) n n j v and then, by Th. 2.1 of [2],

( p ) k 'rn . n ti u ) * v .n w
r k *

We can argue as above to prove that Σ_|^nj_^k~l^nk p θ

k * ( r )
and that Z( Σ n. ζ' ) -* v ; then u Π ** v . Π

k = 1 nk w n w

The following result is a version for the stationary φ-mixing 

^ase of a theorem of Le Cam [3,Theorem 2.2].

i.4 Theorem. Let 1X^3 be a triangular array with stationary sums 

which is φ-mixing with φ(1) <1 and satisfies condition (*). Suppose 

that ZiS^)} is relatively compact. Then for every ε>0 the set 

’ jnZ( xnl ) iB ) is relatively compact.

Proot . By an argument with subsequences we may suppose that Z( S ) -— ■ n
v. We will show that (a) sup j^Pt || χηι II >ε3<β for every ε>0 , and 

n

(b) for every ε>0 there exists a compact set K£ such that
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sup j P[X .eKc]£ε.r Jnnl ε n
To prove (a), fix ε>0, take a such that φ(1)<α<1 and let 

n=min{l-a, (1/2 ) (α-φ(1 ) ) (1-φ(1)), ε/4}. Choose ΐθε(Ο,Ι) such that 

t c (k) k/jn
sup v (B . )<n/2 and n_eN such that max p(y ,v )<n/2

OststQ 4 ε-2 n i£k£jn n

for η^ηθ (the choices of ηθ and tQ are possible by Theorem 3.3 and 

the fact that v. -► δ as t-»-0); let (r }cN such that r /j £t_ and two η n Jn 0
r /j +t_. By the definition of p we have for nin_ and k=l,...,rn no 0 n

therefore by Proposition 2.3 we obtain

for n*nQ. Choosing η^ηθ such that tQ/2^rn/jn if n^n^ , we have
c “1j P[X ..eB ]£2tA for n^n. . Then (a) is proved.J n nl ε 0 1

In order to prove (b), let εε(0,1) and take a as above.Theorem

3.3 implies that there exists a compact, convex, symmetric set K£ 

such that

Then by Proposition 2.3 we have jnP[ X^ εΚ£ ]£ε for every n.D

3.5 Proposition. Let {Xn^.} he a triangular array with stationary 

sums which is φ-mixing with φ(1)<ί and satisfies condition (*).

If IXCS^) } is relatively compact and there exists M such that

|| X . || <M a.s. (for all n,j) then sup Εβζρ(λ|| || )<°° for some X>0. 
n n



15

Proof. From the relative compactness of (ZCS^)} we deduce that 

of {un :k = l,.. . ,j ,neN} by an argument with subsequences and 

Theorem 3.3. Fix a such that φ(1)<α<1 and choose tQ>0 such that

Bv Proposition 2.4 one has, for £,neN, PC || Sn|| > £( t θ + Μ) . Write 
λ cc=tQ+y and take λ>0 such that ae <1 ; then, we have for every n

u. Gaussian limits.

From now on, given a φ-mixing triangular array {Xnj} with 

stationary sums which satisfies condition (*), we consider sequences 

(p }, tq } with the properties of Lemma 3.2 where we take σ =σ(Χ „): rn * nn r n nl ’
also, we write:

k =Cj (p +a ) (C.J denotes the integer part of a real number), nn nn r ’

This grouping in blocks will be used (always with this meaning) 

in some proofs, the first of which is that of the following result.
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4.1 Theorem. Let (X^J be a triangular array with stationary sums 

which is φ-mixing with φ(1)<1 and satisfies condition (*). Suppose 

that 7( S ) -► v. Then v is Gaussian if and only if i PC II X . || >ε]-»-0 n w n 1 nl
for every ε>0.

Proof. Necessity. Assume that v is Gaussian. Arguing as in the proof
k

of Theorem 3.3(1), we obtain that ,£( ξ .) n * v and then (C3,Cor. 2.11]) 
n 1 w

k^PC || || >ε]->0 for every ε>0.

Fix ε>0. Choose a such that φ(1)<α<1 and let n=min{l-a,

2”1(a-φ(1 ) ) (1-φ(1 ) ) , ε/U): take ΐθε(Ο,Ι) such that

t csup v (B Λ < )<n/2 and ηΛεΝ such that if n*nA then p /i <t
0<tst. 0 0 n n 0

( k ) / j n
and max ρ(ρ , v )<η/2. Therefore if η£ηΛ and l<k<p we have 

isksj n 0 n
J n

μη<Βε/4><η an¿ ProPosition 2·3 gives, writing c=2((α-φ(1))(1-φ(1)))_1, 

the inequality ρ^Ρ[ || X || >ε]<οΡ[ || ζ || >ε/4]; then for n large 

enough we have ίηρΜΙ xnl II > e 3 < 2 k n pn P C 11 χη1 II >e]£2cknP[ || || >ε/4].

Hence lim j PC |l X || >ε] = 0.
n

Sufficiency. We may suppose that B=R (apply functionals feB’

to deduce the general case from this). Let p be the Lévy measure of

v and assume that j P[ | X | > ε ]->0 for every ε>0.

For a fixed M>0, consider the triangular array define

ξ . = Σ . i \ X ·« for k = l , . . . ,k and η = Σ . , λ X . w for k = l , . . . ,nk jeP(n,k) njM ’ ’ n nk 3cQ(n,k) njM ’ ’
k +1. As in the proof of Theorem 3.3(1) we can obtain that

n k
Sn.M-^l^nk P ° because <’(XnlM)S<’(Xnl) and {XnjM} has the Property

r r r .. r M
(*) (write Σ.Π.Χ . =Σ*Χ .-Σ.η,Χ . and observe that P[ | Σ . . X . | >0 ]£

• 3=1 njM 3=1 n3 3=1 nj j=l Π31
r P[ I X l>M]). Since S^M^ 0 we have also that Z(ξ .)★...*£(£ , )

n nl n P m nk n
-► v; moreover, (Z( ξ . )} is infinitesimal (given ε>0, writew nk
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maxi<;ksk Pt I *nk I >e]*PC I ζη1 I >ε]+ρηΡΐ-lXnl I >M:I and note that Ρη^η*0** 
n

Now, we may apply the converse central limit theorem of the 

independent case [3,Theorem 2.10] to conclude that, for every
k

TeC(i>), Σ. lfiC * u IbC·’ k = l*^ nk 1 τ w 1 τ
We will prove that μ(Β£)=0 for every ε>0; this will show that

v is Gaussian. Fix e>0. Letabe such that Φ(1)<α<1 and take an integer
-1 -1fc£2; put Μ=ε(2(£-1)) , t = e(2A) . Choose ηθ = ηθ(ε , α , i)εΝ such that

if η>ηΛ (the left member is less or equal than max.^,.^ P[ I S . |>t/Uj 0 l£i£pn 1 ni

+ PnPt ' Xnl ' >M·1 which g°es to zero as n->« by the hypothesis and the 

property (*) of (Xn_.})« Now, let tbe the r.v.’e associated to M

as above; applying Proposition 2.4 to the r.v.’s and writing

a = (α-φ(1) , one has, for η^ηΛ and l^ksk ,’ ’ 0 n ’

Arguing again as in the proof of Theorem 3.3 we obtain that
k

Z( ) n j v; then [3,Theorem 2.103 shows that knZ(^n^)|B^ J P |B^ 

for every tcC(p). Hence, by hypothesis and the preceding arguments, 

we have
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o
(A denotes the interior of A). We have proved that for every

integer i^2 it holds that

It follows that for any r>0 and for each integer

2
First, since φ(1)<1 and / x p(dx)<« ([3,Theorem 1.4]) we

r
c cobtain, letting that p(Be)£ap(Br) for each r>0. Then, letting

r->®, we conclude that μ(Β^)=0 because y(B^)<« ([3,Theorem 1.4]).O

Next, we give necessary conditions for convergence to a 

Gaussian measure.

4.2 Theorem. Let {X^.} be a stationary triangular array which is 

φ-mixing with φ(1><1 and satisfies condition (*). Suppose that 

7(S ) ·* δ *γ, where zeB and γ is a centered Gaussian measure. Then 

for every δ > 0 ,

Proof. The previous theorem gives (a) which in turn implies that 

J 0 for every δ>0 (write PC || || >0]^inP[|| xnl II >δί).

Fix δ>0. Since S =S - + one has Z( S -) -► δ *γ. On theηη,δη η, δ w z '
other hand, {X^^} satisfies the hypotheses of Proposition 3.5

r r
(to verify (*) write PC || II >ε]^Ρ[|| II >e^ +

r PC |l X J| >δ]); by standard arguments we have then that lim ES . 
η η 1 n n»0
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»/x 4 *γ(άχ)«ζ in B and lim Ef2(S_ ,)=/f2d(i *γ) = ί2(ζ)Η (f ,f) 
z η η, o z γ

for each feB’. From these facts we can deduce the remaining 

conclusions .0

Given a stationary triangular array (X^. : j=1 , . . . , ,ncN} ,

δ>0 and feB’ we write

oo 1/2
4.3 Corollary. Let {X^.} be as in Theorem 4.2. If Σ^.,^φ (j)<®

and there exists δ>0 such that for every feB’

then (b’) lim V (δ,ί)=Φ (f,f) for each feB’. η η ’ Y

Proof. Fix δ and f as in the statement and put Y .=f(X ..-EX .--------- r nj n j δ n j δ
By stationarity, we have the equalities (see, for example, losifescu

and Theodorescu C13, page 241)

But Proposition 2.5 gives (note that ^Ynl=°)

. 1/2 which goes to zero as n-*°° by the convergence of the series Σφ (j).

The desired conclusion now follows from Theorem 4.2. C
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οο ή / O
Remark. Let {X .} be as in Th. 4.2. If Σ. φ (j)<l/4 then C. _----------- n j 3=1 o,r 
(defined as in the corollary) is finite for each δ>0 and fcB1; hence, 

assertion (b’) holds.

In fact, fixing δ and f and writing Y .=f(X ..-EX ..) onee ng njó njó
has by Proposition 2.5 (see above)

2to conclude the proof observe that sup Ef (S .-ES .)<“. r rn n,δ n,δ

In the following results, we shall give sufficient conditions 

for convergence to a Gaussian law.·For any subspace F of B we write 

q (x) = inf { || x-y || :yeF}. If B is a separable Hilbert space we denote 

□ k = qp the distance to the subspace F^ spanned by {e^ , . . . ,e^} , where 
k

ie^iiN) is a fixed (but arbitrary) orthonormal basis of B, when B 

is infinite-dimensional; if the dimension of B is finite we have 

an orthonormal basis (deN) and we put q^ = 0 for k£d.

4.4 Theorem. Let {X^J be a stationary triangular array which is 

^-mixing with φ(1)<1 and such that

(1) for some a>0, the triangular array {X . -EX . } satisfies (*),’ e J njot nja *
(2) for every ε>0, □ PC || X II >ε]-»-0,

λ
(3) there exists a sequentially w -dense subset W of B* and δ>0

such that 

exists for every feW,
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(4) there exist β>0, p>0 and a sequence {F^} of finite*dimensional 

subspaces of B such that

Then (a) there exists a centered Gaussian measure γ such that

Φ (f,f)=$(f) for every feW,

(b) for every τ>0, /(S -ES ) ■* γ. J η η , τ w

Proof. We may assume that α = δ = β (this fact is a consequence of (2)). 
2Given feW, by (3) we have C =sup Ef (S --ES .)<· and by r η η , □ η , o

Chebyshev’s inequality we obtain

for each t>0; then (X(f(S r-ES «))} is relatively compact. On the η , ο η , o
other hand, (4) and Chebyshev’s inequality imply that

for every s>0. Therefore an application of [1,Theorem 2.3] shows 

that ^-ESn g)} is relatively compact.

Write j =Xjj j β “EXnj<5 · T^e trianSuiar array { Yr } is stationary, 

φ-mixing with φ(1)<1 and satisfies (*) by (1). We will prove now 

that j PC || Ynl || >e]->0 for every ε>0. To do this, note first that 

EX „ *0 in B (we have || EX . _ || £η+δΡΕ || X „ || >η] for each n>0); nextnio nio ni
observe that, given ε>0, if n is large enough to have || EX^^II ^ε/2, 

one has 3nPC II Y^ || >e]^j P[|| XR^ || >ε/2] and it suffices to apply (2).

Let {n’ } be a sequence of integers such that {£,( Sr , ^-ESn, ^)} 

converges weakly. By Theorems 4.1 and 4.2 applied to {Y^.}, its
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limit is a Gaussian measure γ with zero expectation whose covariance 

satisfies Φ (f,f)=$(f) for every feW (observe that Y . o =Y .).γ nj,zo nj
In view of the preceding argument, the compactness of

{Z( S .-ES .)} implies the existence of the desired γ and the η , ο η , o
convergence to it of the whole sequence. Since, by (2), 7 £ 0

we have Z( S -ES .) ■* γ and then, using (2) again, we deduce that η η, o w
7( S -ES ) -► γ for every τ>0 (if, for example, 6<τ we have η η, τ w J ’ r »

11 ESn,r-ESn,4H Xnl "

Remark. If B is finite-dimensional, hypothesis (4) of the previous 

theorem may be omitted; a similar remark applies to the next 

results (and to Theorems 5.7 and 6.4 below).

The following corollaries give sufficient conditions for 

convergence expressed in terms of the individual random vectors 

and pairs of them. As an additional hypothesis, it is required that 

the dependence coefficient 4>(j) converge to zero at a certain speed.

4.5 Corollary. Suppose that B is a Hilbert space. Let {X^^} be a 

stationary triangular array which is φ-mixing with φ(1)<1 and
® 1/2 Σ. „φ (1 ) <« . Assume3=1

(1) for every ε>0, II xnlll >ε^°»

(2) there exists δ>0 such that for every feB’

and the limit

(3) there exists B>0 such that
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Then there exists a centered Gaussian measure γ with covariance 

Φ (f,f)=*(f) Cfe-B·* ) such that £( S -ES ) ·* γ for every τ>0.Y η η, τ w

Proof. We suppose that B is infinite-dimensional (otherwise the 

proof is simpler). Let <·,·> denote the inner product of B and let 

{e^:icN} be an orthonormal basis.

We will show that the hypotheses of Theorem 4.4 are verified.

In view of (1) we may assume that δ=β. Let Y ,=X .,-EX ... First, no nj 6 no δ *
we prove that (Y .} satisfies (*). For this purpose, take {r )CNno n
such that r sj and rn/jn*0; by st.ationarit-y and Proposition 2.5,

writing U . ,=<Y .,e.>, we have6 n j i no * i ’

for every feB*. Then, applying Chebyshev’s inequality twice and 
r

[1,Theorem 2.3], it follows from our hypotheses that Σ.^Υ . ■+■ 0. 
3=1 nj P

Similarly, we obtain the inequality

which shows that (4) of Theorem 4.4 holds with p=2. Finally, in 

order to prove that assumption (3) of that result also holds we 
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observe that, for each fcB’,

which goes to zero as n->».0 

4.6 Corollary. Suppose that B is a Hilbert space. Let {X .} be a 

stationary triangular array which is φ-mixing with φ(1)<1 and
oo i/2

Σ^_^φ (j)<“. Assume

(1) E|| Xnl II 2<«, EXnl = O,

(2) for every e>0, lim jnEC|| Xnl || 2 I(-1| χ || >ejJ=O,

(3 ) for every feB·,

2 jn_1
and *(f)=lim {j Ef (X . )+ 2j Σ. ‘ E(f(X ,)f(X ._))} exists,η ni n nl n,j+l ’

Then there exists a centered Gaussian measure γ with covariance

Φ (f,f)>*(f) (feB’) such that Z( S ) γ.
y n w

Proof. We will show that {X^^.} satisfies the hypotheses of Corollary

4.5. Condition (1) of Corollary 4.5 follows from the inequality 

inpHl xni II >ε]^ε·23ηΕ[ II xnlll 2 ; II xnlH >ε]» valid for every ε>0.

Fix now any 6>0. With the notation of (2) of the previous result, 

we have C. £C for every feB’ and this implies the first part ofO , f f
that condition. To verify the second, fix feB’. Since Ef(Xnl)=O

we have
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which tends to zero as η->·, and

We will prove that {a } and {b } both converge to zero. Since η n
Ef ( X .)=0 we have nl

which goes to zero as n+°°. On the other hand, observe that

since, for example, one has by Proposition 2.5 (recall that Ef(X ) = 0) nl
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and the other two terms which are involved have the same bound; then

which tends to zero as n-*-°°. This implies that assumption (2) of 

Corollary 4.5 holds with the Φ given in our hypothesis (3).

In order to prove (3) of the previous corollary it is sufficient 

to remark that Eq*( Xnl j-EXnl6 )=Eq*( Xnl6 )-q*( EXnli )SEq*( Xnl ) (to 

prove it write down the first member in terms of coordinates).

Now, Corollary 4.5 proves the existence of the desired γ and 

that Zí S -ES ) ·* γ for each τ>0; but for such a τ one has 

II ESn,Tll = lljnEXnl II H Xnl'l 2 ; H XnlH >τ] which tends to zero.

This completes the proof.□

We can deduce easily the following

4.7 Corollary. Suppose that B is a Hilbert space. Let {X^sjeN} be
oo 1/2a stationary sequence which is φ-mixing with φ(1)<1 and Σ^^φ 

Assume E || Xj| <· and EX^sO. Then for every feB’ the sum
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converges and defines the covariance of a centered Gaussian measure 

γ which satisfies .X.) -► γ.j =1 3 w

Remark. In the case B = R and without the restriction φ(1)<1, Corollary 

4.7 was proved by Ibragimov (Ibragimov and Linnik [12,Theorem 18.5.23) 

by d ifferent methods. Let us point out, omitting the proof, that by 

using the result of this author and de Acosta [1,Theorem 2.3] one can 

obtain Corollary 4.7 without the assumption φ(1)<1.

As an application, let us observe that from this result in the 

Hilbert space case it is possible to calculate, using an argument 

in Araujo and Giné [5,page 180], the limit distribution of the 

Cramér-von Mises statistic of certain φ-mixing stationary sequences 

of random variables; let us observe that in Billingsley [6,Theorem 22.1] 

the limit distribution of the whole empirical process of such sequences 

is given under the stronger assumption Φ The result

that we can derive is this: Let {X^.} be a stationary sequence of
<b 1/2

real random variables which is φ-mixing with (j)<®. Assume

that X. has a continuous distribution function F; denote by F the1 J n
n-th empirical distribution function of {X.}. Then

J

where {q^tkeN} is a sequence of Gaussian real random variables with

En. =0 andk
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Next, we give an almost sure invariance principle. Its proof 

is carried out by first obtaining from our Proposition 3.1 an 

invariance principle in probability and then deriving from this the 

desired result; in both steps we use arguments of de Acosta [21. 

The remark that one can deduce,in the independent case, an almost 

sure invariance principle from the invariance principle in probability 

of de Acosta [2,Theorem 3.11 is due to H. Dehling and W. Philipp. 

An invariance principle in probability for stationary, φ-mixing 

sequences is given in Philipp [16,Theorem 41.

4.8 Theorem. Let {X^.} be a triangular array with stationary sums 

which is φ-mixing with φ(1)<1. Assume

(1) Xnl ? 0,

(2) for every ε>0 there exists a>0 such that

(3) £( S ) γ for some Gaussian measure γ. n w
Then there exist a probability space and two triangular arrays

{X* .} and {Y .} defined on it such that nj ng
(a) Z(X\,...,X¿. )=Z( X. , . . . · ) for each neN,nl nin nl >>3n

(b) Y .,... ,Y . are independent, identically distributed withn i η o

1/j_
Z(Y .)=Y for each neN,n 1
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Sketch of proof. As mentioned above, it is sufficient to prove the 

result with + in place of ■* a.s. in assertion (c) (see [2 ,Addendum]). 

Call this statement (c').

For the moment, we shall consider for a given peN the product 

space BP endowed with the norm || x || 1 = ΣΡ”J II II for x = (xQ , . . . , 

x .)eB* and we shall denote p the Prohorov distance between p-1 p
probability measures on Bp. We use the notation I(n,p,k) of Proposition

3.1 and write c(n,p,k)=card I(n,p,k).

For each peN choose n eN such that n +· as p·*00 and such that
P P

n¿n implies
P

This choice is possible by Proposition 3.1.

Fix peN and neN such that n £n<n .. Then, by a theorem of 
P P + 1 ’

Strassen [17], there exists a probability measure λ on BpxBp such 
n ,p

that

and

ί’οπ<) are canonical projections defined on BpxBp). Let a =
*■ ¿ n

1/j ®j j
Z( X...,X . ), B =(γ D) n and define ζ :B n-*Bp bynx njn n ^n,p *
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Cn,p(yl...........yjn)s(1jel(n,p,0)yj............£j«I(n,p,p-l)yj)j °"‘ hae

-1 -1 -1 -1α°ζ Λ = λ ^°πι and 8 °ζ = λ <>π . By Theorem A.l of de Acostaη η,ρ η,ρ 1 η η,ρ η,ρ 2 J
[2] there exist a probability space (Ω ,<4,P ) and random vedtors η η n

We may consider the triangular arrays {X’.},{Y .} defined on nj ng
the product space of the spaces (Ω 9t¿ ,P ). By construction, (a) 

nun
and (b) hold. Finally, the proof of (c’) is similar to step V of 

the proof of [2,Theorem 3.1]; Proposition 2.2 must be used and this 

is possible by our hypothesis (2).D

Remark. If a triangular array satisfies (*) then (1) and (2) of the 

previous result are verified. In particular (see 1) of the remark 

following Proposition 3.1), one has: if {X_.} is a stationary φ-mixing 

sequence with φ(1)<1 and {a^J is a sequence of real numbers tending 

to infinity such that {Z(an converges weakly to a Gaussian
. -1measure then the conclusion of Theorem 4.8 is true for {a X.:j=l,..., n g J ’ ’

n ,neN} .

Let C=C([0,l],B) be the Banach space of continuous functions 

of [0,1] into B endowed with the supremum norm and let D=D([0,l],B) 

be the space of functions of [0,1] into B which are right-continuous 

on [0,1) and have left limits on (0,1] equipped with the Skorohod 

topology ([6,Chapter 3]). Given a Gaussian measure γ on B, we shall 

denote by W^ the associated Wiener measure on (the Borel σ-algebra 

of) C or D. As in de Acosta [2] the following two results can be 

deduced from Theorem 4.8.
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u.9 Corollary. Let {Xn^} and Ύ be as Theorem 4.8. Then there 

exist a probability space (Ω,ιΛ,Ρ), a triangular array defined

on Ω and a stochastic process Z={Z(t):t€[0,1]}:Ω+C (resp., Ζ:Ω-»·ϋ) 

such that

u,10 Corollary. Let and Ύ be as in Theorem 4.8. Then

Remark. The first part of this result generalizes an invariance 

principle in distribution of Eberlein [8,Theorem 3.1]. Condition (4) 

there is our hypothesis (2) and is a version for the dependent case 

of condition (3.3) in Kuelbs [14] (which always holds in the 

independent identically distributed case as it can be deduced from 

[2 .Theorem 2.1]).

To close this section, we state a version for random vectors 

with values in a Hilbert space of Theorem 20.1 of Billingsley [6]
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(it can be proved combining Corollaries 4.7 and 4.10 with the remark 

following Theorem 4.8) and an arc-sine law for stationary, φ-mixing 

triangular arrays (it follows from the second conclusion of Corollary

4.10 and P. Lévy’s arc-sine law for Brownian Motion).

4.11 Corollary. Suppose that B is a Hilbert space. Let (X.) be a
00 1/2stationary, φ-mixing sequence with φ(1)<1 and Σ._^φ (j)<·. Assume

E || X || <® and EX^O. Then for every feB’ the sum Φ( f )=Ef i X^) +

2ςΤ_1Ε(f(X1)f(X.+1)) converges and defines the covariance of a centered 

Gaussian measure γ which satisfies

4.12 Corollary. Let B=|R and let {X^^.} be a triangular array which

satisfies the hypotheses of Theorem 4.8 with a centered, non-degenerate

Gaussian measure γ. Let L =card{k<j :S .>0}. Then η n nk

5. Generalized Poisson limits.

Proposition 3.1 gives conditions under which the limit of the 

row sums of a triangular array is infinitely divisible; as in the 

independent case, we want to relate the Lévy measure of the limit 

with the laws of the individual random vectors (under suitable 

assumptions). We need a modification of an inequality in Hoffmann- 

Jorgensen [11,proof of Theorem 3.1].
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5.1 Lemmja. Let } be a set of B-valued r.v.’s with stationary
k

sums such that φ(1)<1 ; write S^ = E_._^X_.. Suppose φ(1)<α<1 and let s>0, 

t>0, u>0 be such that t>s+u, maxi<k<n ^11 || >(t-s-u )/2]£l-a and

max. P[ II S, !’ >u/2]<l-a. Then1 < k < n k

Proof · Let M = max^^n ||xj| , A1 = [ || S± || >u], Ak=tmax1^h^k_1 || ||^u,

!| ckl’ >u] (k=2,...,n). We have

Now it suffices to apDly Proposition 2.2.0

5.2 Theorem. Let be a φ-mixing triangular array with stationary

sums which satisfies φ(1 )<1 , ψ*<® and condition (*). Suppose that

J v and that u is the Lévy measure of v. Then, for every TcC(p), 

■’ Z<X . ) |BC + u I Bc .
' n^ η 1 τ w 1 τ

Proof. First observe that, arguing as in the proof of (1) of Theorem
k

3.3, it follows that £( ξ ) + v and, by the general converse central

limit theorem of the independent case [3,Theorem 2.10],

♦ μ IBfor every teC(u).

We will prove that if 0<s<t then

(5.1)
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In order to do this, take μ and a such that 0<u<t-s and φ(1)<α<1

Property (*) implies that for n large enough we have

and

then Lemma 5.1 gives for such an n that

Therefore

by the indeDendent case and the finiteness of ψ*.

Now we claim that 

(5.2)

for every closed set F such that d(0,F)>0. To prove this, take such

an F and let e>0. For ncN, i = l,...,Pn let^nl= ζη1“Χηί ’ Ci = Cni =

LX .€FJ, D.=D J. We haveni ’ i ni *nl ε
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Next, fix heN. If n is such that p >h one has for i = 2,...,p -h, ’ n ’ *rn *
writing

that

where ín = maxi<j<<p H snjcH >ε/33; therefore
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Now $n**° as by the property (*) (recall that p^/j^·*©) and

PnP( Cnl )spnP[ || Xnl || ad(O,F)l, which goes to zero as a consequence 

of Theorem 3.4; hence

for all heN. By the φ-mixing condition we deduce that

for every ε>0, but this implies (5.2) since F is closed.

To conclude the proof, fix teC(u) and observe that it is 

sufficient to prove that every sequence McN contains a subsequence 

M’ such that w-limn€M,Xr1)|Β^ = μ|B^. Let McN be a sequence; using 

Theorem 3.4 and a diagonal procedure we obtain a subsequence M’ of 

M and a σ-finite measure μ’ with μ’({0})=0 such that w-limηεΜ ’ 
jΧηι >1i =u* ' » ^0Γ evepy t’eCiu’). Now it is enough to show

that w-lim Z( )IBC =μ|Bc for every τ’eC(μ)nC(μ *) (since this
n c μ η ηι τ τ

implies that μ’=μ and then the desired result follows). To prove 

this, take such a τ* and observe that by (5.2) we have that 

lim j PC || X . || =t’] = 0 and thenn Jn " nl "

Q 
for each closed set F. It remains to show that M®n M » ]‘nX( Xnl) (BT« ) 

=μ(Β°.); since τ’εθ(μ’) the limit in the left member exists and 
τ ’



37

coincides with u*). By the preceding inequality we only need 

to prove that y’(B®, (B®, ) ; but if 0<δ<τ’ and óeCíy1), (5.1) gives

and the desired inequality follows taking a sequence of such £'s 

increasing to τ’ because t*€C(p’).D

The following lemma and its proof were communicated to us by

A. de Acosta. Given a subset A of B, 3A denotes the boundary of A 

and Αε=(χεΒ:d(x,Α)£ε} if ε>0.

5.3 Lemma. Let {Χ^,.,.,Χ } be a set of B-valued r.v.’s. If A is a 

subset of B and ε>0 then

n
Proof. Fix j with l£jSn and write Z.= Σ X.. We have

3 i = l 1

moreover

(note that since B is a normed linear space, d(x,A)=d(x,3A) if xeAC)
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and, analogously,

5.4 Theorem. Let {X^^.I be a stationary, φ-mixing triangular array 

which satisfies φ(1)<1, ψ*<°° and condition ('*). Suppose that, for 

each neN, X ) = (1-λ (Β))δ +λ , where λ is a finite positive 

measure such that λη(Β)£1 and λη(Β^)=Ο for some t>0 independent of n. 

Then, if Z(S ) ·* v and μ is the Lévy measure of v, we have μ(Β^_) = 0’ n w t
and v=Poisu; moreover, ) J Pois(y|B°) for every τ€θ(μ).

Proof. Assume for the moment that we have proved that

(5.3)

for every tcC(u). If tcC(p), τ<ΐ, we will have that Z(S )=Z(S^T^)
η n

-> Pois(p|B°) (observe that j^CX^X^ ]sjnPi:o<|| X || ίτ ] = 0)

and then v = Pois(μ|B^) . One can deduce that μ|Β°ηΒτ,=0 if τ,τ’βΟίμ) 

with τ<τ’<ΐ (use the uniqueness of the Lévy-Khintchine representation);
o

this implies that y(Bt)=0 and v=Poisy. Hence the proof of the theorem 

will be done.

Fix Τ€θ(μ). By similar arguments to those used in the proof

of (1) of Theorem 3.3 and an application of [3,Theorem 2.10] we can
k

deduce from the weak convergence of (Z(Sn)} to v that

** Pois(y|Bc). Also, we can prove that
W T
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since σ(Χη1^σ(Χη1.) an<* trianSular array {X^} 1· stationary

r
and satisfies (*) (by the inequality P[|| Σj2^xnjll >0]£

(r /j )1 P[|| X (*) is a consequence of Theorem 3.4). Thenη η ' n m
(5.3) will follow if we prove that

(5.4)

Take ε such that 0<ε<τ; Lemma 5.3 gives for each ηεΝ

This shows that (5.4) holds if we prove that

(5.5)

and
(5.6) for every e>0, Z * 0.J ε ,n P

Observe that if 0<ε<τ

by Theorem 5.2 and this implies (5.5) since τεθ(μ).
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If e>0, n>0, s>0 and ncN write

then we have (5.6) if we prove the following two claims:

(5.7)

(5.8) given e>0 and s>0,

To prove (5.7), fix a such that φ(1)<α<1. Given δ>0 write 

n = min{1-α , δ(α-φ(1))}, take s>0 such that

and ηθεΝ such that

if η^ηθ (possible by Theorem 3.3(2)). Then if η^ηθ one has by the 

definition of p that max.<,<. PC|| Sn^|| >s/U ] <η and hence
~^n

Ptmax . . llxnJI>sl^PCmax1^k^. j| snkll >s/2 by Proposition 2.2.
J“J n J Jn

This implies (5.7).
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Now fix ε>0 and s>0. If neN we have for j=l,...,p , writing

U .=Σ_. .X ., V .=Σ. _ X ., thatng 1£i<3 ni ng g<i£pn ni’

where ^n=Tnax^á)c< J|>e/2], by Proposition 2.7. Hence
^η η

which tends to zero since δ *0 by the property (*) and

supn ^n^ll ^nls”<e as a conse<?uence Theorem 3.4 (note the inequality

i Ell X . || £sj P[||X J|>t]) . Then (5.8) is proved.□n " nls" n " nl"

We will need the following result (de Acosta et al [3,Lemma

2.4]); note that there is no dependence assumption in its statement.

5.5 Lemma. Let <Xnj ) be a triangular array. Assume that

(Σ.η.^(Χ .)|B°} is relatively compact for some δ>0. Then (Z(S^T^)} 
j -1 n j ο n

is relatively compact for every τ£δ.

Now we can give sufficient conditions for convergence to certain

compound Poisson measures.

5.6 Theorem. Let {X^^} be a stationary, φ-mixing triangular array

such that φ(1)<1 and ψ*<“. Suppose that, for each neN, Z(X „) = nl
(1-λ (Β))δη+λ , where λ is a finite positive measure such that non n
λ (B)£l and λ (B.)=0 for some t>0 independent of n. Assume that η n t r
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there exists a finite measure μ such that i λ -►μ. Then S ) * η n w n w
Ροίβμ .

Proof. Observe that {j Z( X 4)|B?}={j λ } is relatively compact by 
---------- η n 1 t η n
hypothesis. Then Lemma 5.5 implies that (Z( S ) } = } isη n
relatively compact (PCS λ (B.)=0).η η η n t

To conclude the proof, it suffices to show that each convergent 

subsequence of (X( S )} has the desired limit. Assume that X( S . ) -► v η n ’ w
and let μ’ be the Lévy measure of v; by Theorem 5.4 (the inequality

r
PCll Σ j-jXjj jll >0]^(rn/jn) 3ηλη(Β ) and the hypothesis imply that {X^}

° . <satisfies (*)) we have that μ’(Β )=0 (hence μ’ is finite) and v=Pois(u’).

On the other hand, if TeC(u’) with T<t, Theorem 5.2 gives that

1 ,λ ,=j ,Z(X .-)|BC * μ’|Β°=μ». Therefore μ=μ’ and v=Poisp.D 
n’n’n’ n ’ 1 ' τ w τ

The following two results give sufficient conditions for 

convergence to a generalized Poisson measure.

5.7 Theorem. Let {X .} be a stationary, φ-mixing triangular array --------------------- n 3
such that φ(1)<1 and ψ*<®. Assume

(1) there exists a σ-finite measure μ such that, for every τ€θ(μ),

(2) there exist r>0 and a sequence (6^}cC(p) such that 

and

(3) there exist B>0, p>0 and a sequence {F^} of finite-dimensional 

subspaces of B such that
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Then (a) u is a Lévy measure,

(b) for every reCCp), Z(S -ES ) -► c Poisp. η η , τ w t

(5) 
Proof. As a consequence of assumption (1) we have that Z( S^ 1) * 

Pois(u|B^) for every 6eC(p) and lim (ES -ES .) = lim ES^^ = 
ό η η, τ η , ο n n , τ

,rB x(p|B¿)(dx) if 6,T€C(u) and δ<τ. The first assertion follows 
τ

applying Theorem 5.6 to {X^.} (with λ = Z(X 4)|B®) and the second 
r J b nj n nl 1 δ

( δ) is deduced by a standard argument (write ES^ τ=

ixl_ (x)(j Z(X „)|B^)(dx) and note that the set of discontinuities 
p n ni óτ

of the bounded, Borel measurable function (from B into B) χΙβ (x) 
τ

has uIB^-measure zero). Then we have (see C3,Section 1])o

(5.9)

Fix xeC(p). We will show first that {Z( S -ES )} is η η , t
relatively compact. Choose δ>0 such that δ<τ, δ<β and

sup Ell S .-ES J|r<e> (this is possible by (2)). Hence we have 
ηη,οη,ο

(Chebyshev’s inequality) that for every f€B’,(Z(f(S .-ES .))) η , ο η, o
and then (Z(f(S .-ES .))} are relatively compact; the second η , p η , p .
assertion follows from the first by the equality S .-ES =η , p η , p
(S .-ES J+S^J-ES^o since assumption (1) implies that {X( S 2 )}

is relatively compact (write S«=Sδ-Sand use Lemma 5.5)
J η, 6 η n
(δ)and then {ES^ is relatively compact in B (Proposition 3.5

( δ ) ensures the uniform integrability of {|| Sv || }) . Now (3) and η,ρ
Cl,Theorem 2.3] imply that {Z( S .-ES .)} and then (X(S .-ES .)} η,ρ η,ρ η, ο η, ó



are relatively compact. On the other hand, arguing as above starting 
( 6 )from (1) we can obtain that {£( S +ES .-ES )} is relatively η η,δη,τ J

compact. Hence the equality

(5.10)

shows that (Z(S -ES )} is relatively compact.η η , τ
Suppose that Z/S.-ES . ) -► v . There is a subsequence {n, } ofη n , t w k

in’} such that if δ^<τ

(this is possible by (5.9)), By (2) we have that S _ -ES . 0
nk’4k nk*4k p 
(4k)

as k*· and then (apply (5.10) with n=n. , <5 = δ, ) ¿( S +ES „ - 
k k nk “k.«k

ES ) v. Hence c Pois(u|B° ) + v by the choice of {n, }. An 
n^,τ w τ 1 w k

application of [3,Theorem 1.6J gives that p is a Lévy measure and

v=c Poisp.τ
The relative compactness of {¿.(S -ES )} and the above η η , t

argument imply the desired conclusions.□

5.8 Corollary. Suppose that B is a Hilbert space. Let be a
eo 1/2stationary, φ-mixing triangular array such that φ(1)<1, Σ^._^φ (j)<®

and Assume:

(1) there exists a σ-finite measure p such that, for every xeC(p),



(2) there exists a sequence (6^}cC(u) such that δ^ΨΟ and

(3) there exists B>0 such that

(the q^’s are as in Corollary 4.5).

Then (a) μ is a Lévy measure,

(b) for every xeCCp), Z( S -ES ) ·* cPoisp.n n,twT

Proof. As in the proof of Corollary 4.5 we can obtain the inequalities

which show that the result follows from Theorem 5.7.Π

Let {Xj : 3eN} be a stationary sequence of B-valued random 

vectors, (an) a sequence of real numbers tending to infinity and 

{b^lcB ; it is known that if {£( a”^(X^ +. . . + Χ^)-bn) } converges weakly 

and (Xj} is φ-mixing (or even under a weaker assumption) then the 

limit is a stable measure (see Ibragimov and Linnik [12,Theorem 

18.1.1] and Philipp [16,Theorem 2]). The following two consequences 

of the previous result give sufficient conditions for that behavior 

(with a non Gaussian limit).

5.9 Corollary. Suppose that B is a Hilbert space. Let ae(0,2) and 

let σ be a finite measure on S = {xeB :|| xll =1 } ; denote μ the measure " 11 α,σ
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on Β induced by the product measure r" dr«o through the map 

(r,x) -> rx from C0,«)xS onto B. Assume that {X.:jeN} is a stationary, 

φ-mixing sequence such that φ(1)<1, Σ^._1Φ (j)<<®, ψ*<· and such

that it satisfies

for every τ>0. Then μ is a Lévy measure and Λ 9 O

• 1 / Ct
Proof. Let Xn^.=n" X^. for j=l,...,n and ncM. Corollary 5.8 shows

that it is sufficient to prove that

and

for some B>0. But as in Araujo and Giné [4,proof of Theorem 4.3] 

these conditions can be deduced from the relations 

and

which are consequences of the hypothesis.□

5.10 Corollary. Let {X^jjeN} be a stationary, φ-m-’xing sequence of 
oo i / 2

real random variables such that φ(1)<1, Σ^_^φ (j)<® and ψ*<«.

Let ae(0,2) and suppose that

(1) there exist constants £^£0, £j^0 such that £^+£^>0 and
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(2) for every t>0,

Then there exist constants a , with a ■*·, such that η n

where

Proof. As in Gnedenko and Kolmogorov [10,pages 176-178] we can 

define a such that a +00 and, for each x>0,η n

. -1Now it suffices to define X .=a X. for j=l,...,n, neN, and to ni n j ’ * ’ ’
apply Corollary 5.8.0
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6. Infinitely divisible limits.

In this section we consider ψ-mixing triangular arrays.

6.1 Lemma. Let {X^} be a stationary, ψ-mixing triangular array 

such that φ(1)<1 and ψ*<·. Assume + 0, ||x^^||^M a.s. (for all

n,j) for some M and that there exists δ>0 such that the triangular 

array (X ..-EX . x} satisfies (*) and (Z(S X-ES _) } is relatively njo njó η,ο η,δ
/ JF \

compact. Then lim ECf(S .-ES f)f(S )]=0 for every feB’.η η , δ η , δ n

Proof. Let Ynj’Xnji-EXnji for

Since Xnl p 0 we have EH xnl«II*° ’ ΕΙΙΧηΐΙΙ"·° (write EllXnills

ΜΡΓΙΙX J| >5]) and e|| Y λ || ->0 as n->®. Theorem 3.4 applied to (Y .}II njn II njji rr n-j

implies that K = sup j E|| X J|<°°. Next we claim that*n n 11 nl"

is finite. To prove this, fix a such that φ(1)<α<1 and put n=l-a.

Take χθ>0 such that

and n^cN such that

(k) ν
if η^ηθ, where =^J'j-lYnj^ (possible by Theorem 3.3). Hence

if η^ηθ we have



U9

for χ£χθ and therefore, by Proposition 2.2,

Applying Proposition 3.5 to we conclude that C<®.

Fix feB’. Let heN; if n is such that j >2h+l and i satisfies n
h+l^i^j^-h write

For n sufficiently large we have
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Moreover

by Proposition 2.7,

bv Propositions 2.6 and 2.7 and dR has the same bound that b^.This 

inequalities and the remarks made above yield

for every heN, then the ψ-mixing condition implies the desired result.□

6.2 Theorem. Let {X^} be a stationary, ψ-mixing triangular array 

which satisfies ψ*<® and condition (*). Suppose that .£(S )n
■* v with Lévy-Khintchine representation v = $z *V*c Poisp for rcC(p),

T
where z^eB, γ is a centered Gaussian measure and p is a Lévy measure.

Then

(a) for every TcC(p), jnZ(Xnl)|B^ * p|B®,

(b) for every fcB*,
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(c) for every TeC(y),

and

Proof♦ Theorem 5.2 shows that (a) holds.

Fix t€C(u). (a) and Theorem 5.6 applied to {X^^} imply the 

first assertion of (c) (note that Βτ Xnl ' Βθ *

Hence (Z(S )} is relatively compact. Let λ be the Lévy measure η ,τ
of a limit point of this sequence; for every τ’<τ such that 

T’cC(X)nC(u) we have JnZ( χηιτ I Βχ » χηι I Βτ nB τ · an^ then λ|Β®,=

ulB^nB^, by (a). Therefore y(B^ is the Lévy measure of every limit 

point of {Z(S )).n, t
Now we will prove the following claim: (I) if a subsequence

(Z(S )} converges to δ *?*c Pois(y|B ) where zeB and V is a n^»τ z τ τ

centered Gaussian measure then Z( S . ) ·* δ *y*c PoisCylB ,) for n^, t w z τ τ

every τ’>τ such that t’eC(y).

In order to prove (I), fix such a τ’ and observe that since

{Z( S , )} is relatively compact it suffices to show that each 
nk’T

one of its convergent subsequences has the desired limit. Let

{£,( S , .)} such a subsequence with limit δ ,*γ'*ο PoisCylB ,) =η , τ z ’ τ τ’

δ . *y’*c ,Pois(u|B .) where z’eB, γ’ is a centered Gaussianz +m τ τ
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measure and m=/BcnB x u(dx) (we have used an elementary property 
τ π τ ’

of τ-centered Poisson measures; for this and other properties which

we will use we refer to C3]) . We have

by Proposition 3.5 (to prove that (X^^l satisfies (*), write XnjTs 

X XT . and use (a) and the property (*) of (X .}) and m= lim ,
ηη nj r J nj n’

(FS . ,-ES , ) by (a); hence z’=z. On the other hand, we have forη , τ η,τ
every feB’ (Proposition 3.5)

(arguing as above we can obtain that -*■ Pois(u|BcnB .))
η, t w τ t ’

and the equality

Therefore, Lemma 6.1 implies Φ^,=Φγ, that is, γ’=γ. Then (I) holds.

To complete the proof of (c) observe that its third assertion

follows from the second (by Proposition 3.5). To prove it, let in’} 

be a subsequence of N such that Z( S , ) + δ *y*c Ροίβ(μ|Β ) wheren j t w z τ τ
zeB and ? is a centered Gaussian measure; since {£( S )} isη,τ 
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relatively compact it is sufficient to show that ζ = ζτ and ? = γ.

Take an increasing sequence {r^}cC(p) such that τ^>τ and 

by (I) we have

(say) for every keN. Hence there exists a subsequence (n^}

in’) such that p(X(S ),v. )<l/k for each keN. Note that
nk’Tk k

(Tk>
S + 0 (given ε>0, by Theorem 3.4 we may choose r>0 such that
nk

c (Tk>
sup^ which implies that P[|| S || >0]£

nk

ί PC||X for sufficiently large k) and c Pois(p|B )
nk nk K τ Tk

-► c Poisp.w τ

and the uniqueness of the Lévy-Khintchine representation implies 

z=z^ and ?=γ. Thus (c) is proved.

Let feB’. (c) and Proposition 3.5 imply

for every reCip); arguing as in [3,proof of Theorem 2.10] we can 

deduce the second equality in (b). To obtain the first it is
2 —i— 2sufficient to show that lim Ef (S P-ES P) and lim Ef (S f-ES .)------η η,δ η,δ η n,o n,o

are increasing functions of 6. But this follows from Lemma 6.1 and 

the inequality
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(0<δ<δ ’ ) .Π

We use the notation Vn<6,f) of Section 4.

6,3 Corollary. Let (X^^) be as in Theorem 6.2. Assume that either
oo 1/2

<i) Σ·_ιΦ (j)<m and for every feB* there exists δ>0 such that
2

(' , = sup j Ef (X 4 χ-EX . . ) ,δ,ί Hn Jn ηΐδ ηΐδ ’
<κ>

or í i i) Σ _ ψ ( j ) <· and for every feB* there exists δ>0 such that

Vf=suPn >Í/2e I f ( Xnli-EXnli > ' ‘

Then for every feB’

Proof. Let feB’. First let us observe that conclusion (a) of

Theorem 6.2 implies that we may suppose that C. _<· for every δ>0 o , f
in (i) and <°° for every 6>0 in (ii).o , f

As in the proof of Corollary 4.3 we have for each 6>0

and analogously (but using Proposition 2.6) we obtain the bound

Now we can deduee (b*) from (b) of Theorem 6.2 and (i) or (ii).O

00 1/2
Remark. Let (X .} be as in Theorem 6.2. If Σ. 4 φ (j)<l/4 or----------- n j j = 1 

then (b* ) holds for every feB* (argue as in the remark

following Corollary 4.3).
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6.4 Theorem. Let {X .} be a stationary, ψ-mixing triangular array --------------------- ng
such that φ(1)<1, ψ*<®. Assume

(1) for some a>0, the triangular array xnjjαsatisfies (*) ,

(2) there exists a σ-finite measure μ such that for every tcC(u)

(3) there exist a sequentially w*-dense subset W of B· and a 

sequence such that

exists for every feW,

(4) there exist B>0, p>0 and a sequence (F^) of finite-dimensional 

subspaces of B such that

Then (a) μ is a Lévy measure,

(b) there exists a centered Gaussian measure γ such that

Φ (f»f)O(f) for every feW,

(c) Z(S -ES ) y*c Poisu for every tcC(v).η η,τ w τ

Proof. By an application of Cl,Theorem 2.3] and using Lemma 5.5 and

Proposition 3.5 we can deduce from the hypotheses that (ZiS^-ES^ τ)1 

is relatively compact for every TeC(u) (see the proof of Theorem 5.7). 
j

Fix TeC(u) and write Y .=X .-EX . , Τ =Σ. J ·· Note that ng ng ngx’ n g=l ng
Exn1_ * 0 in B by (2) and that (Y .} satisfies (*) (write Y .= ηιτ ' ng ng
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(X . -EX . )+Χα.+ΕΧ < -EX „ and use (1) and (2)). nga η]α ni ηΐα ηΐτ
Now we prove that

(6.1)

for every <5cC(u). Fix such a δ. If 0<ε<δ we have for sufficiently 

large n

since EX . ■* 0; then (2) implies lim j Z(Y 4)(Β?) = μ(Β®) because
nix nnioon

6«C(u). Similarly, if F is a closed set and e>0

which shows that 1im (j £( Y .)|B°)(F)£(y|B°)(F). Hence (6.1) holds, 
η n ni o o

As in the proof of Theorem 6.2 we can prove, using Lemma 6.1,
2 2that lim Ef (S r-ES .) and lim Ef (S r-ES x) are increasing ------η η,δη,δ η η,δη,δ 6

functions of δ for each feB*. Then (3) implies that

(6.2)

for every feW.

Next , we show that for each feW we have

(6.3)
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In order to prove this, fix feW and observe that by (6.2) it is 

sufficient to show that

(6.4)

for each δεθ(μ). Let δεθ(μ) and write S =S X-ES ., T =T .-ET η η,δ η,δ η η,δ η,δ
Using the Cauchy-Schwarz inequality we obtain

2 ~ 2
and moreover we have sup Ef (S )<· and sup Ef (T .)<· (use η η η η,δ
Lemma 5.5 and Proposition 3.5). By Proposition 3.5 ({(X ..-EX ..) nj δ nj 6
-(Ynj¿”EYnj)) satisfies (*)), (6.4) will follow if we prove that

S -T + 0 . One has η η P

Take ε such that 0<ε<δ; for sufficiently large n we have ||EXnlJ|<e 

and then
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Applying (2) we obtain that

for every εε(Ο,δ) and therefore lim Ell S -T 11=0 since 6cC(p). As η η n
remarked above this implies (6.4) and thus (6.3) is proved.

On the other hand, we claim that

(6.5)

The equalities

and the fact that EXniT * 0 imply that
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for every εείΟ,τ) and this implies (6.5) because reC(p).

By the relative compactness of {JfCS^-ES^ χ ) } = {£( , claims

(6.1), (6.3) and (6.5) and Theorem 6.2 applied to {Yn^} we maY 

conclude the proof through a standard argument.□

6. 5 Corollary. Suppose that B is a Hilbert space. Let {X^.} be a 

stationarv, ψ-mixing triangular array such that φ(1)<1, ψ*<®. Assume

(1) there exists a σ-finite measure p such that for every xeC(p)

(2) one of the conditions (i) or (ii) of Corollary 6.3 holds and 

there exists a sequence such that

exists for every feB’,

(3) there exists B>0 such that

Then (a) p is a Lévy measure,

(b) there exists a centered Gaussian measure γ with

covariance Φ (f,f) = <$(f) (feB’),
Y

(c) ^( S -ES ) ·* y*c Poisp for every TeC(p).η η, τ w τ

Proof. We will show that the hypotheses of the previous result are

satisfied.

Write Ynj=xnjg’EXnjg· We prove that (Y^.} satisfies (*).
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Let {r }cN such that r and r /j ·* 0. We have, as in the proofη η η η n 
of Corollary 4.5,

and

for each fcB*. If (i) of Corollary 6.3 holds we have by hypothesis

(1) that Ce _<® for each fcB’ (see the proof of Corollary 6.3) and 
p , r r

therefore, using (3) and [1,Theorem 2.33, Σ " Y . £ 0. In case (ii) 
3=1 ni P

holds note th^t

for each feB* (use Proposition 2.6) and argue as above. Then (1) of 

Theorem 6.4 holds.

On the other hand, hypothesis (2) implies (3) of the previous 

result (see the proof of Corollary 6.3).

Finally, the inequalities 

together with hypothesis (3) and condition (i) or (ii) imply (4) of

Theorem 6.4.Π
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