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0.Introduction. ’
4

Several authors have studied the weak conVergehco of the laws
of sums of random variables with the hypothesis of independence
replaced by less restrictive properties which are expressed through
certain dependence coefficients (see, for example, Ibragimov and
Linnik [12], Billingsley [(6],[7], Iosifescu and Theodorescu [13],
Philipp [(15]). In this paper we consider certain mixing conditions
(the so-called ¢ and Vv-mixing) for triangular arrays of random vectors
which take values in a separable Banach space and whose rows form
stationary finite sequences (see Section 1 for the definitioms). Our’
‘aim is to give necessary and sufficient conditions for the convergence
of the laws of the row sums of such triangular arrays expressed in
terms of the individual random vectors and, in principle, without
moment assumptions. In order to do this, we depart to some extent
from the usual paths in this area and follow t?e point of view
developed by de Acosta, Araujo and Giné [3] for the case of row-wise
independent infinitesimal triangular arrays. We use some results of
that article through the technique, standard in the dependent case,
of grouping random vectors in suitable blocks; an idea due to S,
Bernstein., The framework that we present for the study of triangular
arrays under d;pendence conditions and several of our specific results
—for example, Corollaries 4.6, 5.8, 5,10 and 6.5— appear to be new
even for the real-valued case. .

Section 2 contains some basic inequalities, which are used in
Section 3 to prove results about compactness and integrability.

In Sections 4, 5 and 6 we deal with necessary and sufficient

conditions for convergence in a Banach space to a Gaussian, generalized



Poisson or infinitel; divisible iaw, respectively. In the first two
cases, the ¢-mixing condition is required to hold together with certain
restrictions about contiguous random vectors: in Section 6, the
v-rmixing condition is added. For a Hilbert space and assuming some
specified mixing rates we give sufficient conditions for convergence
expressed, as far as possible, in terms of individual random vectors
(see "orollaries 4.5, 5.8 and 6.5: in Philipp [15] there are conditions
ir terms of blocks for convergence to certain infinitely divisible
laws ‘or ¢-mixing triangular arravs of real random variables which
satis*y different hypothesis from the ones given here).
] "rom the sufficient conditions for convergence to a fGaussian
aw given in Section 4 we can derive a result (Corollary 4.7) which,
v
essentially, is an infinite-dimensional generalization of a theorem
¢ 1.4, Tbragimov for real random variables (Theorem 18.5.2 in (12]).
An the other hand, we show that by applving methods of de Acosta [?]
we can obtain an almost sure invariance principle for stationarv,
s-mixing triangular arravs (Theorem 4.R): from this, following de
Acosta (2], we can deduce an invariance principle in distribution
t“orc.larv 4.10) which generalizes a result of Eberlein [8].

Cection ¢ includes a direct theorem of the Poisson type
‘Theorem 5.6) and the proof that the classical conditions for
cenvergence to a stable law of the normalized sums of a stationarv

se-~1ence of independent random variables are still sufficient for

certa‘n ¢-mixing sequences (Corollary 5.10).
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i.Definitions and notations.

Throughout the paper, B denotes a real separable Banach
space and the random vectors we consider take values in B,

By a triangular array {xnj} we mean a doubly indexed
family {Xn.

]
numbers) of B-valued random vectors (r.v.'s) defined on a

:j=1,...,jn,neN} (N the set of non-zero natural

common probability space ('{2.4,1’); we will assume always that

. 2 . (n) Thed

jp*®. Given {an}, we deflneclhk =o(an.hS]sk) (the o-algebra
generated by the indicated set of r.v.'s) for neN and 1shsksjn.
Analogously, we define for a sequence {Xj:jeN} of B-valued r.v.'s
the o-algebras A&R(ishSRSO) and also~4£k(15h5k5n) for a finite
set !xi,...,xn}.

Given a triangular array {Xn :j=1,...,jn,neN} we define

3
the dependence coefficient

P F
¢(k)= sup max sup{l—%%%Tl -P(F)I:Eedg:),Fel(n) . ,P(E)>0}

neN 1shsj -k hek, i,
ip>k

(keN); it follows that ¢(1)s<1 and that {¢(k)} is a non-increasing

sequence., We say that {xnj} is ¢-mixing if ¢(k)+0 as k+> (the

same letter is used to denote the coefficient and to name the
property). For a sequence {Xj} define

P(EnF)

¢(k)= sup sup{| -P(F)|:Ee ,Fe »sP(E)>0}
heN P(E) Aah J&+k,

and then the ¢-mixing property for {Xj} is defined as above, Given
a finite set {xi,...,xn} the numbers ¢(1),...,¢(n-1) are defined
in a similar way.

For a triangular array {an} we define



w(k)= sup max sup{| P(EnF) -1|:EeA§:),reA§2; . ,P(E)P(F)>0}
neN 1shsjn-k F(E)P(T) ’Jn
jn>k

(keN); observe that y(1)s+» and that {y(k)} is a non-increasing

sequence, We say that {an} is y-mixing if Y(k)+0 as k+=, Also,

we define these notions for a sequence and the coefficients y(k)
for a finite set of r.v.'s., Note that in any case ¢(k)sSy(K).

The last coefficient we will consider for a triangular array

v%= sup max sup{ﬁ%éggé%queAég),Pal(n) ,P(E)P(F)>0}

neN 1<hs<j -1 h+1,3

. n

i >1

n
(this is not a standard notation); we have yYP#*<+» and y*<i+y(1).
It is defined analogously for sequences and finite sets of r.v.'s.

For examples of non-independent sequences of random variables
which are ¢-mixing, V-mixing or satisfy yY*<+o see Ibragimov and
Linnik (12], Billingsley [6],[7], Iosifescu and Theodorescu:[13].
1/2 ,

There are examples with $(n)=0(p") or w(n)=0(p" ) where 0<p<1.

We say that a finite set {xl,...,xn} of B-valued r.v.'s is

stationary (with stationary sums) if.Z(Xl,...,xh)=Z(Xk+1,...,Xk+h)

kfl*"‘+xk+ﬁ)’ respectively) for 1sh<n,igksn-h

(if Z is a random vector, 2Z(Z) denotes its distribution).A triangular

(ZCX,+0 o X ) =Z(X

array is stationary (with stationary sums) if each one of its rows

has this property. We have similar definitions for a sequence of
r.v.'s,

Let 8 denote the Borel o-algebra of B, If Ae8, IA is the

indicator function of A; for a B-valued r.v. X we write x6=XI[Hx||SQ’

x6=x-x6 (6>0, || +]] is the norm of B). Sometimes we will denote



E[X;XeA] 'E[XI[xeA]]’ Given a triangular array {x .} we write

3 i,
k - oy.D (8) §
Spk=lis1Xpy 1f 15k<ip, sn-snjn, Sn.6"E521%ng6® Sp =P4a 1xnJ
if {x j} has stationary sums and un=ZIXn1) we write (k)=1(s )

(k=1,...,jn). For a probability measure yu on B and keN, nk denotes
the k-th convolution power of pu; if v is infinitely divisible,

{vt

:t20} is the associated weakly continuous convolution semigroup.
The symbols ® and * denote themprdduct and convolution of measures,
respectively.

We denote by > or w-1im the weak convergence of finite
measures and by 3 the convergence in probability of random vectors.
p is the Prohorov distance between probability measures on B and
we write o(X)s= E[”Xl(lﬂlxll)'ll for a B-valued r.v. X.

For the notions and basic properties of infinitely divisible
probability measure, Gaussian measure, L&vy measure and t-centered
Poisson measure in Banach spaces we refer to de Acosta et al (3]
or Araujo and Gin& [5]. If y is a Gaussian measure on B, OY denotes
its covariance. Given an infinitely divisible measure v we will
take as its L&vy measure p that one which satisfies u({0})=0.

If u is a o-finite measure on B we put C(u)={r>0:
u({x:|lx ||=r})=0}; if Ae® the measure u|A is defined by (u|A)(E)=

u(AnE) (Ee8). Gx denotes the point mass at xeB, B' is the dual

space of B and B _={xeB:|[x |[[sr} (r>0).



2.Seme inequalities for sums of dependeht random vectors.

Let us state a simple extension of Lemma (3.5) of Eberlein
(8]). The proof involves a monotone class argument and induction

over k.

2.1 Proposition. Let {xl,...,xn} be a set of B-valued r.v.'s.

Let a,,...45a, ,b,,...5,b, (keN) be natural numbers such that 1<a
1 k*"1 k 1

sp1<a2sb2<...<aksbk5n with ai-bi_lzqu (i=2,...,k) and define
E = £ X. (h=1,...,k). Then
ahSJSbh

LZ(&i,...,Ek)(A)-Z(El)O...@Z(Ek)(A)Is(k—1)¢(q)

for every Aeﬁr (the k-fold product oc-algebra of B).

The. following version of Ottaviani's inequality can be proved
as Lemma 1.1.6 of Iosifescu and Theodorescu [13] (note that it

requires ¢(1)<1).

2.2 Proposition. Let {Xl,...,Xn} be a set of B-valued r.v.'s

with ¢(1)<1 and write sk=z§=1xj. Suppose ¢(1)<a<i and let Ve ®be

a symmetric convex set such that max P[S_-S.¢€(1/2)V]si-a.Then
1sk<n-1 ° K

p[sktv for some k=1,...,nJS(a-¢(1))'1P[sn¢(1/2)v1.

2.3-Propdsition. Let {xl,...,xn} be a set of B-valued r.v.'s with

¢(1)<1 and write Sk=£]§=1xj' Suppose ¢(1)<a<l and let Ve®B be a

symmetric convex set such that max P[(S_-S,¢(1/4)V]<i-a and
1sksp-1 P K

P[snt(1/u)v)<(a-¢(1))(1-¢(1)). Then

P[Sné(l/N)V]

S?_lP[XWKVJS
1= J (a-9(1))(1-9(1))-P[S_£(1/4)V]



Proof. Define Fk=[xk+1

then Fk€A£+1,n for k<n., It follows that

eV,...,XneV] for k=0,...,n-1 and Fn=9;

P[xjtv for some j=1,...,nl=C P([thvlnrk)

n
k=1
n

2z 1(P(Fk)-¢(1))P[Xk¢V]

k

z(P(Fo)-¢(1))2?=1P[xj£v]

=(1-4(1)-P[X ¢V for some j])z?zip[xjtvl.

Now it suffices to note that, writing xj=sj'sj_ one has

19

P(X.éV for some j]sP[$k£(1/2)V for some kJS(a-¢(1))-1P[Sn£(1/u)V]
by Proposition 2.2.0

The following generalization of Lemma 2, p. 383 of Gihman
and Skorohod [9] will be useful; the proof is similar to that given

in (9] and uses Proposition 2.2,

2.4 Proposition. Let {xl,...,xn} be a set of B-valued r.,v.'s with

. . k .
0(1)<1; write sk=zj=1xj. Suppose ¢(1)fa<1,l|xjH sSM a.s. (j=1,...,n)
and let t>0, f%eN. Then, if max P[Hsn-SkH >t/u4]s1-a, it holds that

1<k<n-1

P[ max IISkH'>2t+(!-1)M]
1<ks<n

s(¢<1)+(a-¢(1>)‘1p[usnu ?t/“])1-1(a-¢(1))'1P[HSn||>t/2].

To close this section, we quote three moment inequalities
(see Th. 17.2.3 of Ibragimov and Linnik (12], Lemma 3 of Philipp

[15] and p. 27 of Billingsley [71]).

2.5 Proposition. Let {Xl,...,Xn} be a set of B-valued r,v.'s. Let

h.keN h+ksn and let ¢{,n be real random variables which are J% h
9

and/‘h+k ,-measurable, respectively. If E|£|P<= and E|n|%= with
]
p,q>1 and p'1+q'1=1, then

|ECEn)-ECE)E(n) [s26/Pi)(E|€|P)Y/P(g|n] 2/ Q,



2.6 Proposition., Let (xi,...,xn}, h, k, £ and n be as above but

with the only assumption that E|£]|<» and E|n|<». Then

|E(En)-E(E)E(n)|su(Kk)E|E]E]|n].

2.7 Proposition., Let {Xi,...,Xn}, E, n, h be as in the previous

proposition with k=1. Then |E(&n)|sy*E|E|E|n].

3. Preliminary results.

a—
e——

In the following result we use some ideas which appear in
Eberlein [8](proof of Proposition (3,6)) which in turn is inspired
in Kuelbs ([14], Lemma 1). The second part of the conclusion will

be used later (see Theorem 4.8).

3.1 Proposition., Let {an} be a ¢-mixing triangular array with
stationary sums., Suppose that Xn1 3 0 and that Z(Sn) > Ve Then v

is infinitely divisible and for each peN we have

)y - (vl/p)OP’

Z( L X saeony z an e

jel(n,p,0) ™3 jel(n,p,p-1)
. . =1 . . =1
where I(n,p,k)={jeN:kan <j$(k+1)]np } (k=0,1,...,p-1).

Proof. Fix peN. Write I(n,p,k)=[ank,bnk3 (interval of integer

numbers) and note that it has [jnp-lj or [jnp'1]+1 elements (here
{.])] is the integer part of a real number),.

By hypothesis, on=o(Xn1)+0 as n+»=, Take a sequence {dn}cN
such that dn»m, dnon+0 and dn5[jnp'1] for all sufficiently large n

1 1

s - -1/2 . _ .-
(for example: dn-mln{[an ],[on J}). Now define bﬁk'ank+[3np ]

'dn and £nk=2 (k=0,...,p-1); by stationarity of sums

X_.
3 1
anks]Sbnk nj



we have Z(€n°)=...=Z(£n p-1)=xn (say).

_gP-1 p-1
Since a(sn Ly _obqK)SPd, 0, *0 as n+=, it follows that L(Zkgoznk)

3 Ve On the other hand, from Proposition 2.1 we obtain for every

Ae&p

(3.1)  |Z(E_gsevnsk )(A)-A:P(A)Is(p-1)¢(dn)

n,p-1

and therefore, for every Ce@,
p-1 P -
| ZCER 208 ni) () -Ag (O [s(p-1Dea)

which goes to zero as n goes to infinity. Then Ag v Hence, by
well known properties of the weak convergence of probability

measures, we conclude that there exists {xn}CB such that {xn*GX }
n

is relatively compact and then we obtain the relative compactness

of {Ag*ép b, {6 }, {6_ } and {An} successively. But if A is a

X PX, X
limit point of {An} then AP=v,
The arbitrariness of p above shows that v is infinitely

divisible, To obtain the second assertion of our statement, fix

1/p

p and apply (3.1) observing that A v and o(L

now jeI(n,p,k)xnj
-gnk)sdnon.ﬂ

For a triangular array {xnj

sums we shall consider the following property:

:j=1,...,jn,neN} with stationary

r
n

% : ] -
(%) {rn}CN, r oS3, rn/jn+0 > zj=1xnj 2 0.

Remark. Theorem 2.1 of de Acosta [2] shows that this property
(which may be described as a strong form of infinitesimality) holds
for a triangular array of B-valued r.v.'s which are row-wise

independent and equidistributed and whose sums converge weakly,
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This condition is an hy- thesis in ma.y of our statements
but it is dropped in some results in which we give sufficient
conditions for convergence (see Corollary 4.5, Theorems 5.6, 5.7
and Corollary 6.5); next we point out two cases in which it is
verified,

1) Let {Xi} be a ¢-mixing stationary sequence and let {an}

be a sequence of real numbers tending to infinity such that

Cy(a-lgD L , __-1 .
L(an ijlxi)t converges weakly., If an-an xj (j=1,...,n) then
the triangular array.{an}j=1,...,n;neN} satisfies (#)(It can be

proved by using Th., 2 of Philipp [16] and a theorem of Karamata

(12, Th.A.1.1]),
2) Let {xnj} be a ¢-mixing triangular array with stationary

sums such that X1 B 0 and Z(Xn1+...+xnk) is symmetric for k=1,...,

jn, neN, Then, if {ZKSn)} converges weakly, {xni} has the property (%),

This is a consequence of the following fact: let {xnj} be a

¢-mixing triangular array with stationary sums such that xn1 3 0

and :Z(S_)} converges weakly; then, if {r_}cN, r sj and r_/j_ =0,
n n (r n n’“n

there exists {xn}CB such that the sequence {un "

*Gx } is relatively
n

compact and all its limit points are point masses. To prove this,

let v be the limit of {ZKSn)} and take a sequence {rn} as indicated.

'y o 3 [jnp-ij 1/p )
Fix peN: by Proposition 3.1, Z(Zi=1 an) >V . Let on-o(xn1 .
-1
~ [ p 71
. . -1 -1/2 _Tn _.In
dn-mln{[]np J-rn,[on 1}, Yn-£j=1xnj’ z_ Zrn+dn xai' We have
(5 g0

I(L,

-
-

F
n . s
1 an-(Yn+Zn))sdnon+0 and, applying Proposition 2.1,

|Z(Yn+2n)(A)-Z(Yn)*kiZn)(A)|s¢(dn) >0

(r_)
for every Ae®. Then Mo n 1/p.

*Z(Zn) >V By a well known result, we
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(r_ )

deduce that there exists {xn}CB such that {un n *Gx } is relatively

n

P

compact., Let o be a limit point of this sequence; then o is a factor

of v for every peN. From this we conclude that {ap*sy :peNl} is
P

relatively compact for some {yp}cB, but this implies that a=6z for
some zeB (see [5,p.33]).
In view of the two cases described above and Theorem 2.1 of
(2] it is natural to ask if in_general:{XAj} stationary ¢-mixing,
' e 1 1 1 %
X.q # 0, US ) o imply {an} satisfies (*), We have not been able

to answer this question.

We shall need sequences of integers with the properties

stated in the following result.

3.2 Lemma. Let {jn}CN, {on}C[O,m) and {¢(n)}c(0,») be sequences such
thatvjn*m, on*o and ¢(n)+0 as n+=, Then there exists sequences {pn},

{q_} in N which tend to infinity such that j_(p_+q ) lse,

. -1 . -1 -1
o(qn)jn(pn+qn) +0, qnanjn(pn+qn) +0 and Q. P, +0,

Proof. Observe that if the last condition is verified, the remaining

are equivalent to jnpgléw, ¢(qn)ﬁnp;1*0 and qncnjnp;1+0. First, we

. , . -1
find sequences {qn}CN and {Bn}CKO,w) such that B8 -0, (Jan) q,0,
-1 -1 .
¢(qn)8n +0 and q 0 B "*0. To do this, take {qn} such that q +=,

. =1 . . -a g
9,9,*0 and q_j "+0; for example, one can define qn=m1n{[on ],[]n]}
if o >0 and qn=[52] if 0 =0 ([+] is the integer part of a real

u

number) with O<a<l, 0<b<l, Now define Bn=max{(qnj;1) ,(¢(qn))v,

(qnon)w} where u, v, w are real numbers in (0,1). Then {qn} and {Bn}
have the desired properties and it is sufficient to define pn=[jn6n]+1

in order to end the construction.(
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Next, we prove a version of Th.2.1 of de Acosta [2] for the
¢-mixing case; assertion (2) will be repeatedly used combined with
some inequalities of Section 2.

3.3 Theorem. Let {an} be a ¢-mixing triangular array with stationary

sums which satisfies condition (%), Suppose that Z(Sn) 3 v. Then
(r )

s s . n t
(1)if {rn}eN, r sigs rn/3n¢teR, then ' Vv,
(2)the set {u;k):k=1,...,jn,neN} is relatively compact and
k/j
lim max D(u(k),v %y=0.

n lsksjn

Proof. We only prove (1) because (2) can be deduced from it as in [2].

Let {r_} and t be as in (1). We may suppose that te(0,1);
otherwise, the result follows easily from (#%*). Let {pn}, {qn} be

as in Lemma 3.2 where we have taken on=o(xn1) and write

'- -1 "- . -1 .
kn-[rn(pn+qn) 1 kn-[(Jn-rn)(pn+qn) J ([.] denotes the integer

. L ”
part of a real number); then kn*w, kn+~ as n+*x, Define

, (k-l)(pn+qn)+pn ' k(pn+qn)

X . and n_, =L

£ ., =L,_ . _ X .
nk "j=(k-1)(p_+q_)+1 "nj nk “j=(k-1)(p_+q_)+p_+1 “nj

1

for k=1,...,kn,
. r
n

n Vo1 Ls 1 X .,
n,kn+1 j kn(pn+qn)+1 nj

" rn+(k-1)(pn+qn)+pn " rn+k(pn+qn)
and nnk=£

L X . . _ X .
nk 3-rn+(k-1)(pn+qn)+1 nj 1-rn+(k-1)(pn+qn)+pn+1 nj

for k=1""’kn’

n,kg+1=

n g

i
ﬂ zv -y " “*~ x ’;
j ;n+kn(pn.qn)+1 nj

! "
note that 0sr -k (p_+q )<p +q and 0sj -r -k (p_+q )<p_+q_.
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The inequalities

-1 -1 ' ! "o-1 -1 .~1,-1
r i .(pn+qn)]n <kn(kn+kn) <r i, (1-2(pn+qn)jn )

show that kn(kn+kr)-1*t as n»=, On the other hand,

k' k"
o n [, n " [ " (] "
o(sn “k=15mk zkzignk)s(kn+kn)qnon+o(n J+o(n )

n,ka+1 n,k;+1
which goes to zero as n+m'by the preceding construction and
kl k"

. N n n . ' ye " oye
condition (%), Then Z(Zk=1€ﬁk+zk=1 gk) 3 v. Since Z(Enk) Z(Eﬁk)

tp )
bn “  for each k, Proposition 2.1 gives
ke k; (pn) k£+k; -1
'I'("k=1£r'ak”k=1“§k)“”‘“"n ) (A)lS]n(pn+qn) ¢(q )
(p_ ) kﬂ+k;
for every AeB®. Hence (un R >V and then, by Th.,2.1 of [2],
)
‘_(Fn)'kn .
“n w
n ka
. - !
We can argue as above to prove that zj=1xnj Zk:l nk B 0
k' (r )
n ., t, n t
and that Z(Zkz]Enk) > v’ then u 3V 0

The following result is a version for the stationary ¢-mixing

.ase of a theorem of Le Cam [3,Theorem 2.2].

‘.4 Theorem. Let {an} be a triangular array with stationary sums

which is ¢-mixing with ¢(1)<1 and satisfies condition (*). Suppose
that -L(Sn)} is relatively compact. Then for every €>0 the set

. 1€ . .
,nzxxnl),ae} is relatively compact.

Proc:. By an argument with subsequences we may suppose that IKSn)

o v. We will show that (a) sup jnP[H Xn1H >g]<o» for every €>0, and
n

th) *“or every €>0 there exists a compact set Ke such that
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sup jnP[aneKEJSe.
n

To prove (a), fix €>0, take a such that ¢(1)<a<l and let

n=min{l-a, (1/2)(a-¢(1))(1-¢(1)), e/4}. Choose toe(O,l) such that

% (k) k/jn
sup v (B” . 1 )<n/2 and n,eN such that max p(un Y Y<n/2
Ostst, L" "g-2""n 1sksj

for nzn, (the choices of n, and to are possible by Theorem 3.3 and

the fact that Ve 3 60 as t+0); let {rn}CN such that rn/JnSto and

and k=1,...,rn

c

rn/jn+t0. By the definition of p we have for nzn,

"/
/J“(B° Y+n/2<n;
-1 -1 ks

u;k)(Bc )<v
4 "e-2 "n

e/u

therefore by Proposition 2.3 we obtain

c -1
rnP[aneBEJSn((a-¢(1))(1-¢(1))-n) <1
for n2mn,. Choosing n,2n, such that t0/2srn/]n if n2n,, we have
. »C -1 .
]nP[xnleB€]s2to for nzn, . Then (a) is proved.

In order to prove (b), let €€(0,1) and take a as above.Theorem
3.3 implies that there exists a compact, convex, symmetric set Ke

such that

sup » MV K ) smin(1-a, €27 (a-4(1))(1-0 (1))},

1sksjn
neN

Then by Proposition 2.3 we have jnP[xnieKEJSe for every n.0

3.5 Proposition., Let {an} be a triangular array with stationary
sums which is ¢-mixing with ¢(1)<1 and satisfies condition (%),
If {Zisn)} is relatively compact and there exists M such that

' xnj” <M a.s. (for 211 n,j) then sup Eeusp(Al Sn” <o for some A>0,
n



1s

Proof. From the relative compactness of {I(Sn)} we deduce that

of {u;k):k=1,...,jn,neN} by an argument with subsequences arnd
Theorem 3,3, Fix a such that ¢(1)<a<li and choose t°>0 such that
sup uik)(B: /u)Smin{l-a,(a-¢(1))2}.
1sksj 0

neN

By Proposition 2.4 one has, for £,neN, P[||8n||>£(to+M)]Sa£. Write

c=t0+M and take A>0 such that aeA°<1; then, we have for every n

Ac

Eexp(Al] s || )= 1+/52e L]l s || >tlats o5 (ae

c 2
2=0 ) <.

4, Gaussian limits.

From now on, given a ¢-mixing triangular array {an} with
stationary sums which satisfies condition (%), we consider sequences

)

{pn}, an} with the properties of Lemma 3.2 where we take on=o(Xn1

also, we write:

kn=[jn(pn+an)-1] ([.] denotes the integer part of a real number),
P(n,k)={j€N:(k-l)(pn+qn)+1S]S(k-1)(pn+qn)+pn}
and Q(h,k)={jeN:(k-1)(pn+qn)+pn+1sjsk(pn+qn)}

if k=1,...,k_,

Q(n,kn+1)={]eN:kn(pn+qn)+1sjsjn},

T X . if k=1,...,k

. = L X . i =1,... .
nk jeP(n.K) nj n n if k=1, ,kn+1

jeQ(n,k)

This grouping in blocks will be used (always with this meaning)

in some proofs, the first of which is that of the following result,
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4,1 Theorem. Let {xnj} be a triangular array with stationary sums

which is ¢-mixing with ¢(1)<1 and satisfies condition (*)., Suppose
that z(Sn) 3 v, Then v is Gaussian if and only if jnp[||xn1” >e]+0

for every €>0,

Proof. Necessity. Assume that v is Gaussian. Arguing as in the proof

of Theorem 3.3(1), we obtain that.Z(Enl) n v and then ([3,Cor. 2.111])
knP[H Enl“ >¢]+0 for every e>0,

Fix €>0. Choose a such that ¢(1)<a<1l and let n=min{1l-a,
?'1(a-¢(1))(1-¢(1)), e/u}: take toe(O,l) such that

t c . .
sup Vv (B 1 1 J<n/2 and noeN such that if nzn, then pn/]nst

ostst U "e-2""n
k/j

u(k), v ")<n/2. Therefore if nzn, and ISRSpn we have

o

and max op(
1sks3

k
" (€

o e/u)<n and Proposition 2.3 gives, writing c=2((a—¢(1))(1-¢(1)))-1,

the inequality pnP[len1||>e]$cP[H §n1H >e/4]; then for n large
enough we have jnP[||Xn1||>e]s2knpnP[H anﬂ >e]52cknP[“ Eni” >efu].

Hence lém jnP[||Xn1||>e]=0.

Sufficiency. We may suppose that B=R (apply functionals feB'

to deduce the general case from this), Let y be the L&vy measure of
v and assume that jnP[|Xn1|>e]+0 for every €>0,

For a fixed M>0, consider the triangular array {Xn }; define

iM
k*Tieq(n, k) Xnsy FOT k=1,...,
k +1. As in the proof of Theorem 3.3(1) we can obtain that

k
n

n,M Tk=1%nk P

Tn Tn n M Tn UM
% i = - X,
(%) (write I, X =T, X s-I, X, and observe that 1>[|>:j:1 nj|>o]s

~

Enk=£jeP(n,k) anM for k=1,...,kn and N,

S 0 because o(anM)So(an) and {anM} has the property

. (M) : :
rnP[|Xn1!>M]). Since S_ 3 0 we have also that Z(Eni)*...*ZKEnkn)

3 v; moreover, {Zﬂﬁnk)} is infinitesimal (given >0, write
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maxlsksknP[lznk|>eJSP[|£n1|>e1+pnP[|xn1|>M] and note that p /j +0).

Now, we may apply the converse central limit theorem of the

independent case [3,Theorem 2.10] to conclude that, for every
kn it c
TeC(u), I, _, (e I[B. =+ u[B_.

We will prove that u(Bz)=0 for every €>0; this will show that
v is Gaussian. Fix e>0. Letabe such that ¢(1)<a<l and take an integer

t22; put M=e(2(2-1))-1, t=e(2£)-1. Choose n =n0(e,a,£)eN such that

0
max max P[| T Xn.M|>t/4]si-a
1sksk ieP(n, k) jeP(n, k) ]
j<i

'
if n2n, (the left member is less or equal than max P[lsni|>t/u]

0 1SiSpn

+pnP[}Xn1!>M]‘which goes to zero as n+= by the hypothesis and the

property (%) of {xni})° Now, let & . e the r.v.'s associated to M

as above; applying Proposition 2.4 to the r.v.'s Xn and writing

jM

a=(a-¢(1))-1, one has, for nzn, and 1sksk ,

0
-~ 2_1 -~
P[:Enk[>e]5pnP[ani|>M]+(¢(1)+aP[lEnk|>t/4]) aP[lEnk|>t/2].

Arguing again as in the proof of Theorem 3.3 we obtain that

k
n c c
) 3V then [3,Theorem 2.10] shows that an(Enl)lBT b ulBT

L(¢E

for every teC(u). Hence, by hypothesis and the preceding arguments,

ni

we have

c .
u(Be)Sllm knP[|£n1|>E]

n
! >
<Iim knpnP[;anl-M]
n
— - L-1 e k =~
+(¢(1)+alim max PCle_ [>t/41) " "aTim £, " Pl|e_, |>t/2]
nk k=1 nk
n lskskn n

s¢(1)“‘1au((§t/2)°)



is

o

(A denotes the interior of A). We have proved that for every
integer 222 it holds that

)%).

c L-1 o
u(Be)Sa¢(1) u((Be/ul

It follows that for any r>0 and for each integer 222
w8 sale( P wrer?r) xPucan) s},
r

First, since ¢(1)<1 and IB x2u(dx)<° ([3,Theorem 1.4]) we
r

obtain, letting %+», that u(Bz)Sau(B;) for each r>0, Then, letting

r+«, we conclude that u(BE):O because u(B2)<°° ([3,Theorem 1.41]).0

Next, we give necessary conditions for convergence to a

Gaussian measure.

4,2 Theorem. Let {an} be a stationary triangular array which is
¢-mixing with ¢(1)<1 and satisfies condition (#*). Suppose that
Z(Sn) 3 Gz*y, where z¢B and y is a centered Gaussian measure, Then
for every 6>0,

(a) 3 PCIl X Il >63+0,

. 2 ) .
(b) l;m Ef (Sn,G'ESn,G)'¢y(f’f) for each feB',

(8)
(c) Z(SD-ES 6) > vy, S 30, ,Z(Sn s'ESn,s) > y and ES_

+z in B,
n, w n . 6

Proof. The previous theorem gives (a) which in turn implies that

(68) . (s8) . '
S, 3 0 for every §>0 (write P[] S, Il >0]51nP[||Xn1||>6]).
. . - (8)
Fix §>0., Since Sn_sn,6+sn one has Z(Sn,a) > Gz*y. On the

other hand, {ana} satisfies the hypotheses of Proposition 3.5

“n Ta
.. X j6” >elsp(|] zj=1xnjn

521%n >el+

(to verify (%) write P[] I
rnP[H anﬂ >6]); by standard arguments we have then that lim ES

n n,d$
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= = 2 el el ,
='x 6 wy(dx)=z in B and lim Ef (Sn,s)'ff d(8 wy)=f (z)+0y(f,f)
for each feB', From these facts we can deduce the remaining

conclusions.[

Given a stationary triangular array {xn :j=1,...,jn,neN},

j
6>0 and feB' we write

L o2
V_(8,£)=3 EET(X ,  -EX )

1,1

J=1 )]c

+2§ I ELF(X , g-EX 4 5)E(X

5 n,j+1,8 X0 541,86

1/2

4.3 Corollary. Let {an} be as in Theorem 4.2. If Z;=1¢ (j)<=

and there exists 6>0 such that for every feB'

i .2
Cc,f'sgp TaBE (X g=EX 460

then (b') lim~ Vn(é,f)=¢y(f,f) for each feB',

.=f( E ).
nj

Proof., Fix 8 and f as in the statement and put Y

Xn56 E%nis
By stationarity, we have the equalities (see, for example, Iosifescu

and Theodorescu [13, page 241])

1’
2 _ n 2
Ef (Sn,G'ESn,G)_E(zj=1Ynj)
j_-1
. 2 In s
=j_E . - .
In Yn1+223=1 (jn J)EYnlYn,j+1
It
= f)- ]
V_(8,F) 20500 JEY 4Y0 g
But Proposition 2.5 gives (note that EYn1=0)
j_-1 j -1
< n . <o(s=3¢n L 1/2, .,
1252y IBYp Yy geq 2037050 J677 G, o

which goes to zero as n+= by the convergence of the series Z¢1/2(j).

The desired conclusion now follows from Theorem 4.2.C
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/

Remark, Let {xnj} be as in Th, 4.2, If Z;=1¢1 2(j)<1/u then C

§,f
(defined as in the corollary) is finite for each 6§>0 and feB'; hence,
assertion (b') holds.

In fact, fixing 6§ and f and writing Ynj=f(xan-Exnj6) one
has by Proposition 2.5 (see above)
j_ -1

. 2 n
- 2 -
,67ESn 6723 B =485

1
0 /2

2 . .. 1/72,. 2
Ef (sn (Jn-J)¢ (J)EYn1

(3)}5_EY2, 5

z{i-uzj=1

to conclude the proof observe that supn Ef2(Sn G-Esn 6)<°°.
L] )

In the following results, we shall give sufficient conditions
for convergence to a Gaussian law.-For any subspace F of B we write
qF(x)=inf{H x-y|| :yeF}. If B is a separable Hilbert space we denote

e *qp the distance to the subspace F }, where

spanned by {ei,...,e
k

k k
iei:ieN} is a fixed (but arbitrary) orthonormal basis of B, when B
is infinite-dimensional; if the dimension of B is finite we have

an orthonormal basis (e .,ed} (deN) and we put q, =0 for k2d.

10"

4.4 Theorem. Let {an} be a stationary triangular array which is
¢-mixing with ¢(1)<1 and such that
. - isfi %
(1) for some o>0, the triangular array {ana Exnja} satisfies (%),
(2) for every €>0, jnP[H anﬂ >e]-+0,

*
(3) there exists a sequentially w -dense subset W of B' and 6>0

such that

o(£)=1im Efz(Sn

n »6

exists for every feW,
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(4) there exist B>0, p>0 and a sequenée'{rk} of finite-dimensional

subspaces of B such that

1im sup EqP (s -ES )=0.
F n n
k n k

Then (a) there exists a centered Gaussian measure Yy such that
Oy(f,f)=0(f) for every feW,

(b) for every T>0"Z(Sn'ESn T) >y,

L]

Proof. We may assume that a=6=8 (this fact is a consequence of (2)).

Given feW, by (3) we have C =sup_ Ef2(Sn ES _8)<¢ and by

f ,6 " °n,

Chebyshev's inequality we obtain
2

'Esn,6)|>t]St c

P[If(sn .

58

for each t>0; then {Z(f(sn s~ESy 6))} is relatively compact. On the
] b

other hand, (4) and Chebyshev's inequality imply that

lim sup P[qF (Sn s-ES_

k n k ° ’6)>S]=0

for every s>0. Therefore an application of [1,Theorem 2.3] shows

that {ZISn ES 6)} is relatively compact.

,6 550,

Write Ynj=x EX The triangular array {Ynj} is stationary,

njé “njis°
¢-mixing with ¢(1)<1 and satisfies (*) by (1). We will prove now

that jnP[H Ynl” >¢]+0 for every €>0. To do this, note first that

E -0 in B (we have || Exnlé” sn+6PL|| Xn1H >n] for each n>0); next

xnlé
observe that, given €>0, if n is large enough to have IlEXniG” <e/2,

one has jnP[H Yn1” >e]SjnP[H Xn1H >e/2] and it suffices to apply (2).

Let {n'} be a sequence of integers such that {ZKSn, -ES_, )}
! 9 b4

8
converges weakly., By Theorems 4,1 and 4.2 applied to {Ynj}’ its
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limit is a Gaussian measure y with zero expectation whose covariance

Y .).

satisfies @Y(f,f)=¢(f) for every feW (observe that Ynj,26= g

In view of the preceding argument, the compactness of
{Z(Sn’s-ESn,s)} implies the existence of the desired y and the
convergence to it of the whole sequence., Since, by (2), S;G) 3 0
we have Z(Sn-Esn’s) 3 and then, using (2) again, we deduce that
Zﬁsn-ESn’T) Y for every 1>0 (if, for example, §<t we have
I Esnﬂ--}:sn,sll STjnP[H xn1|| >61).0
Remark. If B is finite-dimensional, hypothesis (4) of the previous

theorem may be omitted; a similar remark applies to the next

results (and to Theorems 5.7 and 6.4 below).

The following corollaries give sufficient conditions for
convergence expressed in terms of the individual random vectors
and pairs of them. As an additional hypothesis, it is required that

the dependence coefficient ¢(j) converge to zero at a certain speed.

4,5 Corollary. Suppose that B is a Hilbert space, Let {xnj} be a

stationary triangular array which is ¢-mixing with ¢(1)<1 and

I, ¢1/2(j)<°. Assume
j=1
(1) for every €>0, jnP[“ xni” >¢l+0,

(2) there exists 6>0 such that for every feB'

. o2 .
Cd’f—s§p I Ef (xnis'Exn16)<

and the limit

¢(f)= lim Vn(G,f) exists,
n

(3) there exists B8>0 such that

, . 2 =
l;m s:p JnEqk(xnlﬁ-Exniﬁ)-o'



Then there exists a centered Gaussian measure y with covariance

¢Y(f,f)=®(f) (feB') such that ZKSn-ESn T) 3 vy for every >0,

9

Proof. We sﬁppose that B is infinite-dimensional (otherwise the
proof is simpler). Let <e¢,+> denote the inner product of B and let
{ei:ieN} be an orthonormal basis.

We will show that the hypotheses of Theorem U4.4 are verified.
In view of (1) we may assume that 6=8. Let Ynj=xnj6'gxnj6’ First,

we prove that wnj} satisfies (%), For this purpose, take {rn}CN

such that rnsjn and rn/jn+0; by stationarity and Proposition 2.5,

writing Unji=<Ynj’ei>’ we have
Eqi(Z?SlYnj)=E(£;=k+1<2;21Ynj,ei>2)
=Z:=k+1z(z;210nji)2
=z:=k+1(PnEU§1i+2Z§2;1(rnfj)E(Un1iun,j+1,i))

™ 1/2,, 2
s(1+42j=1¢ (J))rnEqk(Ynl)
and Efz(zrn Y .)=r Ef2(Y )+22rn-1( -J)ECECY__)E(Y ))
j=1 ' nj’ " n ni j=1 ‘Fn7d ni ‘n,j+1
-1 L 1/2,,
3 (1+uzj=1¢ (j))CG,f

for every feB', Then, applying Chebyshev's inequality twice and
r
Doy

j=1"nj P 0.

(1,Theorem 2.3], it follows from our hypotheses that I

Similarly, we obtain the inequality

1/

2 P
Eqk(Sn, -ES 6)5(1+4Zj=1¢ )

2, . . 2
5 a, (]))JnEqk(Yn

1

which shows that (4) of Theorem 4.4 holds with p=2, Finally, in

order to prove that assumption (3) of that result also holds we
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observe that, for each feB',

3
|Ef2(Sn -Esn’c)-vn(c,f)|=|2zj‘:1 JECE(Y ,)E(Y M|

, 6 n,j+1

Jn'i. 1/2

suiztel et 2ame

§,f
which goes to zero as n+«.[J

4.6 Corollary. Suppose that B is a Hilbert space. Let {an} be a

stationary triangular array which is ¢-mixing with ¢(1)<1 and
® 1/2

£j=1¢ (j)<=, Assume
2
(1) EJ| xnln <®, EX_,=0,
. 2 =
(2) for every €>0, I;m an[l|Xn1|| Itllxn1||>€]]-o'

(3) for every feB',

2
Cg=sup 5nEf (Xn1)<°
n
. . 2 . jn'1
and ¢(f)-l:m {JnEf (Xn1)+23n2j=1

E(f(Xni)f(X ))} exists,

n,j+1

. . 2 -
(4) l;m s:p ]nEqk(Xni)-O.

Then there exists a centered Gaussian measure y with covariance

¢ (f,f)=0(f) (feB') such that.Z(sn) > Y.

Proof. We will show that {an} satisfies the hypotheses of Corollary

4,5, Condition (1) of Corollary 4.5 follows from the inequality

X -2, 2 .
]nP[” xnlﬂ >els<e ]nE[" Xnﬁl | xn1H >e¢], valid for every >0,
Fix now any 6>0, With the notation of (2) of the previous result,
we have C6 fscf for every feB' and this implies the first part of
9

that condition. To verify the second, fix feB'. Since Ef(xn )=0

1

we have



. o2 . 2
EES(X 4 )-3 EET(X 4 o<EX )

=anf2(xg1)+jn(Ef(xg1))2
23 2,11 ]
s2f £ ]l ECI x4 U550 x ll>67,

which tends to zero as n-+«, and

j_-1 j -1
N n . n
Salyey BOECXGq)E(Xy 5 9)) =38y BOE(Xn 6-BXps 00Xy 541,67
i, -1
- < -
*Ipfs=1 (E(f(xnl)f(xn’j+1)) E(f(xnis)f(xn’j+1’6)))
#3 (5 -1)(EE(X_ )2
“n “n nié

=a_+b_ (say).

We will prove that {an} and {bn} both converge to zero. Since

Ef(X )=0 we have
nil

s 2

-1 : 2 2
a2 s E N BO x50l x 1> D)

which goes to zero as n+», On the other hand, observe that

lE(f(an)f(Xn,j+1))-E(f(ans)f(Xn’j+1,5))|

=|E[f(xn1)f(xn’j+1);ﬂ X ,1>6 or || x [1>61]

n,j+1

1/2 1/2

<6l £1le " “(SIYCEL]! xnﬂlz:H X ,ll>8D) (}:f2(><m))1/2

-2 2 2
+#387°|| £ |l (el xnﬂlzzn X 41>61)

since, for example, one has by Proposition 2.5 (recall that Ef(Xn

JEreex  DE o sl X6, 1 xS i<

Exn,j+1,6

25

))

1)=0)
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1/2 1/2

s201/2(5)(BCE2(x_ 5] % ll>6 D 2(ee?(x ) 1/2

+lececx sl x Il >3 |eCeex )51 x llss1]
1/2, . 2 1/2,. .2 2
s2] £ 11622 L x 1351 x_ll>6D 2cee?(x_, 0t/
-1 2 2
+C870 L £ |IeCH x 17501 x 41>81)

and the other two terms which are involved have the same bound; then

® 1/2, . . 2 1/2_1/2
anssll £11(s5 40 720G ECI x 1750 x_ll>s D/ 2el/

+3872 £ 112G Bl x 1250 x_ll>6 D2

which tends to zero as n+», This implies that assumption (2) of
Corollary 4.5 holds with the ¢ given in our hypothesis (3),

In order to prove (3) of the previous corollary it is sufficient
to remark that Eqi(xnls-EXn16)=Bq§(Xn16)-qi(Exnis)SEqi(Xni) (to
prove it write down the first member in terms of coordinates).

Now, Corollary 4.5 proves the existence of the desired y and

that ZKSn-ES T) sl for each 1t>0; but for such a t one has
9

n
. -1, 2 .
I BSn,J|=HanX£IIIST an[" Xnﬁl s xnﬂ|>t] which tends to zero.

This completes the proof.[
We can deduce easily the following

4,7 Corollary. Suppose that B is a Hilbert space. Let {xj:jeN} be

a stationary sequence which is ¢-mixing with ¢(1)<1 and Z;=1¢1/2(j)<m.

Assume E|| Xﬂ|2<~ and EX,=0. Then for every feB' the sum

- 2 ® v
0(£)=EF (X, ) 4253 ECF(X ) F(X 1))

j+1
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converges and defines the covariance of a centered Gaussian measure

-1/2.n

y which satisfies Z(n b X.) > vy,

j=173" w
Remark., In the case B=R and without the restriction ¢(1)<1, Corollary
4.7 was proved by Ibragimov (Ibragimov and Linnik [12,Theorem 18.5.2])
by different methods. Let us point out, omitting the proof, that by
using the result of this author and de Acosta [1,Theorem 2,3] one can
obtain Corollary 4.7 without the assumption ¢(1)<1,.

As an application, let us observe that from this result in the
Hilbert space case it is possible to calculate, using an argument
in Araujo and Gin& [5,page 180], the limit distribution of the
Cramér-von Mises statistic of certain ¢-mixing stationary sequences
of random variables; let us observe that in Billingsley [6,Theorem 22.1]

the limit distribution of the whole empirical process of such sequences

i . . ® .2.1/2,.
s given under the stronger assumption zj=1j ¢ (j)<», The result
that we can derive is this: Let {Xj} be a stationary sequence of

1/2

real random variables which is ¢-mixing with Z;=1¢ (j)<=, Assume

that Xl has a continuous distribution function F; denote by Fn the

n-th empirical distribution function of {Xj}. Then

2

ZnstT(F () -F(x))2aF(x)) 3 Azp_n

)

where {nk:keN} is a sequence of Gaussian real random variables with

Enk=0 and

Enyn =2(nkr®) 71 (2706, 437 Elcos hrF(X,).cos krF(Xy, )]

hk 1

+Zj=1E[cos th(Xj+1).cos ka(Xl)]}

where § k=1 if h=k, =0 if h#k.

h
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Next, we give an almost sure invariance principle. Its proof
is carried out by first obtaining from our Proposition 3.1 an
invariance principle in probability and then deriving from this the
desired result; in both steps we use arguments of de Acosta [2].
The remark that one can deduce,in the independent case, an almost
sure invariance principle from the invapiance principle in probability
of de Acosta [2,Theorem 3,1] is due to H. Dehling and W. Philipp.
An invariance principle in probability for stationary, ¢-mixing

sequences is given in Philipp [16,Theorem 4],

4,8 Theorem. Let {an} be a triangular array with stationary sums

which is ¢-mixing with ¢(1)<1, Assume

(1) X > 0,

nl P
(2) for every €>0 there exists a>0 such that

Iim max PC ] Snd|>e]<1-¢(1),
n  1isksfaj ]

(3) ZKSn) > y for some Gaussian measure y.
Then there exist a probability space and two triangular arrays

' . &
{an} and {Ynj} defined on it such that

| 1 =
(a) z(xnl""’xnjn) kanl""’xnjn) for each neN,
(b) Yni""’Ynj are independent, identically distributed with
n
173,
Z(Yn1)=v for each nelN,
(¢) max || s!, -T | + 0 a.z, a2 a>o
1sksj._ oK i
n
k k
t = 1 = Y o
where Snk zi=1xnj’ Tnk £1=1{uj
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Sketch of proof. As mentioned above, it is sufficient to prove the

result with 3 in place of » a.s. in assertion (c¢) (see [2,Addenduml).

Call this statement (c').

For the moment, we shall consider for a given peN the product

. -1
space BP endowed with the norm ||xH1=Z§=o||xj|| for x=(xg,%X, 5000,
xp_l)eBp and we shall denote pp the Prohorov distance between

probability measures on BP, We use the notation I(n,p,k) of Proposition

3.1 and write c(n,p,k)=card I(n,p,k).
For each peN choose npeN such that np+m as p»= and such that

nzn_ implies
p P

o (Z( L ) SR T X ), (y/P)y®Pycq/p2
jeI(n,p,0) B3l jeI(n,p,p-1) nJ
p-1 j-ic(n p,k)
= s Yo
and yp( ® v n ,(yl/p)ep)<1/p2.
k=0

This choice is possible by Proposition 3.1,

Fix peN and neN such that np5n<n . Then, by a theorem of

pt+l

Strassen [17], there exists a probability measure An on BPxBP such
1]

that

iy, p (0,3 eBPxBP || xoy ||, > 2/p°))<2/p2,

X_.)
. s L nj

) °my = J( T X .
jeI(n,p,p-1)

i .,l.
jel(n,p,0) ™I

-p-l j;llC(n,p’k)

(-q,ﬂz are the canonical projections defined on BPxBP), Let a =
. @4 .
1/]n j ]

- n . R U
Z(xnl""’xnjn)’ B (y ) and define ;n,p'B +B* by
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* 8 0 ] = z- (] e o o (3 3 H
Cn,p(yl’ ’y]n) ( 3eI(n,p,0)y3’ ’EJGI(n,p,p-l)yj)’ one has

-1 -1 -1
anocn,p-xn,poﬂl and Bnoc

(2] there exist a probability space (Qn,a%,Pn) and random vedtors

_ -1
n,p'xn,p°“2 . By Theorem A.1 of de Acosta

In

3
" ):Q_+B
n

L » -
oKl )R BT, Y =Y LY

xa=(xa nd
n In

1° with ZKX£)=an,

)L(Yn)=en and (g (Xﬁ),cn’p(Yn))=A

n,p n,p’

We may consider the triangular arrays {xﬁj}’{ynj} defined on
the product space of the spaces (Qn,A%,Pn). By construction, (a)
and (b) hold. Finally, the proof of (c') is similar to step V of

the proof of [2,Theorem 3.1]; Proposition 2.2 must be used and this

is possible by our hypothesis (2).0

Remark, If a triangular array satisfies (*) then (1) and (2) of the
previous result are verified., In particular (see 1) of the remark
following Proposition 3.1), one has: if {Xj} is a stationary ¢-mixing
sequence with ¢(1)<1 and {an} is a sequence of real numbers tending
to infinity such that {Z(a;1£§=1xj)} converges weakly to a Gaussian

measure then the conclusion of Theorem 4.8 is true for {aglx.:j=1,...,

n,neN}.

Let C=C([0,1],B) be the Banach space of continuous functions
of [(0,1] into B endowed with the supremum norm and let D=D([0,1],B)
be the space of functions of [0,1] into B which are right-continuous
on [0,1) and have left limits on (0,1] equipped with the Skorohod
topology ([6,Chapter 3]). Given a Gaussian measure y on B, we shall
denote by wY the associated Wiener measure on (the Borel o-zlgebra
of) C or D. As in de Acosta [2] the following two results can be

deduced from Theorem 4.8.
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4,9 Corollary. Let {xni} and y be as in Theorem 4.8. Then there
exist a probability space (2,4,P), a triangular array {Xﬂi}defined
on 2 and a stochastic process Z={Z(t):te(0,1]}:0+C (resp., 2:9+D)

such that

e X 2 ),

(a) Z(x;ll,...,x;!jn)=Z(xn1,. nj_

(b) Z_(Z)=wy,

(¢) max || s' -2(x/5.)]|] 3 0, as n>=,
1sk<j nk n P
n
where <! =£k X'..
nk “j=1"nj
If ai,...,aneB, define pn(ai,...,an)ec and rn(al,...,an)eD by

pn(al,...,an)(t)=a[nt]+(nt-[nt])(a ) if osts1,

[nt]+1”%[nt]

vn(al,...,an)(t)=a if 0<t<1, =a_ if t=1,

[ntl+1

4.10 Corollary. Let {an} and y be as in Theorem 4.8, Then

eesS_. >+ W in C and r. (S
)) L i A( 3

.o . + W in D.
ni’" an N aS )) W h

nl?*’ nj_ Y
Remark. The first part of this result generalizes an invariance
principle in .distribution of Eberlein [8,Theorem 3.1]., Condition (4)
there is our hypothesis (2) and is a version for the dependent case
of condition (3.3) in Kuelbs [14] (which always holds in the

independent identically distributed case as it can be deduced from

[2,Theorem 2.11]).

To close this section, we state a version for random vectors

with values in a Hilbert space of Theorem 20.1 of Billingsley [6]
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(it can be proved combining Corollaries 4,7 and 4.10 with the remark
following Theorem 4.8) and an arc-sine law for stationary, ¢-mixing
triangular arrays (it follows from the second conclusion of Corollary

4,10 and P, Lé&vy's arc-sine law for Brownian Motion).

4,11 Corollary. Suppose that B is a Hilbert space. Let {Xj} be a

stationary, ¢-mixing sequence with ¢(1)<1 and Z;_1¢1/2(j)<m, Assume

2
Ell x,||°<= and EX =0. Then for every feB' the sum 8(f)=Ef(X,)+

1
2z;=1£(f(x1)f(xj+1)) converges and defines the covariance of a centered

Gaussian measure y which satisfies

z(rn(n-1/281, -1/2 n—1/2

k
where sk-zjzixi.

4,12 Corollary. Let B=R and let {an} be a triangular array which

satisfies the hypotheses of Theorem 4.8 with a centered, non-degenerate

Gaussian measure y. Let Ln=card{kS]n:Snk>0}. Then

L /3. ) 2 «a

where a(dx)=w-1(x(1-X))-1/21(0’1)(X) dx.

S. Generalized Poisson limits.

Proposition 3.1 gives conditions under which the limit of the
row sums of a triangular array is infinitely divisible; as in the
independent case, we want to relate the L&vy measure of the limit
with the laws of the individual random vectors (under suitable
assumptions). We need a modification of an inequality in Hoffmann-

Jorgensen [11,proof of Theorem 3.1].
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5.1 Lemma. Let {xl,...,xn} be a set of B-valued r.v.'s with stationary
sums such that ¢(1)<1; write Sk=2§=1xj‘ Suppose ¢(1)<a<i and let s>0,

t>0, u>0 be such that t>s+u, max P[IlSk||>(t-s-u)/2151-a and

1<k<n

" -
1<k<n Prllsk. >u/2]€1-a. Then

PO e M ste1<Pl max Il % Il >s]
" 1sisn

#(a-6(1)) " 2pxpr || Sn||>(t-s-u)/2]P[||Sn||>u/2].

Prcof. Let Mzmaxisjsn‘lxi” . A1=[||81||>u], Ak=tmaxlshsk_1||8h|ku,

!lck|!>u] (k=2,...,n). We have

. n
r{ || an >t]sP[M>s]+rk=1P(Akn[H s -5 | >t-s-ul)

Kl

n
sPIM>s)+r, _ w*P(A IPL|[ s _-s, || >t-s-ul

Kl

<P[M>s]+y%* max P[l|| Sn-Sk” >t-s-ulP[ max || s_ || >ul.

1<ks<n 1<k<n k

Now it suffices to appoly Proposition 2.2.0

5.2 Theorem. Let {xni} be a ¢-mixing triangular array with stationary

sums which satisfies ¢(1)<1, y*<» and condition (%*). Suppose that

Z(¢ ) » v and that p is the Lé&vy measure of v. Then, for every teC(yu)
n’ w y ’

. c c
'nz(xni)'Br w ulBT.

Proof. First observe that, arguing as in the proof of (1) of Theorem

3.3, it follows that Z(Enl) n >V and, by the general converse central

c

limit theorem of the independent case [3,Theorem 2.101], an:(gnl)lBT

» y|BS for every 1eC(yu).
w T
We will prove that if O<s<t then

c . .
(5.1) u(Bt)sl:m I PO X 1 >sT.
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In order to do this, take y and a such that O<u<t-s and ¢(1)<a<1,
Property (*) implies that for n large enough we have
max P[[] s_, || >(t-s-u)/2]s1-a
nk
1sk5pn

and max P[]| s
1Sk$pn

nk” >u/21s1-a;

then Lemma 5.1 gives for such an n that
POl €, Il >t3sp PCI| X, ]I >8]
-2
+(a-¢(1)) w*r[llgn1||>(t-s-u)/2JP[||5n1ll>u/2].
Therefore
w(B)slim k PL|| g, || >t]
n

<lim knpnP[||x | >s1

n

nil

+(a-¢(1))-2¢*(sup knPfll£n1|l>(t-s-u)/2])ITE PL|| Eni” >u/2]
n n

=lim jnP[||Xn1||>s]
n

by the independent case and the finiteness of y*,

Now we claim that

(5.2) ) u(F)2Tim jnzxxni)(r)
n

for every closed set F such that 4(0,F)>0., To prove this, take such
. (i)
an F and let €>0. For neN, i=1,...,p letEn1 =En1-x
_ _r.(1)
[XnieF], Di-Dni-[En1 eBe]. We have

.y C.=C_,=
ni 1 ni
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P
Plt__eF+B_12P( u™(C.nD,))
n: € 1 1

i=1
Ph c
=£._1P((CirDi)n[ n (c,nD,)"])
1= 1<j<i J
Pn c
22;_1P((C.nD.)n[ n Ccy71)
=T 1 1<j<i
Fn
=z, _{P(C.nD_,)-P(C,nD.n[ uv C.1)}
=1 i 1 1

5
-

1<j<1i

and P(C,nD.n[ v C.1)sP(C.nl v C.1)
Pl 1y 1sj<i

sy#p(C IP( v csvkp (R(c, )2,
1<j<i

Next, fix heN, If n is such that pn>h one has for i=2,...,pn-h,

writing

U.=U :zi-lx vi=y! :Zi+h-1x n=yn = pn X
e EE T AR S ERREEE SRS LA S Tt RESS S S &

that

P(CinDi)2P(Cin[Ui€Be/3]n[vieBe/3]n[vg€Be/3])

- ”" " c c
-P(Cin[vieBE/al)-P(Cin[vieBe/3]n([UieBE/3]U[VieBe/3]))

" (o] C
zP(Ci)P[VieBe/a]-¢(h)P(Ci)-P(Cin[UieBe/3])-P(Cin[VieBe 1)

/3

2P(C1){1-¢(h)-P(VgeB§/3]-w*P[UieBg/al-w*P[VieBg 1}

/3

zP(Cl){1-¢(h)—(1+2w*)6n}

where ¢ =max P[Ilsnk” >¢/3]; therefore

lskSpn

Ple eF+BE]2(pn-h-1)P(Cn1){1-¢(h)-(1+2w*)6n-w*pnP(Cn )},

1 1
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Now 6n¢0 as n+= by the property (%) (recall that pn/jn+0) and

paP(C 4 )sp POl X .|| 24(0,F)], which goes to zero as a consequence

of Theorem 3.4; hence
u(F+Be)211m knP[En16F+Be]

2( kn(pn-h-1)P(cn1)){1-¢(h)}

(]
~

[ - B
Y = I
3 g

jnP[aneF]){1-¢(h)}
for all heN. By the ¢-mixing condition we deduce that

T T .
u(F+B€)211m ]nP[Xn eF]

n

1

for every €>0, but this implies (5.2) since F is closed.
To conclude the proof, fix teC(u) and observe that it is
sufficient to prove that every sequence McN contains a subsequence
. . c c .
M' such that "-llmnGM'an(xni)lBrzulBT' Let McN be a sequence; using
Theorem 3.4 and a diagonal procedure we obtain a subsequence M' of
M and a o-finite measure u' with p'({0})=0 such that w-limneM,
jnzﬂxni)lB:,=u'|B:, for every 1'eC(u'), Now it is enough to show
Ry . c . c ' . . .
that w llmnGM,jﬁZ(Xni)lBT, uIBT, for every t'eC(u)nC(u*) (since this
implies that u'=y and then the desired result follows). To prove
this, take such a t' and observe that by (5.2) we have that
i 3 =t']=
lim_ JnP[||Xn1|| 1'1=0 and then
—_— . c C— o c c
1im (]nz(xn1)|31')(P)-llm,JnZ(xni)((Br') nF)S(ulBT,)(F)
neM' neM
. . c
for each closed set F. It remains to show that limneH,JnZ(Xni)(BT,)

=u(B:,); since t'eC(y') the limit in the left member exists and



37

coincides with u'(B:,). By the preceding inequality we only need
to prove that u'(B:,)Zu(B:,); but if 0<é<t' and 8eC(u'), (5.1) gives
w(BY,)slim § X(X_ )(Bg)=u'(BY)
\J
neM
and the desired inequality follows taking a sequence of such §'s

increasing to t' because t'eC(u').0

The following lemma and its proof were communicated to us by
A. de Acosta. Given a subset A of B, 9A denotes the boundary of A

and A®={xeB:d(x,A)se} if e>0.
5.3 Lemma. Let {xi,...,xn} be a set of B-valued r.v.'s. If A is a
subset of B and €>0 then

| : : : I
(zx)I1,(z x,)-1: X.I,(X.)
j=1 3 A j=1 3 §=1 3 A" ]

n
szjiill lel {I(aA)e(XjHIB:( z X;)%.

n
Proof. Fix j with 1<jsn and write Zj= L X
#

X.1 4XL)-X, )=X, +X, .-
3 A(z]+xj) XJIA(XJ) XJ{IA(ZJH(J)IAC(XJ) IA(X )IAc(X]'O-ZJ)},

3

moreover

1 (zj+x )1 c(x )<1I (z +X. )I(A )c(Xj)+IA(Zj+xj)IAane(Xj)

<I c(Z )+1I

e (X.)
E ]

(3A)

(note that since B is a normed linear space, d(x,A)=d(x,3A) if xeA®)
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and, analogously,

I (X )1 c(X +2.,)<1 c(Z )+1I
xR R -

(aA)e(Xj).

Then | X1, (z X )- X5, (X, )|| <2 || x || {I(aA)c(X Y+1 c(Z
for j=1, n.D

j)}

5.4 Theorem. Let {an} be a stationary, ¢-mixing triangular array
which satisfies ¢(1)<1, y*<» and condition (#*). Suppose that, for
each neN,‘Z(Xn1)=(1-xn(B))60+An, where AL is a finite positive
measure such that An(B)Si and Xn(Bt)=0 for some t>0 independent of n.
Then, if‘Z(Sn) TV and u is the Lévy measure of v, we have u(ﬁt)=o

( .
and v=Poisu; moreover,,Z(SnT)) e P01s(u|B:) for every teC(n).

Proof. Assume for the moment that we have proved that

(5.3) Z,(S;T)) : Pois(uIB‘T:)

for every 1eC(u). If 1eC(u), t<t, we will have that Z(Sn)=Z(S£T))
> Pois(uIB:) (observe that P[Snisgt)]SjnP[an#XgilsjnP[0<"xn1Hsr]=0)
and then v=Pois(u|B:)- One can deduce that ulB:nBt,=0 if t,t'eC(n)
with t1<t'<t (use the uniqueness of the Lévy-Khintchine representation);
this implies that u(gt)=0 and v=Poisu. Hence the proof of the theorem
will be done.

Fix teC(p). By similar arguments to those used in the proof

of (1) of Theorem 3.3 and an application of [3,Theorem 2.10] we can

deduce from the weak convergence of {Z(S )} to v that szk 1£nk)
2 Pois(u|BT). Also, we can prove that
k_+1
n T
T z an 3 0

k=1 jeQ(n,k)
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since 0(x;1)50(xn1) and the triangular array {x;j} is stationary

r
and satisfies (*) (by the inequality P[”Ej21xnﬂ|>o]s
@n/jn)jnP[Hxn1H>T]. (%) is a consequence of Theorem 3.4)., Then

(5.3) will follow if we prove that

k
(5.4) I (E', - ¢ X'.) » 0,
=1 jep(n,x) 23 F

Take € such that O<e<t; Lemma 5.3 gives for each neN

kn
Il ¢ (g7 - & x|
k=1 PK 5¢p(n,x) ™I
k
n
<2 ¢ X 1R )

1 I X .
k=1 jeP(n,k) nﬂ' {x=T-€SHXHST+e}( nj

X
n
+2 T Nx_ .Jl1e ( ) X_.)
k=1 jeP(n,k) ™I Bi ieP(n,k) ™1
i#j
=2Ye,n+2ze,n (say).

This shows that (5.4) holds if we prove that
(5.5) lim 1im P(Y >0]=0
€,0
€E¥Y0 n ’

and

(5.6) for every €>0, Z 0.

+
e,n P
Observe that if O<e<rt

1§m P[Ye,n>0]Slim jnP[T-es"Xn1HST+e]Su({x:r-eSHxH51+e})

by Theorem 5.2 and this implies (5.5) since teC(p).
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If €>0, n>0, 8>0 and neN write

P[zE p>nJsPl max Hxnj">s]

’ 1sjsjn
k
: X . IlTe >
+P[ ¢ ) X . l1.¢c T X .)>n]

k=1 jeP(n,k) D7I° Be ieP(n,k) ni

i#3

I deden~te 1m0 ( 2
<P[ max X .l>sl+n "k t BO|IX . llT.eC 2 x )1
1599 " Poy=1 njst B 4o miT

i#]

then we have (5.6) if we prove the following two claims:

(5.7) 1im Tim P[ max |[|x_.||>sJ=0,
P nj
s+® n 1535]n
- i
(5.8) given €>0 and s>0, lim k L ECX . ||I.ceC £ x .)1=0.
n n j=1 njs Be i=1 ni
i#j

To prove (5.7), fix a such that ¢(1)<a<1l., Given §>0 write

n=min{1-a,8(ac-¢(1))}, take s>0 such that

sup vt(Bc_1 -1 )<n/2

0st<1 4y "g8-2 n
and nOeN such that
k/j
max p(u(k),v By<ens2
1Sksjn

if n2n, (possible by Theorem 3.3(2)). Then if nzn, one has by the

definition of p that max PCfls ,ll>s/41<n and hence

1sk53n

P[maxlsjsjnﬂxnj">s]5P[maxlsksjnﬂSnk">s/2]sﬁ by Proposition 2.2,

This implies (5.7).
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Now fix €>0 and s8>0, If neN we have for j=1,...,pn, writing

U X ., that

nﬁ=£15i<jxni’ vnj°rj<iSpn ni

EC|| xnjsn IB: (Unj+vnj ) I1<El]l xnjsll Ipe (unj )1+E[]| xnjsll IBec/2 (an )1

e/2
szw*cnzll xnisll o
where 6n=maxiskspnP[HSnk">e/2], by Proposition 2.7. Hence
Pp Py
ko jiizcllxnjsul]i (iflxni)]SQ“’*annE”xn1s”

i#j
which tends to zero since § *0 by the property (*) and

sup, J HIX . ll<» as a consequence of Theorem 3.4 (note the inequality

inE"XnisHSSjnP["Xn1">t]). Then (5.8) is proved.0

We will need the following result (de Acosta et al [3,Lemma

2.4]); note that there is no dependence assumption in its statement.

5.5 Lemma. Let {an} be a triangular array. Assume that

(1)

n

3
{2521Z(an)|B§} is relatively compact for some §>0. Then {Z(S )}

is relatively compact for every 126,

Now we can give sufficient conditions for convergence to certain

compound Poisson measures,

5.6 Theorem. Let {xnj} be a stationary, ¢-mixing triangular array

1)'

(1-An(B))60+An, where A is a finite positive measure such that

such that ¢(1)<1 and y®*<e, Suppose that, for each neN, Z(Xn

xn(B)sl and An(Bt)=O for some t>0 independent of n. Assume that
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there exists a finite measure u such that jnkn T ou. Then,Z(Sn) s

Poisu.

. Cyyas .
Proof. Observe that {Jnl(xni)IBt}-{JnAn} is relatively compact by
hypothesis. Then Lemma 5.5 implies that {Z(Sn)}={2KSit))} is

. (t)._. _
relatively compact (P[Sn#Sn JSJnAn(Bt)-O).

To conclude the proof, it suffices to show that each convergent
subsequence of {X(S )} has the desired limit. Assume that X(s ,) * v

and let u' be the Lé&vy measure of v; by Theorem 5.4 (the inequality

r
n (3 ] (]
Pﬂ|zj=1xnjH>0]s(rn/3n)3nxn(B) and the hypothesis imply that {an}
o
satisfies (*)) we have that u'(Bt)=0 (hence u' is finite) and v=Pois(p').
On the other hand, if teC(u') with t<t, Theorem 5.2 gives that
c

jn,Z(Xn,l)IB +> u'IB:=u'. Therefore u=u' and v=Poisu.0

Tnr? T W

n''n'"
The following two results give sufficient conditions for

convergence to a generalized Poisson measure.

5.7 Theorem, Let {xnj} be a stationary, ¢-mixing triangular array

such that ¢(1)<1 and yY*<=, Assume

(1) there exists a o-finite measure p such that, for every teC(u),

. c c
JnZ(xnl)IBr w "IBT’

(2) there exist r>0 and a sequence {Gk}cc(u) such that 6k+0

and
lim 1lim E||S -ES =0
; 1 ” n,6] n,6]" ®

(3) there exist B>0, p>0 and a sequence {Fk} of finite-dimensional

subspaces of B such that

i P -ES =0,
l;m sip Eq k(sn,B E n,B)
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Then (a) p» is a L8vy measure,

(b) for every teC(yu), Z(Sn-ES ) ¥ c_Poisu.

Proof. As a consequence of assumption (1) we have that ZKs;G)) 3

ES )= lim ES(6)=

. c
P01s(u|B6) for every 6eC(u) and lim (Esn,r- n,6 n ESp,r

'8 x(ulﬁg)(dx) if 8§,7eC(u) and 8<t. The first assertion follows
T

applying Theorem 5.6 to {xgj} (with An=Z(Xn1)|B§) and the second

e (8)_

is deduced by a standard argument (write n.t-
]

i

foB (x)(jnZ(xni)IBg)(dx) and note that the set of discontinuities
T

B (x)

of the bounded, Borel measurable function (from B into B) xI
' T

has u|B§-measure zero). Then we have (see [3,Section 11])

6)+

. ( . c
(5.9) if 6,7eC(u) and 6<t, Z(Sn ES _Esn,r) b chOIS(ulBG)'

n,§

Fix teC(u). We will show first that {Z(Sn-ESn r)} is
9
relatively compact. Choose §>0 such that &8<t, 6<B and
r e s .
sup_ E||S_ .-ES_ .|]|"<= (this is possible by (2)). Hence we have
n n,d n,$§

n,G-ESn,G))}

-ES ))} are relatively compact; the second
n,B n,B i

assertion follows from the first by the equality Sn B-ESn B=
9 9
(8) (s)

-ES since assumption (1) implies that {Z(S
n,B n,B

(Chebyshev's inequality) that for every feB', {I(f(S

and then {I(f(S

(6))]

)+S n,8

(s -ES

n,d$ n,§

(8)_ (8)_c(8)

n,8°5n n and use Lemma 5.5)

is relatively compact (write S

and then {Esis)} is relatively compact in B (Proposition 3.5
’ .

ensures the uniform integrability of {"8;6;"}). Now (3) and
9

(1,Theorem 2.3] imply that {Z(Sn,B'ESn,B)} and then {Z(sn’s-zsn,a)}
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are relatively compact. On the other hand, arguing as above starting

(s8) .
from (1) we can obtain that {X(sS_ +Esn,6'BSn,r)} is relatively

compact. Hence the equality

(6)+ES -ES )

(5.10) S_-ES =(Ss
n n n,$§ n,t

n,t n,G'ESn,6)+(S

shows that {,Z(Sn-ESn ;)} is relatively compact.

Suppose that Z(Sn,-ESn, r) 7 V. There is a subsequence {nk} of

{n'} such that if 5k<T

r -1 ==
Ell's -Bsnk’ak" <k”"+Iim Ef|s

-ES I
n n’6k

N

and p(Z(Sn +ES_ -ES T), cTPois(ulBg ))<l<'1

k k°°x Pk k

(this is possible by (5.9)). By (2) we have that S, -ESn

as k+= and then (apply (5.10) with n=n 6=6k) z(sn +ES -

s
k k k

. c .
Esnk,r) > v. Hence CTPOIS(H|BGk) 3 Vv by the choice of {nk}. An

application of [3,Theorem 1.6] gives that p is a Lé&vy measure and
v=cTP01su.
The relative compactness of {Zisn-ESn ;)] and the above
9
argument imply the desired conclusions.(]

5.8 Corollary. Suppose that B is a Hilbert space. Let {an} be a

;=1¢1/2(j)<~

stationary, ¢-mixing triangular array such that ¢(1)<1, I
and yY*<eo, Assume:
(1) there exists a o-finite measure p such that, for every teC(yp),

c

ulB_,

. c
JnZ(XnI)IBt ;
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(2) there exists a sequence {Gk}CC(u) such that &, +0 and

EX "2=o,

o S .
1im Iim ]nE“xnisk- n1s,

k n
(3) there exists B>0 such that
lim sup J Eq2(x -EX )=0
n “k "nig nip
k n
(the q,'s are as in Corollary 4.5).
Then (a) uw is a Lévy measure,

(b) for every teC(u), Z(Sn-ESn ¢) ¥ c Poisu.

°

Proof. As in the proof of Corollary 4.5 we can obtain the inequalities

1/2

2 3 o . 2
Els ESn,G" S(14837_ 49 (333 ENX_, -EX_,.l°,

n,G-

2 o 1/2, cyyz 2
Eqk(sn,B'ESn,3)5(1+“zj=1¢ (j))]nEqk(Xnis-Eans)

which show that the result follows from Theorem 5.7.0

Let {Xj:jeN} be a stationary sequence of B-valued random
vectors, {an} a sequence of real numbers tending to infinity and
{bn}CB ; it is known that if {Z!agi(x1+...+xn)-bn)} converges weakly
and {Xj} is ¢-mixing (or even under a weaker assumption) then the
limit is a stable measure (see Ibragimov and Linnik [12,Theorem
18.1.1] and Philipp [16,Theorem 2]). The following two consequences
of the previous result give sufficient conditions for that behavior

(with a non Gaussian limit).

5.9 Corollary. Suppose that B is a Hilbert space. Let aec(0,2) and

let 0 be a finite measure on S={xeB:||x|[=1}; denote M, , the measure
]
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on B induced by the product measure r-i-udrOU through the map

(r,x) - rx from [0,=)xS onto B. Assume that {xj:jeN} is a stationary,

¢-mixing sequence such that ¢(1)<1, E;=1¢1/2(j)<m, y*<® and such

that it satisfies

-1/a 1nC c
nd(n X, )4B7 > “a,alBr

for every 1>0. Then o o is a Lévy measure and
L]

-1/a 1-1/a

L(n (X1+...+Xn)-n

Efxl;xleBni/a]) ;rclPo1sua’°.
-1/a

xj for j=1,...,n and neN. Corollary 5.8 shows

that it is sufficient to prove that

Proof. Let X .=n
nj

=0

. 2
lim sup nE”XnIGH

6§40 n

’ 2
and lim sup nEq (X )=0
X n k' "niB

for some B>0. But as in Araujo and Giné [4,proof of Theorem 4.3]
these conditions can be deduced from the relations

sup taP["X
t>0

1” >t]<u

and lim sup taP[qk(x1)>t]=0
k t>0

which are conszequences of the hypothesis.[

5.10 Corollary. Let {Xj:jeN} be a stationary, ¢-mfiing sequence of
172

real random variables such that ¢(1)<1, Z;=1¢ (j)<= and yYP*c<ceo,

Let n¢(0,2) and suppose that

{i) there exist constants 2,20, 2,20 such that 2 +22>0 and

1 2 1
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. P[X1<-x] Ly
11m —=‘—,

X+t P[X1>x] L

N

(2) for every t>0,

P[|X1|>x]
lim —m—m—m— = ¢t
x>+ P[|x1|>tx]

a

Then there exist constants a s with an+°, such that

-1 -1 .
,Z(an (Xy+...4X )-na_ E[X1,|X1|5an]) > c, Poisy

1 L,

Qa, 12%9

where (dx)=a{1 -1-a}

a,21,22 (-»,0 dx.

)(x)llx-i-a+1( o) (X L,X

0,+

Proof. As in Gnedenko and Kolmogorov [10,pages 176-178] we can

define a, such that a > and, for each x>0,

. -a
lim nP[X1<—xan]=21x .
n

. - -a
l;m nP[X1>xan]-22x s

lim Iim na-2E[x2;|x |<éa_1J=0.
- n 1 1 n
§+0 n

Now it suffices to define xni=a;1xj for j=1,...,n, neN, and to

apply Corollary 5.8.0
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6. Infinitelz divisible limits.

In this section we consider y-mixing triangular arrays.

6.1 Lemma. Let {an} be a stationary, Y-mixing triangular array
such that ¢(1)<1 and y*<=, Assume X_, 3 0, ”xnj"SM a.s. (for all
n,j) for some M and that there exists &§>0 such that the triangular

array X Exnjd} satisfies (*) and {ZKSn -ES 6)} is relatively

6 n,

(8),4_
,G'Esn,s)f(sn )1=0 for every feB',

njé"
compact. Then limn E[f(Sn

Proof. Let Ynj=xnj6-Exan for j=1,...,jn.
. ) . 8
Since X , 3 0 we have Euxn16"+o, E”Xn1“+0 (write E"Xnius

MP["Xn1H>6]) and E||Y__.||+0 as n+e, Theorem 3.4 applied to {Ynj}

nﬂ
implies that K=sup_ an"X31H<~. Next we claim that

C=sup max E[:

k
LY .l
neN 1sksj_ j=1 nJ

is finite. To prove this, fix a such that ¢(1)<a<l and put n=1-a.

Take x0>0 such that

~t,cC
sup © (B _ )<n/2
o<t<1 (%, n)/2

and n_eN such that

0
k/3
max p(u(k),v y<ns2
1<k<
n
if n2n where u(k)=Z(Ek Y_.) (possible by Theorem 3.3), Hence
o’ n j=1"nj *

if nzno we have

max P["Z?=

Yn.">x/2]<1-a
1sksjn ]

1
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for xeo and therefore, by Proposition 2.2,

k -l o
max E"Ej=1YnjHSx°+(a—¢(1)) s

j
prllz.”. Y .||>x/2]1dx
1sksq_ X0 7=1 n]

<x +2(a-¢(1))'1znzj“ Y__|l
0 j=1"nj" "’
Applying Proposition 3.5 to {Ynj} we conclude that C<eo,

Fix feB'. Let heN; if n is such that jn>2h+1 and i satisfies

h+1sisjn-h write

i-h i-1 i+h-1 In
ur.= £ F(Y_.), Ut.= & f(Y_.), V'.= T E£(Y_.), V".= I £(Y
R ET UL B y=i-ner M Bl ojzier ™ Pl 5zien

For n sufficiently large we have

(§) ’n 5.
o )f(sn,s'ESn,a)]'s.f |ECE(X_ ;) 5 £(Y_.)1]

i=1 j

|EC£(S

sjnlE[f(xﬁi)f(Yn )1|

1

h
+ I lE[f(Xﬁi) T f(Y )1
i=1 j#i "
i, -h )
+ ¢ JECE(X_ (U 40! 4V _+V" }]]
i=h+1 ni nil ni ni ni
Jn

+ I lE[f(Xgi) r £(Y )1
i=jn-h+1 j#i

=a +b +c +d .
atbpte td (sav)



50

Moreover

: 5 2
a_=1_leexd )| |ecex ) sl *kellx_,

nié
h s | i-1 In ) s
= £ O { ¢ . z . <2hy*
b_ i=1lzm nl){j=1f(Ynj)+i=i+1f(Ynj)}]| 2hy*| £]| “cell x_, |l
by Proposition 2.7,
i -h
8

cnsi=§+lzlf(xni)|{w(h)Blu;i|+w*Eluai|+w*3|v51|+w(h)E|v;i|}

<2l £ 2k (y*nEl ¥_ [l +Cy(n))

by Propositions 2.6 and 2.7 and dn has the same bound that bn.This

inequalities and the remarks made above yield

(8)

n )]Iszuf"2xcw(h)

l;m |E[f(Sn -ESn’G)f(S

6

for every heN, then the y-mixing condition implies the desired result.(

6.2 Theorem. Let {an} be a stationary, ¥-mixing triangular array

which satisfies ¢(1)<1, y#*<o and condition (#%*). Suppose that.Z(Sn)

3V with Lé&vy-Khintchine representation v=6z *Y*CTPoisu for teC(y),
T

where z €B, v is a centered Gaussian measure and u is a L&vy measure.
Then
. c c
(a) for every teC(u), ]nZ(xni)lBt * ulBT,
(b) for every feB',
lim

. n 2
lim Ef (Sn a'ESn,a)

§+0| lim ’
n
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= 1im lim Ef2(sn -ES_
T+0 n o T >
teC(yu)

T)=0y(f,f),

(c) for every teC(u),

z(sgf))

=4

Pois(ulB:),

Z(Sn’T) > GZT*Y*CTP01s(u|BT)

and ES + 2z 1in B,
n,T T

Proof. Theorem 5.2 shows that (a) holds.
Fix teC(u). (a) and Theorem 5.6 applied to {X;j} imply the
. . T . c
first assertion of (¢) (note that Z(Xn1)-Z(an)(BT)60+Z(xn1)lBt).

Hence {Z(Sn r)} is relatively compact. Let X be the L&vy measure
L]

of a 1limit point of this sequence; for every t'<t such that

. c _. c c _
t'eC(2)nC(u) we have j Z(X )|B an(xnl)IBrnBr' and then AIBT,-

nit '

uIBTnB:, by (a). Therefore uIB,r is the Lé&vy measure of every limit

point of {Z(Sn T)}.

L]

Now we will prove the following claim: (I) if a subsequence

{Z(s )} converges to & _xy*c_Pois(u|B_) where zeB and § is a
DT z T T

centered Gaussian measure then Z(Sn ) ; Gz*y*ctPois(ulBT,) for

KT
every t1'>t such that t'eC(u).
In order to prove (I), fix such a T' and observe that since

{Z(Sn T,)} is relatively compact it suffices to show that each
k’

one of its convergent subsequences has the desired limit. Let

{Z(Sn, T,)} such a subsequence with limit GZ.*Y'*CTPOiS(UlBT.)=

8,1 ,n*Y' *¢ Pois(u|B_,) where z'eB, y' is a centered Gaussian
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measure and m=fB<:nB x u(dx) (we have used an elementary property
T T

of T-centered Poisson measures; for this and other properties which

we will use we refer to [3]). We have

lim ES, 1 =2+/x cTPois(ulBT)(dx)=z, liT ES v o 52'4m
n n

by Proposition 3.5 (to prove that {anT} satisfies (*), write anr=

T
- ® = i
X3 an and use (a) and the property (%) of {an}) and m= 1lim_,

(FS

n',r'-ESn',r) by (a); hence z'=z. On the other hand, we have for

every feB' (Proposition 3.5)

. 2 L e2 .
1:? Ef (Sn,’T,-ESn,,T)-If d[&m*y'*cT,P01s(u|BT,)]

=f2(m)+¢y,(f,f)+ff2d(uIBT,),

. 2 _ 2
lim EF°(S_, T-ESn,,T)-é (F,E)+/f d(ulBT),

n! L]

?
(t)

2 2 c
= r
n,,T,) FE(m)+/f d(ulBTnBT,)

lim Ef2(S
n'
(1)

. c
n,r') > P01s(u|BTnBT,))

(arguing as above we can obtain that J(S

and the equality

Ef2(s_ _,-ES_ _)
n,t n,t

tee? 2,.(7) (t)
=Ff (sn .~ES_ T)+Ef (sn’T,)+2E[f(Sn r'ESn,t)f(Sn,r')]'

L] 1] L]

Therefore, Lemma 6.1 implies ¢Y,=¢Y, that is, y'=y. Then (I) holds.
To complete the proof of (c) observe that its third assertion

follows from the second (by Proposition 3.5). To prove it, let {n'}

be a subsequence of N such that Z(Sn,,T) > 62*?*cTP01s(u|BT) where

zeB and § is a centered Gaussian measure; since {ZKSn 1'_)} is
9
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relatively compact it is sufficient to show that z=z_ and ¥=v.
Take an increasing sequence {rk}cc(u) such that 7, >t and 71, 4=;

by (I) we have

Z(Sn, k

’Tk) > 62*7*c1P01s(u[BTk)=v

(say) for every keN. Hence there exists a subsequence {nk} of
{n'} such that p(Z(Sn
(t,)
S k
Py

),v, )<1/k for each keN. Note that

KTk k

? 0 (given €>0, by Theorem 3.4 we may choose r>0 such that
c (Tk)

sup  § Z(X_ ,)(B )<e which implies that P["Snk [[>01s

1nkP["Xnk1”>thSe for sufficiently large k) and cTP01s(u|BTk)

+ ¢ Poisu.
W T

Then v=w-lim Z(Sn )
k k

=w-1im J(S )=w-1lim v =8 xy*c_Poisu
X R Ty X k 2z T

and the uniqueness of the Lé&vy-Khintchine representation implies
22 and Y=y. Thus (c) is proved.

Let feB'., (c) and Proposition 3.5 imply

. 2 _ 2 .
l;m Ef (Sn’T-ESn,T)-éY(f,f)+If d(cTP01s(u|BT))

for every teC(p); arguing as in [3,proof of Theorem 2.10] we can

deduce the second equality in (b). To obtain the first it is

-ES 6) and llmnEfz(S ES )

sufficient to show that lim Efz(s -
——n n,s n, n,é

n,$

are increasing functions of §. But this follows from Lemma 6.1 and

the inequality
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5 ) 2 ) (8)
Ef (Sn,d' ESn’s,)ZEf (Sn,d ESn'6)+2E[f(Sn’6-ESn,G)f(Sn.G,)]

(0<§<§') .

We use the notation Vn(G,f) of Section u.

6.3 Corollary. Let {an} be as in Theorem 6.2. Assume that either

(i) Z:=1¢1/2(j)<° and for every feB' there exists 6>0 such that
j

L 2
‘&, £ SUP, nEf (xnid- n16)<“

or (ii) li=1w(j)<~ and for every feB' there exists 6>0 such that

T.1/2
]n

EX

Yo, 78Uy El£(X5-EXpqq) 1<

Then for every feB'

Ill‘n
(b') 1im{ ™ V. (8,£)= lim lim V_(1,£)=0 (f,f).
§40| lim 140 n ® Y
n teC(u)

Proof. Let feB'., First let us observe that conclusion (a) of
Theorem 6.2 implies that we may suppose that C6 f<~ for every 6>0
9

in (i) and M6 f_.<°° for every 6>0 in (ii).
9

As in the proof of Corollary 4.3 we have for each §>0

-1
n .

ES_ . )-V (8§ f)lsu("izj o1/
“"°n,8 n ° Tn Y4213

' a gl
Ff (Sn

2,.
()))Cs,f

s 6
and analogously (but using Proposition 2.6) we obtain the bound
-1 2
§,f°

Now we can deduee (b') from (b) of Theorem 6.2 and (i) or (ii).D

j
2(i- 1y D

R Tyoy FeCiNM

1/2(5y<1/4 o

Remark. Let fxnj} be as in Theorem 6.2. If Z;=1¢
T:_jw(j)<1/2 then (b') holds for every feB' (argue as in the remark

following Corollary 4.3),
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6.4 Theorem. Let {an} be a stationary, Vv-mixing triangular array

such that ¢(1)<1, y*<o, Assume

EX 'a} satisfies (%),

(1) for some a>0, the triangular array {anu- n3

(2) there exists a o-finite measure p such that for every teC(u)

c c
jnz:(xni)lBt w uIBr’

(3) there exist a sequentially w¥*-dense subset W of B' and a

sequence 6k&0 such that

Ilm
2
o(£)=1im{ P JEFf (s -ES )
k | 1im n,8, " m,6
n

exists for every feW,

(4) there exist 8>0, p>0 and a sequence {F,} of finite-dimensional

subspaces of B such that

. P -
lim sup Eqp (S_ ,-ES_ ,)=0.
X n Fk n,B n,B

Then (a) p is a L&vy measure,
(b) there exists a centered Gaussian measure y such that
¢Y(f,f)=0(f) for every feW,

- i C ]
(e) Z(Sn ES_ T) > y*c_Poisu for every Te (u)

Proof. By an application of [1,Theorem 2.3] and using Lemma 5.5 and
Proposition 3.5 we can deduce from the hypotheses that {Z(Sn-ESn T)}
9

is relatively compact for every teC(u) (see the proof of Theorem 5.7).
3
n
Fi i =X .- . T =£. .Y .. Note that
ix teC(u) and write YnJ X0 BanT, n~L5=17n3

Exni-r + 0 in B by (2) and that {Ynj} satisfies (%) (write Ynj
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(X , -EX y+x®

. .+EX
nja nja nj

nla-Exnit and use (1) and (2)).

Now we prove that

. c c
(6.1) ]nZ(Yni)lB6 > u|B6

for every 8eC(u). Fix such a §. If 0<e<§ we have for sufficiently

large n

. c . Cqos c
]np[xn1€86+e]S]nP[YnIEBG]s]nP[xnIEBS-e]

. . . e s e, _ c
since EX_ + 03 then (2) implies l;m JnZ(Ynl)(BG)-u(BG) because

§eC(u), Similarly, if F is a closed set and €>0

11

c
s

—

. 2 ¢
;m ]nP[YnleB nF]su(((BG) nF)+Be),

———

which shows that Iim_ (jdz(Yni)lsg)(r)s(ulsg)(r). Hence (6.1) holds.
As in the proof of Theorem 6.2 we can prove, using Lemma 6.1,

. 2 2 . s
that lim_ Ef (Sn -ESn’G) and Il'mn Ef (Sn -ES_ ) are increasing

» 6 »8 s
functions of & for each feB'. Then (3) implies that

——
lim
. n 2
(6.2) ¢(f)=1lim Ef (Sn G-Esn 6)
§+0| 1lim ’ ?
n

for every feW,

Next, we show that for each feW we have

m

i
(6.3) lim
§40,8eC(u) im

n

2 =
Ef (Tn,G-ETn’G)-O(f).
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In order to prove this, fix feW and observe that by (6.2) it is

sufficient to show that

. 2 2 _
(6.4) l:m (Ef (Sn,G-ESn,G)-Ef (Tn,G-ETn,G))-O
for each 6eC(u). Let 8eC(u) and write Snzsn,G-ESn,G’ Tn=Tn,6'ETn,6'
Using the Cauchy-Schwarz inequality we obtain
2, ~ 2, 2,% 1/2 2 1/2 2, =~ 1/2
|E£°(S )-Ef°(T )| <{(E£7(S )" “+(Ef (T, §)) " THEET(S -T )
and moreover we have sup Ef2(§ )<o and sup Ef2(T )<= (use
n n n n,§
Lemma 5.5 and Proposition 3.5). By Proposition 3.5 ({(ana-EanG)

-(Y EYan)} satisfies (%)), (6.4) will follow if we prove that

njé"
S -T
n n

3 0. One has

EllS_-T |Is3 Ell (X_, o~EX 4 s)=(Y

16 EXn16 n15-E¥n14ll

sjnB["EXniT-EXn16+EYn16";"annsﬁ,"Ynlﬂsdl
+an[”xn1-Exn16+EYn16";"xniusc’"Yn1">6]
ST RIS S I PO W TS
+3 ECEY X, gl sl % g 1>6.0 Y] >6)
=an+bn+cn+dn (say).

Take € such that 0<e<$§; for sufficiently large n we have "EXniTHSE

and then

ansjn"EXniT-EXn15+E[Xn1-EXn11;HYn1"56]"



=j Meex_, IrClly  l1>61-E0x  sllx  ll<s,lly_,ll>63

+E[X |<6,l%x_.|l>61

n1 3l ¥aql nal

sﬂEXniTHjnP[HYniu>6]+3cjnP[6-es"xn1"56+e].
bnsasjnptc-esuxniusa],
cnsasjnérss"xniusa+e],
dn‘{”EYn1s"+"Exn1a"}5nP["xn1">‘]'
Applying (2) we obtain that

Tim El|S_-T [lsosu({x:6-es|x|<é+e})
n
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for every €e(0,8) and therefore lim E"gn-¥n“=0 since 6eC(u). As

remarked above this implies (6.4) and thus (6.3) is proved.

On the other hand, we claim that

(6.5) ET + 0 in B,
n,t

The equalities

E:Tn.1'=:.'nm:xni-Exni‘r;"YnillST]

=5 B0l Y llseullx > 3-9 EOx_slx llselly_fl><]
+(Exn11)jnP["Yn1">t]

and the fact that an + 0 imply that

it

lim IIETn T"S2(1+e)u({x:T-eS”xHST+e})
n L]
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for every ece(0,t) and this implies (6.5) because teC(u).
By the relative compactness of {ZTSn-BSn T)}={23Tn)}, claims
9
(6.1), (6.3) and (6.5) and Theorem 6.2 applied to {Ynj} we may

conclude the proof through a standard argument.(

6.5 Corollary. Suppose that B is a Hilbert space. Let {an} be a

stationarv, y-mixing triangular array such that ¢(1)<1, yY*<o, Assume

(1) there exists a o-finite measure u such that for every TteC(u)

. c c
an(xn1)|B1 ; u|BT’

(2) one of the conditions (i) or (ii) of Corollary 6.3 holds and

there exists a sequence 6k+0 such that

——
lim
o(f)=1im{ 7 v (8, ,8)
k lim n
n

exists for every feB',
(3) there exists B>0 such that

. .2 _
lim sgp ]nEqk(xnls—Exnls)-O.

Then (a) u is a L&vy measure,
(b) there exists a centered Gaussian measure y with
covariance oy(f,f)=¢(f) (feB'),

(c) Z(Sn-ES ,T) 3 Y*c Poisy for every teC(u).

n

Proof. We will show that the hypotheses.of the previous result are

satisfied,

Writ X .- cp . isfi *
rite Yn] XnJB ExnjB We prove that {Ynj} satisfies (*),
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Let {rn}CN such that r <j_ and rn/jn + 0. We have, as in the proof

of Corollary 4.5,

o 1/2
Eqk(zj nj)s(1+uzj_1 (i))r Eqk(Y )
Tn © 1/2
and -Ef (zl =Yg s(2ebI,_ 40 (:|))(:~n/3‘,‘)ca,f

for each feB', If (i) of Corollary 6.3 holds we have by hypothesis

(1) that CB £ for each feB' (see the proof of Corollary 6.3) and

r
therefore, using (3) and [(1,Theorem 2.3], zj: Y + 0, In case (ii)

holds note that

r
2 n o . 2
Eqk(zj=1Ynj)S(1+2Ej=1w(J))rnEqk(Ynl),

I‘
D ee2
Ef (zj =17 )s(1+2z _1w(3))(r /3 )MB £

for each feB' (use Proposition 2,6) and argue as above. Then (1) of

Theorem 6.4 holds.

On the other hand, hypothesis (2) implies (3) of the previous

result (see the proof of Corollary 6.3).

Finally, the inequalities
2 L 1/2,., . 2
Eqk(Sn’B—ESn’B)S(1+4£j=1¢ (3))3 Eq (Y _,),

Eqi(sn,a-zsn )s(1+215 4 v(3))] JEQR(Y )

together with hypothesis (3) and condition (i) or (ii) imply (4) of

Theoren 6.4.0
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