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a b s t r a c t

The spatiotemporal behavior of an initially corrugated interface in the two-dimensional
driven lattice gas (DLG) model with attractive nearest-neighbors interactions is
investigated via Monte Carlo simulations. By setting the system in the ordered phase, with
periodic boundary conditions along the external field axis. i.e. horizontal, and open along
the vertical directions respectively, an initial interfacewas imposed, that consists in a series
of sinusoidal profileswith amplitudeA0 andwavelengthλ set parallel to the applied driving
field axis. We studied the dynamic behavior of its statistical width or roughness W (t),
defined as the root mean square of the interface position. We found that W (t) decays
exponentially for all λ and lattice longitudinal sizes Lx, i.e., the lattice side that runs along
the axis of the external field. We determined its relaxation time τ , and found that depends
on λ as a power law τ ∝ λp, where p depends on the temperature and Lx. At low T ’s
(T � Tc(E)) and large Lx, p approaches to p = 3/2. At intermediate T ’s (T < Tc(E)), p
decreases up to p ≈ 1, and is free of finite effects. This indicates that the interface stabilizes
faster than in the equilibriummodel, i. e. the Ising lattice gas (E = 0)where p = 3. At higher
T ’s p increases for T . Tc(E), and the finite size dependence is recovered. Also, if T is fixed,
p increases with Lx until it saturates at large values of it, while this regime is vanishing at
T . Tc(E). In this way, the dynamic relaxation process of a sinusoidal interface is improved
by the external driving field with respect to its equilibrium counterpart, if the system is
set in an intermediate temperature stage far from Tc(E) and in a lattice with a sufficiently
large longitudinal side. The behavior of τ was also investigated as a function of E and in
the intermediate stage T < Tc(E). It was found that τ decreases exponentially with E in
the interval 0 < E . 1, while for higher fields it remains constant. The exponential decay
depends on the wavelength of the initial profile.
In order to study the spatial evolution of the profiles, we evaluated the structure factor

of the interface, and the Fourier coefficients corresponding to the same wave vector of the
initial profile. The obtained results allowed us to conclude that the spatial evolution of the
profile maintains its initial wavelength, does not travel along the external field axis, and its
shape is preserved over all the relaxation process.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In the last decades, the study of surface morphology has become a subject of great interest. The theoretical and
experimental understanding of the properties of surfaces and interfaces has allowed the development of a large number
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of new technologies that have been applied to generate engineered interfaces in diverse fields such as biology, medicine,
metallurgy, catalysis, development of materials, etc. Very recently, the investigation of surfaces at the nanometer scale has
added a new and growing collection of interesting and challenging phenomena from both the theoretical and experimental
points of view [1–3].
The relaxation process of an initially corrugated surface on its path to equilibrium was early studied by Mullins, who

developed a continuum linear theory for the relaxation process of a periodic grooved surface [4]. In this description, the
surface evolution of is governed by two competing processes, namely evaporation–condensation (EC) and surface diffusion
(SD). If EC is relevant, the surface follows a diffusion equation, where the diffusion constant D depends on the temperature,
the vapor pressure above the surface, and also of the mass and volume of the particles. On the other hand, if the surface
morphology is changed by SD, the time derivative of the surface height h(x, t) is proportional to the fourth-order spatial
derivative of it, the proportionality constant F depends on the surface diffusion constant, the number of particles per surface
area, their mass and volume, and also on the temperature and vapor pressure. If the initial condition consists of a one-
dimensional sinusoidal profile h(x, t = 0) = A0 sin(kx), with a Fourier mode k = 2π/λ of wavelength λ, the solutions of
the equations describing both processes are the following:

h(x, t) = A0 sin(kx)e−Bk
pt , (1)

where B = D or F , and p = 2 or 4 if EC or SD, respectively, is relevant. Eq. (1) predicts that the surface amplitude
decays exponentially without changing the spatial shape, independently of the Fourier mode under consideration. Also,
the relaxation time τ of the surface is proportional to the profile wavelength, i.e., τ ∝ λp/B. These equations are known
to hold for temperatures above the roughening transition, T > TR, where all thermodynamic quantities are assumed to be
smooth. For the case of surfaces below TR, the surface free energy and the mobility are singular functions of the reference
orientation angles (for example (111) in an fcc solid). By proposing the simplest functional forms for these, the equation
that governs the surface evolution, for the EC case, was developed by Selke and Duxbury [5], and the relaxation for an initial
sinusoidal profile is the following:

h(x, t) ∼ (t/λ)−1/2Ψ (x/λ), (2)

that is, the height decays as a power law, and Ψ is a function that exhibits a nonparabolic sharpening at its apexes [5].
Along these years, there has been a large number of studies devoted to confirmMullins’ ideas not only theoretically but also
experimentally [6–16].
On the other hand, the general case of interfaces out the small slope limit has also been considered recently. A vectorial

stochastic equation was proposed for the evolution of one-dimensional interfaces [17]. It has been shown that an initial
sinusoidal profile decays nonexponentially, together with the spontaneous formation of overhangs. These findings were
confirmed later by Monte Carlo simulations by considering an Ising-like model in a triangular lattice with conserved
density [18]. This result is important because it established the validity of a discrete approach in order to test a theoretical
prediction obtained from a continuum equation.
Another subject that has received attention is the relaxation of surfaces that are intrinsically driven out of equilibrium

by the application of external driving fluxes (of energy, momentum, mass, etc.) that run parallel to them. This research aims
to understand the ‘‘healing’’ of surface defects due to the reduction of the lifetime of instabilities by external agents. Tomar
et al. theoretically analyzed the evolution of a conducting crystalline solid where both an electric field and mechanical
stress were applied. By using combined techniques of linear stability analysis and self-consistent dynamic simulations,
the electromigration caused by the electric field can stabilize the surface morphology against the cracks originated by
the mechanical stress that tends to destabilize it [19]. Within this context, much progress has also been achieved by
considering simple models that are expected to catch the essential nonequilibrium physics, such as the driven lattice gas
(DLG) model introduced by Katz, et al. [20]. The DLG model assumes particles in a square lattice, settled into a thermal
bath, and exchanging places with empty neighbors bymeans of Ising-like attractive interactions due to the absence of long-
range order even at low temperatures. These interactions are realized according to Metropolis rules [21], and the boundary
conditions are periodic along all directions. Furthermore, an external driving field E is applied in one fixed lattice direction.
In this way, the system gives (receives) energy to (from) the thermal bath (applied field). In the long-time regime, the system
achieves nonequilibrium steady states (NESS) that are characterized by a constant flux of particles directed in the driving
field direction. If the temperature of the thermal bath is high enough, the DLG model exhibits lattice-gas-like disordered
states. However, at low temperatures an ordered (anisotropic) NESS emerges. This phase is characterized by the presence of
strips of high particle density crossing the lattice in the direction parallel to the external field. So, for half-density of particles
and at a well-defined critical bulk temperature Tc , the DLGmodel undergoes a second-order phase transition [22]. Extensive
Monte Carlo simulations have shown that Tc increases with the magnitude of E starting from the critical temperature of the
Ising model found by Onsager, TOc = 2.269 J/kb, which corresponds to E = 0, and saturates at Tc ' 1.41T

O
c in the limit

E →∞ [22].
The interfacial behavior of the DLG in the ordered phase has been studied extensively. Some research has shown that

the roughening transition is apparently suppressed [23–26], but recent investigations seem to exclude this behavior [27].
Other studies have investigated the behavior of the interfacial modes in an undulated interface when a perpendicular
current of particles sets in, recreating the quenching of the system to a very low temperature. By imposing a continuity
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equation for the concentration field of each phase, with the current term proportional to both the chemical potential and
the external field, but neglecting thermal noise effects, the stability of an initially flat interface perturbed by a traveling
wave was analyzed, constraining it to be in local equilibrium [28]. The dispersion relation ω(k) could be calculated, and it
was found that a perpendicular current can destabilize the interface provided that its wavelength is long enough. Also, the
external field affects the k-dependence of the real part ofω (Re(ω(k))), changing the growth or decay rate of the profile (also
exponential like in Eq. (1)) with respect to the equilibrium case. The imaginary component of ω(k) does not vanish if the
conductivities of each phase are assumed to be different (called asymmetric model) [28,29]. This introduces a modulation
in the rate with the presence of traveling waves. If the perpendicular current is removed, there is no interface instability,
and the relaxation rate behaves as Re(ω(k)) ∼ −k2.5 for E/k � 1, and Re(ω(k)) ∼ −k3.0 for E/k � 1, i.e., identical
to the E = 0 case, as estimated theoretically [30–32]. Later on, numerical Monte Carlo simulations on the asymmetric
model at very low temperature allowed going beyond the linear regime of the stability analysis [29]. The obtained results
supported the existence of travelingwaves, and suggested that the external field stabilizes the interfaces by incrementing the
surface tension [29]. Subsequently, a new theoretical approach developed to study the stability of a nonequilibrium interface
between two coexisting solid phases was considered. This description started from the coarse-grained level through a
Cahn–Hilliard equation in the presence of a weak external field, whose orientational dependence on the interface was
considered [33]. For small k, ω(k) is a function of this dependence, plus a term due to the surface currents that sets a length
scale of the perturbation decay in the bulk. As special case, in the small slope limit ω(k) ∝ ±k2 if the field is normal to
the interface. So, the perturbation becomes unstable (plus sign) if the field is directed from the low concentration phase
to high concentration phase, and stable (minus sign) otherwise. This was later confirmed by Szabó et al. by using the DLG
model with attractive next and next-nearest interactions [34]. On the other hand, ω(k) ∝ −k3/2 if the field is tangent
to the interface [33]. In another work, Szabó revisited the subject, and proposed a simpler formalism by focusing on the
effect of mass transport along the interface. By imposing that the interface motion is determined by particle conservation
and assuming that the (particle) current is proportional to the chemical potential along the interface, a perturbed planar
interface becomes unstable for all k’s that are less than a characteristic k0, which depends on the magnitude of the driving
field normal to the interface [35]. As in the case of the results of Yeung et al., the instability disappears with the reversal of
the field direction, and the interface also becomes stable if the vertical drift is negligible or suppressed. So, for this case one
has ω ∝ k4. However, in spite of the extensive work done, none of these theoretical descriptions have explicitly considered
the effects of thermal fluctuations on the interface dynamics.
In view of the studies summarized above, our aim is to describe the dynamic and spatial evolution of initially sinusoidal

interfaceswith an integer number ofwavelengths in theDLGmodel as a function of the temperature. So, considering themas
taking part of a Fourier decomposition of a general profile in a finite sample, wewill have an estimation of the time required
to wash out the initial structure by converting it into an essentially flat surface, i.e., with the characteristic roughness at
the considered T . Also, the discrete nature of our model and possible nonlinearities in the interfacial behavior were not
considered by the analyses above summarized [28,33,35]. Some possible ways to overcome this should be to propose a
phenomenological-based equation of the interface height, as for example the KPZ equation [36] including temperature
fluctuations, or to investigate the evolution of interfaces in analogous versions of theDLGmodel developed byDíez-Minguito
et al. [37] or Siders [38], that considered off- and on- driven lattice models with different particle interactions, for example
a Lennard–Jones or square-well attractive potentials, and compare the obtained results with our model’s and the analytic
ones. However, thesemodels have, in general, a behavior that is not similar to the discrete version, for example the decrease
of the critical temperature with the field strength [37], or the disappearance of the stripe configuration when the lattice
potential is zero [38], that reduces the model to a driven fluid with square-well interactions. In another but similar context,
research of this kind has been done by Castez et al. where themost relevant results from the linear theory of surface diffusion
are recovered by Monte Carlo simulations [17,39].
The paper is organized as follows: in Section 2 the DLGmodel and the starting configuration are described; the simulation

of the model and the measured observables are explained in Section 3; our results are presented and discussed in Section 4,
and finally the conclusions are stated in Section 5.

2. The model

The DLG model [20] is defined in a square lattice of size Lx × Ly. The driving field (E) is applied along the x-direction. In
this case, the boundary conditions are periodic along the field axis, and closed along the y-direction. This means that the
particles at the y = 1 edge can not jump into an empty site at y = Ly edge, and vice versa. This modification of the original
boundary condition was performed to keep the bottom edge (i.e the flat interface, see left panel of Fig. 1) occupied with
particles, a condition that is needed for the interface identification algorithm. Each lattice site can be empty or occupied by
a particle. If the coordinates of a site are (i, j), then the label (or occupation number) for that site can be ηij = {0, 1}. The
set of all occupation numbers specifies a particular configuration of the lattice. The particles interact among them through a
nearest-neighbor attractionwith positive coupling constant J > 0. So, in the absence of any field, theHamiltonian is given by

H = −4J
∑
〈ij;i′j′〉

ηijηi′j′ , (3)

where 〈.〉means that the summation is made over nearest-neighbor sites only.
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Fig. 1. Left panel: initial configuration of the DLG model in a lattice of sides Lx = 50, Ly = 100, with λ = 50 and A0 = 5. The black region is the particle
stripewith ρ = 1/2. Right panel: Amplified plot of the initial sinusoidal profile in the configuration of the left panel. The external field direction is indicated
by the arrow.

The attempt of a particle to jump to an empty nearest-neighbor site (Pjump) is given by the Metropolis rate [21] modified
by the presence of the driving field, that is,

Pjump = min[1, e−[1H−ε1E]/kBT ], (4)
where kB is the Boltzmann constant, T is the temperature of the thermal bath,1H is the energy change after the particle–hole
exchange, ε1 = (−1, 0, 1) is a number that indicates the direction of jump of the particle against, orthogonal or along the
driving field E. The field is measured in units of J , and temperatures are given in units of J/kB. The dynamics imposed does
not allow elimination of particles, so the density is a conserved quantity (i.e., Kawasaki dynamics). Also, it is important to
mention that due to particle–hole symmetry, the behavior of holes in the condensed phase is identical to particle behavior
in the condensed phase.
In order to investigate the evolution of a corrugated interface, the initial condition of the system that exhibited in the left

panel of Fig. 1 (the black region represents the particle stripe). Also, an amplified plot of the sinusoidal profile is shown in
the right panel, which has the following expression:

h(x, 0) =
Ly
2
− A0 sin

(
2π
λ
x
)
, (5)

where A0 is the amplitude and λ is the wavelength of the profile. In all cases the density of particles is kept constant at
ρ = 1/2.
In the DLGmodel, the properties and even the existence of interfaces depend on the temperature T . In fact, for T ≥ Tc(E),

the system is in the disordered phase and there are no interfaces at all. However, for T < Tc(E), interfaces are present due to
the strip-like patterns characteristic of the ordered phase. The particles at the interfaces may leave the strip, diffusing into
the gas-like phase, ormay stick to it again.Moreover, the driving field sets a current along the interface. These processesmay
change the interface widthW (see Eq. (6)). It is well known thatW is the result of two contributions, namely the intrinsic
width of the interface, Win, of the order of the bulk correlation length ξB, and the thermal fluctuations of the local mean
position of the interface, i.e., the capillary waves [24]. If the system is in the rough phase and far from the critical point,
TR < T � Tc(E),Win is negligible, and the interface evolution is governed by the fluctuations of the capillary waves. On the
other hand, if TR � T . Tc(E), the bulk correlation length becomes relevant,Win is no longer negligible, and mounts over
the capillary waves, makingW to increase in this regime, causing the relaxation time τ of the sinusoidal profile to be larger
than in the TR < T � Tc(E) interval.

3. The simulation method

The model was simulated in square lattices of sizes Lx × Ly, with Ly = 100 lattice units (LU) fixed, and Lx in the range
50 6 Lx 6 104 (LU). The systemwas allowed to evolve over very long time intervals, typically t > 1×106 Monte Carlo steps
(MCS), defined as Lx × Ly attempts for a randomly chosen particle to jump into a neighboring site.
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We investigated the interface behavior of the model in the temperature range 0.5 ≤ T ≤ 2.5, in units of J/kB. The
external field was measured in units of the coupling J, and varied in the range 0.1 ≤ E ≤ 10. The profile amplitude A0 was
fixed at A0 = 5 for all simulations, and the wavelength was varied according to λ = Lx/nλ, where nλ is the (integer) number
of sinusoidal profiles included in Lx.
In order to investigate the time evolution of the sinusoidal profile in the DLG model, we measured the interface width

or roughness W. In order to define it, we first need to find the interface position at time th(i, t), with 1 6 i 6 Lx and
1 6 h(i, t) 6 Ly. This was determined by using the algorithm developed in Ref. [40] for diffusion fronts, and recently applied
to the DLG model [27]. Let us now explain conceptually how it works, by applying a three-stage process. In the first stage,
the lattice is swept sequentially from bottom to top (see left panel of Fig. 1), and the largest cluster of particles is identified
by applying the standard Hoshen–Kopelman algorithm (HK) [41]. In the second stage, the HK algorithm is repeated but from
top to bottom, in order to identify the largest cluster of empty sites. At this point, the lattice has only two large clusters,
one made of particles only, and a second one made of empty sites. In this way, the interface is defined as those particles
of the largest cluster of occupied sites having at least a neighbor site that belongs to the largest cluster of empty sites. One
important feature of this method is that it takes into account the bubbles and overhangs responsible for the intrinsic width
of the interface. For more details of the algorithm see Refs. [27,40] and references therein.
Once h(i, t) was estimated, we compute the average interface position at time t and the widthW (t), defined as the root

mean square of the interface position, i.e.,

〈h(t)〉 =
1
NI

NI∑
i=1

h(i, t), W (t) =
√
〈h(t)2〉 − 〈h(t)〉2 (6)

where NI is the total number of particles at the interface. Notice that the summation in both quantities runs over all the
particles of the interface because in general NI ≥ Lx and hence h(i, t) is not a single-valued function of the x-coordinate due
to the presence of overhangs.
To study the spatial evolution of the initially sinusoidal profile, we also measured the structure factor, defined as

S(k, t) =

〈∣∣∣∣∣ Lx∑
i=1

h(x, t)ei(k.x)
∣∣∣∣∣
2〉
, (7)

where h(x, t) is converted into a single-valued function by averaging the overhangs of the interface in the column denoted
by x in the horizontal field axis.
Finally, in order to obtain more information about the spatial shape evolution of the profile, we also measured and

analyzed the Fourier coefficients given by Refs. [8,9]:

ak(t) =
Lx∑
x=1

h(x, t) sin(kx), bk(t) =
Lx∑
x=1

h(x, t) cos(kx), (8)

where k is a generic Fourier mode. In this way, one coefficient would be more relevant than the other depending on
whether the profile interferes either constructively or destructively with the sine or the cosine functions. Furthermore, both
coefficients will carry out the time exponential decay discussed above for the interface widthW (t), so the time dependence
will be linear.

4. Results and discussion

4.1. Dynamic relaxation

Although the interface identification algorithm has proved to be reliable for the DLG model [27,40], we will begin this
section by checking the evolution of the interfaces for the case at E = 0, which is the widely-studied Ising-like equilibrium
lattice gas (EqLG) model, which corresponds to model B in the classification of Hohenberg and Halperin [42]. In the left
panel of Fig. 2, we observe that the amplitude actually decays with time, and the sinusoidal shape is roughly conserved. In
contrast, when a small field is applied, as shown in the right panel of Fig. 2 with E = 0.1, the decay is much faster than that
observed for the EqLG model.
The dynamic evolution of the sinusoidal profile can be quantified by measuring the interface width defined by Eq. (6).

Fig. 3 exhibits the dynamic evolution of the roughnessW of an initially prepared sinusoidal profiles of different wavelengths
λ (for the sake of clarity, we do not show the evolution of all profiles considered), in a square lattice of sides Ly = Lx = 100,
and T = 1. It is observed that for λ < 100, all profile widths reach a minimum value, and then grow up to an equilibrium
value W∞ = W (t → ∞) that is independent of the initial state (it only depends on T ). For fixed amplitudes as in the
case of Fig. 3, the absolute value of the local slopes along the interface becomes larger when λ decreases, and consequently
the interface particles are weakly bounded as compared with profiles of longer wavelengths. So, the particles can be driven
outside the interface (e.g. to the gas phase) by thermal fluctuations, causing a fast decay. This behavior occurs nomatter how
large Lx is, so that it is almost independent of the finite size of the sample. At the minimum value reached byW (t) one has
a nearly flat interface that is not an equilibrium state of the system compatible with the temperature of the thermal bath.
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Fig. 2. Interface snapshots, represented by full dots, of the EqLG and DLG models obtained from a starting interface profile of wavelength λ = 50, in a
lattice of sides Lx = 50, Ly = 100, and T = 1, and obtained at the times indicated in the legends. The left panel shows the interface evolution of the EqLG
model (E = 0), while the right panel shows the time evolution of the interface of the DLG model where a driving field of magnitude E = 0.1 is applied
from left to right.

Fig. 3. Dynamic evolution of the interface roughnessW as measured for the EqLG model set on a square lattice of sides Lx = Ly = 100 LU and T = 1. The
starting sinusoidal profiles have amplitude A0 = 5 and wavelengths λ = 100, 50, 25, and 10, from top to bottom. The data were obtained by averaging
over 100 independent samples. The inset shows the exponential fits of the numerical data corresponding to λ = 50, 25, 20 and 10 (the other fits are not
shown to make the plot clearer).

So,W (t) grows again due to thermal fluctuations of the capillary waves, until the equilibrium state is reached in the limit of
t →∞, i.e., whenW = W∞. We fitted the data with an exponential decay according toW (t)−W∞ = B exp(−Kt), where
K = 1/τ . The fits of the numerical data, which allow us to estimate the relaxation time τ , are also shown in Fig. 3.
By evaluating τ for the interfaces of systems in lattices of sides Lx = 100, Lx = 500 and Lx = 1000 (Ly = 100 in all cases),

one can study the behavior of τ with both k and Lx. Fig. 4 shows log–log plots of τ versus thewavelength λ as obtained for the
EqLGmodel. Regression fits of the data are performed in the large λ interval, giving good agreements between the numerical
results and the predicted behavior for the exponent p = 3 in theoretical descriptions, i.e. p = 3.03(2) for Lx = 500 and
p = 3.01(2) for Lx = 1000 [30–32]. This is confirmed by inset of Fig. 4, that shows a plot of the ratio τ 1/3/λ versus λ.
Since the wave amplitude was fixed at A0 = 5 for all cases, the obtained behavior indicates us that the predicted power-law
behavior is valid within the small slope limit. These results provide a stringent test for the methodology used in order to
locate the interface and follow its dynamic evolution.
After the validation of the method, we turn now to the DLG model. Since it is driven out of equilibrium by an external

field, one expects that the field may influence the relaxation of the starting sinusoidal profile. This becomes evident in the
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Fig. 4. Log–log plot of the relaxation time τ calculated from the decays ofW (t) shown in Fig. 3 for the EqLG model, versus the wavelength λ, as obtained
for samples with sides indicated in the legend. The fits with a cubic function are also exhibited for the cases Lx = 500 and Lx = 1000. Inset: linear–linear
plot of the ratio τ 1/3/λ versus λ, which indicates the validity of the power-law predicted theoretically [30–32] within the small slope limit (A0 = 5 in all
cases). The straight line was plotted to guide the eye.

a b

Fig. 5. (a) Dynamic evolution of the interface roughnessW (t) (linear–linear scale) for the DLG model with E = 1, T = 1 as measured by using a lattice
of sides Lx = 500 and Ly = 100. Data obtained by starting from sinusoidal profiles with different wavelengths λ, as indicated in the legend; (b) Log–linear
plot of some decays exhibited in (a), together with its corresponding displaced fits with an exponential function (see text).

snapshots of Fig. 2, which shows that the amplitude decay is faster as compared to the case of the EqLGmodel. Based on the
theoretical results of the continuum approaches in Refs. [28,33,35] the dynamic interface roughness amplitudeW (t) of the
DLG model is expected to decay exponentially for T > TR,W (t)−W∞ = B exp(−t/τ), where τ is the relaxation time, and
W∞ = W (t →∞). Fig. 5(a) and (b) shows the exponential relaxationW , in a lattice with Lx = 500, E = 1, and T = 1, as
measured for a series of profiles with different λ’s. Comparing Figs. 5(a) and 3 of the EqLG model, we observe thatW (t) de-
cays faster and theminima disappear whenmore initial sinusoidal profiles are allocated in the lattice, i.e., when λ is shorter.
By fitting the decaying behavior with an exponential function, shown in Fig. 5(b), we measured τ for all wavelengths,

even if A0/λ = 1. We repeated this for the decay in several lattices of longitudinal sizes Lx = 100, 200, 500 and 10,000 LU,
and T ′s in the range 0.5 ≤ T ≤ 2.5, in order to study the dependence on λ and T .
Fig. 6 shows log–log plots of the estimated values of the relaxation times τ versus the profile wavelength λ, for all the

investigated temperatures. The behavior of τ with λ is consistent with a power-law function τ ∝ λp.
The plots in Fig. 7(a) and (b) shows the behavior of p as a function of the temperature T and the longitudinal side Lx,

respectively. Fig. 7(a) shows that, in the low temperature regime, T ≤ 0.5, p increases with Lx, suggesting that p approaches
p = 3/2 in the limits of large Lx and zero thermal fluctuations, as was theoretically found by Yeung et al. [33]. In the
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Fig. 6. Log–log plot of the relaxation time τ versus λ for the DLG model with E = 1, Lx = 10,000, Ly = 100, and A0 = 5. Data obtained at different
temperatures as indicated in the legend. The straight lines show the power-law fits corresponding to each T investigated.

a b c

Fig. 7. Dependence of p versus T (a) (in linear–linear scale) and Lx (b) (in log–log scale for clarity). In both cases, we used E = 1. The longitudinal lattice
sides used in (a), and the temperatures in (b) are indicated in the corresponding legends. The plots in (c) exhibits the interface snapshots taken during the
exponential relaxation process at t = 2500 MCS, in a system with Lx = 104 , Ly = 103 , and E = 1. The temperature of the thermal bath in each snapshot
are indicated in the corresponding legends.

intermediate temperature regime 1.0 ≤ T ≤ 1.5, the exponent is p ' 1.0, and it is approximately independent of Lx.
In contrast to the former case, the thermal fluctuations become important within this regime, causing the profile to relax
faster than in the equilibrium case, i.e., the EqLG model with p = 3 (see first part of Section 4.1), and also than the driven
model at lower T ’s. For higher T ’s in the range 1.5 < T ≤ 2.5, p increases due to the fact that T becomes near to the critical
temperature Tc(E = 1) ∼ 3.0 [43], and for T & 1.8 the finite size effects begin to be noticeable. The increment of p in this
regime can be explained by arguing that near Tc ,W (t) increases due to the strong contribution of the intrinsic widthWin,
that is of the order of the bulk correlation length ξB [24,27,35]. Consequently, the profile relaxes more slowly to its NESS
values than in regimes at smaller T ’, and it is strongly affected by the finite longitudinal lattice size.
On the other hand, Fig. 7(b) shows the dependence of pwith Lx for two temperatures T = 1, 2.5, and E = 1. For T = 1, p

increaseswith Lx until it becomes large, i.e for Lx & 1000, where it remains constant (within error bands) around p u 1. If the
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Fig. 8. Relaxation time τ versus the magnitude of the external field E shown on a double logarithmic scale. Data corresponding to the DLG model with
Lx = 200 and T = 1. The amplitude of the initial profiles is A0 = 5, and the wavelengths are indicated in the legend. The inset shows log–linear plots of the
data already shown in themain plot, takenwithin the small field interval. The curves corresponding to different wavelengths are fittedwith an exponential
function as indicated by full and dashed lines.

temperature of the thermal bath is raised to T = 2.5, p grows with increasing Lx, again due to the large values ofWin v ξB
already commented. Finally, the behaviors explained above are confirmed by direct observation of the interface snapshots
at different temperatures, as 7(c) shows. The increase ofW (t)with T , particularlyWin, is evident.
By applying external fields of different magnitudes E at fixed T = 1, the curve of the relaxation time τ versus E could be

obtained for profiles with wavelengths λ = 20 and λ = 200 (Fig. 8). It was found that, for small values of E, τ decreases as
expected. This process is improved when the profile wavelength is shorter due to the high value of the local slope, where
the particles are more weakly attached to the interface than those with longer wavelength. Also, τ follows an exponential
decay in the small E regime that depends on λ. To the best of our knowledge, this result appears to be a new feature of
nonequilibrium interfaces.
Then, for large values of the field E ≥ 1, τ reaches a saturation value that is independent of λ. This behavior is due

to the fact that movements against the field direction are almost forbidden, and almost all particles at the interface are
released into the gas phase, contrary to the case E < 1, where the energy that the field needs to extract a particle from the
interface competes with the attractive energy between neighboring particles, as denoted in the Hamiltonian of Eq. (3). Also,
the crossover point between the decreasing and saturation regimes depends on T , and will occur at larger values of E. This
happens because the thermal noise is incremented with higher T ’s, (see for example the snapshots in Fig. 7(c)) and a larger
value of E will be needed to take a particle away from the interface, avoiding possible re-attachments.

4.2. Spatial behavior

In order to understand the spatial behavior of the profile, it is interesting to study its shape. For this purpose we
measured the structure factor of the profile, given by Eq. (7). Fig. 9 shows plots of the structure factor versus the wavelength
(λ = 2π/k), for the DLG model in a lattice with Lx = 500, Ly = 100, T = 1, and E = 1, as obtained for two profiles with
wavelengths λ = 50 and λ = 250. As it can be observed from the plots, the structure factors peak at λ = 50 and λ = 250,
which indicates that each profile decays essentially keeping the same initial wavelength, i.e., maintaining its shape within
the short-time regime (see also Fig. 2). Also, the peak of the profile decays faster for the shorter λ’s, confirming our results
on the dynamic decay discussed above.
More information on the spatial behavior can be obtained by analyzing the Fourier coefficients ak(t) and bk(t), defined

by Eqs. (8). Notice that the previous result also impose some constraints on the coefficients ak and bk. In fact, on the one
hand the evolution of the structure factor allows us to fix the wavevector k of both the sine and cosine functions as equal to
that corresponding to the initial profile. On the other hand, Fig. 2 shows that there are not relevant phase shifts during the
relaxation process. Fig. 10(a) shows plots of both ak and the slope ak/W (t) versusW (t) (sinceW (t) is a decaying function of
time, the horizontal axismust be read from right to left in order to follow the time evolution). A linear dependence can clearly
be observed for all wavelengths at early times, although it is different for the profiles with shorterwavelengths (λ = 10, 50),
where the decay is faster than in the other cases. This regime is confirmed by the nearly constant slope ak/W (t) observed
up toW (t) u 1.5 for long λ’s when A0/λ� 1. However, the slopes for shorter λ’s reveal that the constructive interference
is maintained only at early times due to a faster relaxation.
On the other hand, Fig. 10(b) shows the behavior of the Fourier coefficient bk(t) and the corresponding slope bk(t)/W (t)

as a function ofW (t). At the beginning of the relaxation, bk is negligible because of the initial pure sinusoidal profiles. Then it
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Fig. 9. Log–log plots of the structure factors versus λ for profiles with λ = 50 (upper panel) and λ = 250 (lower panel), taken at the times indicated
in each legend. The longitudinal side is Lx = 500, and the control parameters are T = 1 and E = 1. The results were obtained by averaging over 500
independent samples.

grows and reaches a saturation value that is practically the same for all λ’s used, untilW (t) ' 1where it begins to decrease.
The corresponding slopes bk/W (t), shown in the inset, start from zero and grow up to bk/W (t) ∼= 30whenW (t) ' 1where
subsequently they decrease. These results indicate a weak interference of the profile with the cosine function during the
relaxation process, which reaches its maximum atW (t) ' 1. At this value the profiles are close to their saturation values,
and no undulatory behavior can be detected either via ak or bk, so they both approach zero.
Based on the results exhibited in Fig. 10 we conclude that the predominant constructive interference is observed for the

coefficient ak, since the slope ak/W (t) is one order ofmagnitude larger than the values obtained for the corresponding slopes
of bk. In this way, the initial profile has a strong sinusoidal component during all the relaxation process. In other words, the
relaxation process also keeps the spatial initial shape, in spite of the external driving field E.

5. Conclusions

In this work a detailed analysis of the evolution of initially corrugated profiles in the two-dimensional driven lattice gas
(DLG) model has been performed. By employing Monte Carlo simulations, the evolution of a one-dimensional sinusoidal
interface with fixed amplitude A0 = 5 and several wavelengths λ was monitored. The dynamic evolution was studied by
measuring the statistical interface width or roughnessW (t), in lattices with fixed Ly and several longitudinal sizes Lx for a
wide range of temperatures. According to former theoreticalworks [28,33,35] the time evolution ofW (t) in Fig. 5(b) suggests
that the interface relaxes exponentially for all the investigated values of T , even for large ratio A0/λ, so the relaxation time
τ can be estimated. It was found also that τ increases with λ as a power law, τ ∝ λp (Fig. 6), with p depending on the
temperature and on Lx, as it is shown in Fig. 7(a) and (b) respectively. In the low temperature regime, p approaches to
p = 3/2 at larger longitudinal Lx, in good agreement with that theoretically estimated by Yeung et al. [33]. The relaxation
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a

b

Fig. 10. Linear–linear plots of the Fourier coefficients ak(t) (a) and bk(t) (b) and the respective slopes ak(t)/W (t) and bk(t)/W (t) (insets of each plot)
versus the interface widthW (t) as measured for the DLG model in lattices of sides Lx = 500, Ly = 100, and for T = 1 and E = 1. The initial amplitude of
the sinusoidal profiles is A0 = 5, and their wavelengths λ are indicated in the legends. In order to follow the time evolution of the profile, the horizontal
axis must be read from right to left.

process is mainly due to the action of the external field, that enhances it by filling the valleys and smoothing the bumps
of the sinusoidal interface. For intermediate temperatures 0.5 < T ≤ 1.5p decreases up to p ' 1, and it is practically
independent of Lx. The intrinsic width contribution, provided by temperature fluctuations, is small and add to the action of
the external field, so the profile relaxes quicker than in the equilibriumand the former cases, respectively. Near the transition
temperature of the DLGmodel (T = 2−2.5 since the considered driving field magnitude is E = 1), thermal fluctuations are
strong, the intrinsic width increases, the roughnessW (t) becomes larger [27,35], and prevail over the external field effects.
Consequently, the relaxation time also becomes larger than in the other cases (at lower T ’s), and p increases. Furthermore,
its value is affected by the finite size of Lx. On the other hand, Fig. 7(b) shows, for T = 1, that p increases with small Lx, but
stabilizes for reasonable large values of it, while if T = 2.5, p increases with Lx because of the strong contribution of the
intrinsic width toW (t) near Tc , causing the profile to decrease slower than at smaller T ’s. All these behaviors are confirmed
by the interface snapshots at different T ’s in Fig. 7(c). Based on these results, we can state that the external field accelerates
the relaxation process of a sinusoidal profile if the temperature of the thermal bath is neither near zero nor the critical
temperature of the system, and it is free of finite size effects, provided that Lx is large enough, above 1000 LU. Furthermore,
the power law behavior τ ∝ λp gives information on which Fourier modes decay faster in an nonequilibrium interface,
which may be useful for the study of more general interfaces far from equilibrium.
Finally, the spatial evolution of the interface was studied. The structure factor, given by Eq. (7), was measured first. The

obtained results, shown in Fig. 9, evidence that the wavelength of the profile is maintained over all the relaxation process.
Furthermore, the snapshots in Fig. 2 reveal that relevant displacements of the profile along the field axis can clearly be ruled
out at this temperature (T = 1). This result, together with the conservation of the profile wavelength, became important in
the measurement of the Fourier coefficients ak and bk defined by the set of Eqs. (8), since no significant phase shifts need to
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be added to avoid undesirable destructive interference between the profile and the functions. According to Figs. 2 and 10(a)
and (b), it can be concluded that the interface remains static all over the time evolution, and its spatial shape interferesmore
constructively with the sine function (ak(t) coefficient) than with the cosine function (bk(t) coefficient), so the initial profile
decays with time by keeping essentially the initial sinusoidal shape.
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