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Abstract New metastable massive particles with electric
and colour charge are features of many theories beyond
the Standard Model. A search is performed for long-lived
gluino-based R-hadrons with the ATLAS detector at the
LHC using a data sample corresponding to an integrated lu-
minosity of 31 pb−1. We search for evidence of particles
that have come to rest in the ATLAS detector and decay at
some later time during the periods in the LHC bunch struc-
ture without proton–proton collisions. No significant devi-
ations from the expected backgrounds are observed, and a
cross-section limit is set. It can be interpreted as excluding
gluino-based R-hadrons with masses less than 341 GeV at
the 95 % C.L., for lifetimes from 10−5 to 103 seconds and a
neutralino mass of 100 GeV.

1 Introduction

The search for exotic massive long-lived particles (LLPs)
is an important component of the early data exploration
program of the Large Hadron Collider (LHC) experiments.
LLPs are predicted in supersymmetry (SUSY) models, such
as split-SUSY [1, 2] and gauge-mediated SUSY break-
ing [3], as well as other exotic scenarios, e.g. universal extra
dimensions [4]. If LLPs carried colour charge, as predicted
in a variety of Standard Model (SM) extensions [5], they
would hadronise with quarks and gluons to form colour-
singlet states before interacting with the detector. R-parity
conserving split-SUSY presents such a model since the
gluino (g̃) decay—g̃ → gχ̃0

1 , or g̃ → qq̄χ̃0
1 —is suppressed

by small coupling to the gravitino LSP or very large squark
(q̃) mass [6]. The possibility of direct pair production of
coloured particles through the strong nuclear force implies
a large production cross-section at the LHC. The search de-
scribed herein is particularly sensitive to such a scenario,
and results are interpreted in the context of split-SUSY.
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During the hadronisation process, long-lived gluinos bind
with SM quarks and gluons from the vacuum to produce
“R-hadrons”1—a new heavy composite state [7]. When R-
hadrons scatter via the nuclear force, they can transform
their internal state by exchanging partons with the detector
material (e.g. g̃qq̄ → g̃qqq). Depending on the mass hier-
archy of R-hadron states and the matter interaction model,
these particles traverse the detector flipping between elec-
trically neutral, singly- and doubly-charged states. Several
properties of the R-hadron, such as mass and lifetime,2 are
primarily determined by properties of the constituent gluino.
Other properties, such as hadronic matter interactions, are
dominated by the constituent quarks and gluons.

Since R-hadrons may be produced near threshold in LHC
collisions, they are expected to be slow (β significantly be-
low 1) and have large ionisation energy loss. At LHC ener-
gies, some fraction (typically several per cent) of R-hadrons,
produced with low kinetic energy, would lose sufficient en-
ergy to come to rest inside the dense detector materials of
the ATLAS calorimeter. These stopped R-hadrons may have
lifetimes spanning many orders of magnitude, and may de-
cay with significant delay after the collision that created
them. It is possible to more easily detect these decays by
searching for calorimeter energy deposits during the so-
called empty bunch crossings [8] when there is less back-
ground, as described in detail in Sect. 3. Since this sam-
ple has a very low proton–proton collision rate, the dom-
inant backgrounds to this search are cosmic ray muons,
beam-related backgrounds and instrumental noise. Similar
searches for out-of-time decays have previously been per-
formed by other experiments [9, 10].

This analysis complements previous ATLAS searches
for long-lived particles [11, 12] which are less sensitive

1The term R-hadron has its origin in the R-parity quantum number in
supersymmetry theories.
2Lifetime refers to the gluino decays, not the R-hadron transition from
one hadronic state to another.
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to particles with initial β ¿ 1. By relying primarily on
calorimetric measurements, this analysis is also sensitive to
events where R-hadron charge-flipping may make recon-
struction in the inner tracker and the muon system impos-
sible. A potential detection of stopped R-hadrons could also
lead to a measurement of their lifetime and decay prop-
erties. Moreover, the search is sensitive to any potential
new physics scenario producing large out-of-time energy de-
posits in the calorimeter with minimal additional detector
activity. The data analysed in this Letter were recorded by
the ATLAS experiment between April and November 2010,
exploiting proton–proton collisions at a centre-of-mass en-
ergy of 7 TeV.

2 The ATLAS detector

The ATLAS detector [13] consists of an inner tracking sys-
tem (ID) surrounded by a thin superconducting solenoid,
electromagnetic and hadronic calorimeters and a muon
spectrometer (MS). The ID consists of pixel and silicon
microstrip detectors, surrounded by a transition radiation
tracker. The calorimeter system is based on two active media
for the electromagnetic and hadronic calorimeters: liquid ar-
gon (LAr) in the inner and forward regions, and scintillator-
tiles (TileCal) in the outer barrel region. The absorber ma-
terials are lead and either steel, copper, or tungsten. The
calorimeters are segmented in cells which have typical size
0.1 by 0.1 in η–φ space3 in the TileCal section. The MS, ca-
pable of reconstructing tracks within |η| < 2.7, uses toroidal
bending fields generated by three large superconducting
magnet systems.

Jets are constructed using the anti-kt jet algorithm [14]
with a radius parameter (in η–φ space) set to R = 0.4, which
assumes the energetic particles originated from nominal in-
teraction point. This assumption, while incorrect, still ac-
curately quantifies the energy released from the stopped
R-hadron decays occurring in the calorimeter; the asso-
ciated systematic uncertainty is discussed in Sect. 7. The
inputs to the jet algorithm described in this paper are
calorimeter energy deposits. Jet energy is quoted with-
out applying a hadronic calibration; only jets with energy
above 10 GeV are considered in this search. ATLAS jet re-
construction algorithms are described in more detail else-
where [15].

3ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point (IP) in the centre of the detector and the
z-axis along the beam pipe. The x-axis points from the IP to the centre
of the LHC ring, and the y-axis points upward. Cylindrical coordinates
(r,φ) are used in the transverse plane, φ being the azimuthal angle
around the beam pipe. The pseudorapidity is defined in terms of the
polar angle θ as η = − ln tan(θ/2).

3 LHC bunch structure and trigger strategy

The LHC accelerates two counter-rotating proton beams,
each divided into 3564 25 ns bunch slots. When protons are
injected into the LHC not every slot is filled. In late 2010
running, slots that were filled typically had 1011 protons.
Unfilled slots could contain protons due to diffusion from
filled slots, but this was typically below 5 × 108 protons per
slot.

The filled and unfilled slots can be combined to make
three different “bunch crossing” scenarios. A paired cross-
ing consists of a filled bunch from each beam colliding in
ATLAS and is by far the most likely to produce R-hadrons.
An unpaired crossing has a filled bunch from one beam and
an unfilled slot from the other. Finally, in an empty cross-
ing the slots from both beams are unfilled. Empty cross-
ings typically had a proton–proton collision rate less than
one-millionth the rate in paired crossings [16]. In the search
sample, described in Sect. 5, there are approximately 350
paired bunch crossings organised in groups of eight. In-
side a group, paired bunch crossings occurred every 150 ns
or longer, while the gaps between groups are longer. Most
ATLAS analyses use data collected from the paired cross-
ings; this analysis instead searches for physics signatures of
LLPs in the empty crossings. This is accomplished with a set
of dedicated low-threshold calorimeter triggers which may
fire only in the empty or unpaired crossings where the back-
ground to this search is much lower.

ATLAS has a three-level trigger system consisting of one
hardware and two software levels [17]. Signal candidates for
this analysis are collected using a hardware trigger requiring
localised calorimeter activity with a 10 GeV transverse en-
ergy threshold. This trigger could fire only during an empty
crossing at least 125 ns after the most recent paired bunch
crossing. By waiting to collect data only during the empty
crossings many signal decays are lost; however, this pro-
vides a sample nearly free of all collision backgrounds. Al-
though the R-hadrons decay at a time randomly distributed
with respect to the bunch-crossing clock (which has a 25 ns
period), this does not cause any loss of efficiency as the
calorimeter response is longer than 25 ns. A sideband re-
gion to study beam-halo muons is collected with a similar
trigger that fired in the unpaired crossings. Both samples are
collected with only a hardware-level trigger and without fur-
ther requirement at the higher trigger levels.

4 Simulation of R-hadrons

Monte Carlo simulations are used primarily to determine
the reconstruction efficiency and stopping fraction of the
R-hadrons, and to study associated systematic uncertain-
ties on the quantities used in the selections. The simulated
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samples have gluino masses in the range 200–600 GeV, to
which the present analysis is sensitive. Furthermore, a de-
tailed simulation incorporating gluino generation, stopping
and decay steps provides a modular approach for signal
production. The PYTHIA program [18] is used to simulate
gluino-gluino pair production events. The string hadroni-
sation model [19], incorporating specialised hadronisation
routines [5] for R-hadrons, is used inside PYTHIA to pro-
duce final states containing two R-hadrons.

To compensate for the fact that R-hadron scattering is not
strongly constrained by SM analogues, the simulation of R-
hadron interactions in matter is handled by a special detector
response simulation [20] using GEANT4 [21, 22] routines
based on two rather different scattering models with differ-
ent sets of assumptions: the Generic [20, 23] and Regge [24,
25] models. Each model makes different assumptions about
the R-hadron nuclear cross-section and mass spectra of var-
ious internal states. Briefly, the phenomenologies of the two
models are described as follows:

Generic Limited constraints on allowed stable states permit
the occurrence of doubly charged R-hadrons and a wide
variety of charge-exchange scenarios. The scattering model
is purely phase space driven. This model is chosen as the
nominal signal model for gluino R-hadrons.

Regge Only one (electrically neutral) baryonic state is al-
lowed. The scattering model employs a triple-Regge for-
malism. This is expected to result in a lower stopping frac-
tion than the Generic scenario.

If an R-hadron comes to rest in ATLAS, its location is
recorded. Table 1 shows the probability for an R-hadron to
stop as a function of the generated gluino mass for the two
models considered. The stopping fraction shows no signif-
icant dependence on the gluino mass within the available
simulation statistics.

These stopping locations are used as input into a sec-
ond step of PYTHIA where the decays of the R-hadrons
are simulated. Different models allow the gluinos to de-
cay via the radiative process, g̃ → gχ̃0

1 , or via g̃ → qq̄χ̃0
1 .

Table 1 Signal Monte Carlo stopping fractions for various gluino
mass values with their statistical uncertainties. Each efficiency is the
number of R-hadrons that stop anywhere in the detector divided by the
number of produced R-hadrons events. Some R-hadrons stop in parts
of the detector where there is little sensitivity to detect their decay. This
is accounted for in the reconstruction efficiency in Table 2

mg̃ (GeV) Generic (%) Regge (%)

200 11.5 ± 0.7 5.7 ± 0.5

300 13.1 ± 0.7 4.7 ± 0.5

400 12.4 ± 0.7 6.5 ± 0.5

500 13.2 ± 0.7 4.5 ± 0.5

600 11.8 ± 0.7 5.6 ± 0.5

Fig. 1 Percentage timing efficiency as a function of gluino lifetime.
The region 10−5 to 103 seconds has the highest efficiency, approxi-
mately 37 %. For shorter lifetimes many R-hadrons decay in paired
bunch crossings while for longer lifetimes many decay when ATLAS
is not taking data. The solid line is calculated with the assumption that
no R-hadron survived from one run to the next (allowing a per run
analysis for shorter lifetimes). The dashed line is calculated after aver-
aging over bunch structure but does allow R-hadrons to decay in a run
they are not produced in

The reconstruction efficiencies are comparable for both de-
cay modes however, the results are interpreted assuming a
100 % branching ratio to gχ̃0

1 in accordance with previous
results [9, 10]. In all simulations the neutralino mass, mχ̃0

1
, is

fixed to 100 GeV. Interactions of the decay products with the
detector are simulated with GEANT4. These events then fol-
low the standard ATLAS reconstruction which outputs sig-
nal candidates.

An additional inefficiency arises because only a fraction
of the stopped R-hadrons decay in an empty crossing, while
ATLAS is taking data. This inefficiency is a function of the
gluino lifetime, and is calculated from a detailed knowledge
of the bunch structure across different LHC fills (relevant
for short lifetimes) and the ATLAS data acquisition sched-
ule (relevant for long lifetimes). The timing efficiency versus
lifetime is shown in Fig. 1; the plateau corresponds to 37 %
efficiency for lifetimes from 10−5 to 103 seconds. These
lifetimes are long enough to survive until an isolated empty
crossing which may be many microseconds after the produc-
tion event. However, these lifetimes are short enough so that
most of the R-hadrons do not decay outside of an ATLAS
data-taking run, which is typically ten to twenty hours.

5 Data samples

As discussed in Sect. 3, data are collected with calorimeter-
based triggers in the empty and unpaired crossings. To con-
struct two sidebands and a signal search sample, the data
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from empty bunch crossings are separated into early, mid-
dle and late 2010 subsets, respectively. The total integrated
luminosity in paired crossings concurrent with these three
empty-crossing samples is 34 pb−1 [16]. Each sample has
a different signal to background ratio due to the rapidly in-
creasing instantaneous luminosity of the LHC during 2010.

To predict the number of cosmic ray muons—the dom-
inant background—both the amount of time and varying
number of empty bunches per beam revolution in each data-
taking run must be accounted for. The trigger live-time (in
units of crossing-hours) is quantified by taking the product
of the number of hours the trigger is active and the number
of empty bunch crossings per beam revolution in that LHC
filling scheme.

The first data sample, the background sample, had low
beam current and corresponds to a trigger live-time of
1.07×106 crossing-hours and 0.26 pb−1 of integrated lumi-
nosity; it is used to estimate the background from cosmic ray
muons. A second sample, the control sample, corresponds to
0.55 × 106 crossing-hours, and an integrated luminosity of
2.6 pb−1. This sample has different beam conditions, and
acts as a cross-check for the cosmic ray muon background
estimate. The signal search is performed in the search sam-
ple, which corresponds to 0.32 × 106 crossing-hours. Data
collected in the search sample reflect an integrated luminos-
ity of 31 pb−1 with a peak instantaneous luminosity of ap-
proximately 2.1 × 1032 cm−2 s−1. The probability of pro-
ducing an R-hadron in either the background or control sam-
ple is small compared to the search sample.

Finally a small sample from the unpaired crossings is
used to quantify the background induced by beam-halo
muons.

6 Candidate selection

In addition to the signal candidates, several background pro-
cesses survive the trigger: beam-halo muons, proton–proton
collisions, proton–gas collisions, calorimeter noise and cos-
mic ray muons. The first three of these processes arise from
the non-zero proton population in the empty bunches, as de-
scribed in Sect. 3. Beam-halo muons are produced when
a stray 3.5 TeV proton collides with a collimator or resid-
ual gas many metres away from ATLAS. The subsequent
shower decays or is blocked by shielding, but occasionally a
muon survives to traverse the detector.

The search and sideband samples are divided into two ex-
clusive channels based on the number of reconstructed jets
with energy over 10 GeV, Njets. Lower energy R-hadron
decays tend to be reconstructed as a single jet, but very
energetic ones may be reconstructed as multiple jets due
to their larger spatial extent. The two channels, denoted
single jet and multi-jet, differ primarily in their respective
noise rejection criteria, labelled as “jet cleaning”. Without
requirements on a second jet to reject background, the sin-
gle jet channel, Njets = 1, uses a more demanding calorime-
ter selection. Selection criteria described below that are not
specifically mentioned in the event yield summary (Table 2)
fall under the jet cleaning label for either the single or multi-
jet channel.

6.1 Criteria common to both channels

All events in the three empty-crossing data samples, de-
scribed in Sect. 5, must pass basic beam, detector and data

Table 2 Event yield at various levels of the selection for the single
jet (top) and multi-jet (bottom) channels. The yields of the background
and control samples are scaled by detector live-time to the search sam-
ple. The background and control samples agree well in the bottom three
rows for both channels, showing the live-time scaling works after de-

tector noise is removed (via jet cleaning). Agreement is not expected
before jet cleaning due to the sporadic nature of calorimeter noise
across 2010. Since the rate of beam-halo muons scales with beam cur-
rent it only contributes significantly to the search sample as discussed
in Sect. 8. Only statistical uncertainties are shown in the table

Selection criterion Background sample Control sample Search sample

Data quality 1119200 ± 600 1038600 ± 800 1579949

|Jet η| < 1.2 875600 ± 500 739600 ± 700 1094196

Njets = 1 71800 ± 200 72800 ± 200 1089374

Jet cleaning 5860 ± 40 5860 ± 60 5615

Muon segment veto 4 ± 1 5 ± 2 9

Jet energy >100 GeV 0.3 ± 0.3 0.6 ± 0.6 0

Data quality 1119200 ± 600 1038600 ± 800 1579949

|Jet η| < 2.2 1093300 ± 600 1012400 ± 800 1507017

1 < Njets < 10 22480 ± 80 22700 ± 100 24902

Jet cleaning 8650 ± 50 8310 ± 70 8036

Muon segment veto 1 ± 0.6 4 ± 2 3

Jet energy >100 GeV 0.6 ± 0.4 0.6 ± 0.6 1
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quality requirements. Events with proton–proton collisions
or proton–gas collisions, which happen at a very low rate in
empty crossings, are rejected by requiring no reconstructed
tracks in the ID. Additionally, events where the missing
transverse momentum is less than half of the leading jet
transverse momentum are vetoed. The criterion on miss-
ing transverse momentum removes the rare collision events
since they tend to produce jets with balanced transverse mo-
mentum. A signal event, however, produces only one lo-
calised energy deposit, since even if both R-hadrons stop
in the detector they are likely to decay at times separated by
more than 25 ns. The trigger system would identify these
decays as separate events because its timing resolution is
significantly smaller than 25 ns.

To reduce the contribution from calorimeter noise, the
most energetic jet must have an energy greater than 50 GeV,
and be in the central region (|η| < 2.2). Furthermore, n90,
the minimum number of calorimeter cells that collectively
contain 90 % of the jet energy, must be greater than three.

Cosmic ray and beam-halo muons are vetoed by requir-
ing the absence of a muon segment anywhere in the MS.
A muon segment is formed when there is correlated activity
in a single detector station of the MS, and serves as input to
more sophisticated track finding algorithms. This presents
the common selection in the different jet channels and is
used to study the data sample. In the final search only events
with leading jet energy over 100 GeV are considered. This
threshold optimises the search reach while maintaining sen-
sitivity to lighter gluino models.

6.2 Single jet criteria

To remove effects from the noisier calorimeter endcaps, the
leading jet must be well within the barrel region (|η| < 1.2).
Jets must have at least half of their energy in the TileCal
(fTile > 50 %) to reject beam-halo muons, which occur more
frequently closer to the beam pipe. The energy weighted
transverse size of the jet, in η–φ space, must be greater
than 0.04.

6.3 Multi-jet criteria

The requirement of a second jet in the multi-jet channel,
1 < Njets < 10, strongly suppresses the noise and beam-halo
contributions, allowing for looser jet cleaning cuts. The en-
ergy of the sub-leading jet must be at least 15 GeV to ensure
it is well reconstructed; requiring Njets < 10 vetoes several
events with bursts of calorimeter noise. In this channel, there
is no jet transverse size requirement; however, one of the two
leading jets must have fTile > 10 %.

6.4 Data sample consistency

A very small fraction of the cosmic ray muons incident
on the ATLAS detector deposit sufficient energy in the

Fig. 2 Distributions of jet energy for the single jet (a) and multi-jet
(b) channel. Events are plotted for the three empty-crossing data sam-
ples considered in the analysis, scaled to the detector live-time of the
search sample, prior to applying the muon segment veto. Cosmic ray
muons, whose rate is independent of LHC luminosity, dominate the
data samples before the muon segment veto is applied

calorimeters to mimic the R-hadron signal. This is the dom-
inant background in all data samples prior to applying the
muon segment veto. Figures 2(a) and 2(b) show the jet en-
ergy distributions, scaled to live-time, of the events selected
in the single and multi-jet channels, respectively. The dis-
tributions show the event populations after applying the jet
cleaning criteria but prior to the muon segment veto. Agree-
ment among the three empty-crossing data samples is found,
demonstrating that cosmic ray muons dominate the back-
ground at this point.

6.5 Signal efficiency

The same selection criteria are applied to both the data and
the signal sample; their affect on signal efficiency is calcu-
lated using the simulation. There is an additional small sig-
nal loss when a muon segment is reconstructed in the same
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Table 3 Signal reconstruction efficiency for various gluino mass val-
ues with a fixed χ̃0

1 mass of 100 GeV. Efficiencies are shown for the
single jet (multi-jet) channels and the uncertainties quoted are statisti-
cal only. Only the process g̃ → gχ̃0

1 is considered here. These values
do not take into account stopping inefficiencies, timing inefficiency, or
losses from random muon segments discussed in Sects. 4 and 6.5

mg̃ (GeV) Generic (%) Regge (%)

200 0.9 ± 0.3 (0.1 ± 0.1) 1.6 ± 0.3 (0.0 ± 0.0)

300 8.8 ± 0.6 (4.1 ± 0.4) 10.3 ± 0.8 (6.1 ± 0.6)

400 9.5 ± 0.8 (6.5 ± 0.7) 13.1 ± 0.9 (8.9 ± 0.7)

500 8.6 ± 0.8 (9.0 ± 0.8) 9.9 ± 0.8 (12.0 ± 0.8)

600 8.3 ± 0.7 (9.8 ± 0.8) 9.8 ± 0.7 (14.1 ± 0.8)

event as the signal decay. Muon segments due to cosmic rays
or noise would cause the event to be vetoed but they are not
included in the simulation, unlike those due to signal decays.
Using data from the empty bunches acquired with a random
trigger, it is estimated that 93 % of decays would pass the
muon segment veto and remain in the search sample.

The reconstruction efficiency is modified by the differ-
ent stopping models, since they affect the stopping locations
of the R-hadrons in the calorimeter. Both channels’ sig-
nal reconstruction efficiencies are summarised in Table 3.
Very energetic R-hadron decays are more likely to be re-
constructed as several jets, due to their large spatial extent.
This causes the single jet channel efficiency to drop slightly,
while the multi-jet channel efficiency grows, for heavier
R-hadrons.

7 Systematic uncertainties on the signal

A variety of systematic uncertainties are investigated; their
descriptions and magnitudes are given in the following list.
Adding these uncertainties in quadrature yields a total sys-
tematic uncertainty of 23 % on the predicted number of sig-
nal events.

– R-hadron Nuclear Interaction (17 %): To account for the-
oretical uncertainties in the interaction model, the cross-
section for the quarks in the R-hadron to interact with a
nucleus is varied up and down by a factor of two. The
stopping fraction is recalculated and the largest deviation
from the nominal value is taken as the uncertainty. The
anticorrelation between the reconstruction efficiency and
the stopping efficiency is conservatively not taken into ac-
count. This procedure is applied for both stopping mod-
els, and the larger deviation is quoted.

– Selection Criteria (9.9 %): Each individual selection cri-
terion is varied by ±10 % except for the n90 requirement
which is varied by ±1 cell. The largest difference across
all simulated signal samples and selection flow is used as
the systematic uncertainty. The 10 % variation serves as a

conservative estimate of the effects of jet energy scale and
resolution uncertainties and other detector effects. This
variation includes effects arising from the jets originating
inside the calorimeter and propagating in unusual direc-
tions. This number also accounts for the uncertainty from
the limited Monte Carlo statistics.

– Luminosity (3.4 %): This uncertainty is taken directly
from Ref. [26].

– Calorimeter Timing (3 %): In the signal simulation, each
R-hadron decay is given a random timing offset between
±50 ns relative to the nominal bunch crossing time. This
allows the quantification of the calorimeter response to
significantly out-of-time decays. In reality, a signal decay
will cause the trigger to be fired in the first 25 ns win-
dow in which it deposits enough transverse energy to sat-
isfy the calorimeter trigger threshold (10 GeV); the sim-
ulation, however, only models the trigger in one bunch
crossing. To take this into account, the signal efficiency is
measured in the following windows [−10,15], [−5,20]
and [0,25] ns relative to the nominal bunch crossing time.
A 3 % fractional variation in the efficiency is observed.
The window is conservatively varied by 5 ns since the
calorimeter channel-to-channel timing uniformity is of or-
der 2 ns.

– Production Cross-Section (10 %): The same procedure as
in Ref. [11] is used. The production cross-section from
PROSPINO [27] is calculated using the sparticle mass as
the renormalisation scale with uncertainties estimated by
varying the renormalisation and factorisation scales up-
ward and downward by a factor of two.

8 Background estimation

To quantify the expected number of background events in
the search sample we investigate three different sources:
cosmic ray muons, beam-halo muons, and calorimeter noise.
Since cosmic ray muons occur at a constant rate regardless
of LHC conditions their rate is measured using the back-
ground sample. From this rate, 0.3 ± 0.3 (0.6 ± 0.4) events
are expected to pass the single (multi-) jet selection in the
search sample, as shown in Table 2. Here the uncertainties
are statistical only.

The rate of beam-halo muons changes with the LHC con-
ditions, most importantly with the beam current. Beam-halo
muons should contribute significantly only to the search
sample where the beam current is far higher than for the
other data samples. The number of beam-halo muons ex-
pected to pass the selection is calculated using data collected
in the unpaired crossings from the same LHC fills as the
empty crossing data. These events have a filled bunch in only
one beam and, after requiring a far forward muon segment
(|η| > 2.2), correspond to a nearly pure beam-halo sample.
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Table 4 The number of observed and expected events for each chan-
nel after the muon segment veto and jet energy requirement are applied,
as in Table 2. The cosmic ray muon and beam-halo expectations are

derived from the background sample and unpaired crossings, respec-
tively. Only statistical uncertainties are shown in the table

Selection criterion Number of events

Expected cosmic ray muons Expected beam-halo Observed

Single jet: muon veto 4 ± 1 4 ± 1.8 9

Single jet: >100 GeV 0.3 ± 0.3 0.5 ± 0.2 0

Multi-jet: muon veto 1 ± 0.6 0.8 ± 0.8 3

Multi-jet: >100 GeV 0.6 ± 0.4 0.2 ± 0.2 1

Of the beam-halo events that passed the single (multi-) jet
criteria, all but 0.6 % (0.05 %) leave a muon segment. In
the empty bunches there are 83 (531) events with far for-
ward muon segments consistent with beam-halo that other-
wise pass the selection. Thus 0.5 ± 0.2 (0.2 ± 0.2) beam-
halo events are expected to pass the selection criteria with-
out leaving a muon segment in the search sample. This ex-
pected yield of beam-halo background is added to the final
numbers in the background sample of Table 2 to obtain the
overall expected background yield shown in Table 4. After
the jet cleaning selection much less than 1 event is expected
from calorimeter noise in either of the search channels.

9 Results

The leading jet energy distribution of the selected events is
shown in Figs. 3(a) and 3(b) for the single jet and multi-
jet channels respectively. No excess of events is observed in
either signal region beyond leading jet energies of 100 GeV.

Limits are set for the single and multi-jet measurements
separately; however, since the single jet channel gives an
expected limit on the cross-section which is half that of
the multi-jet channel, the observed limit from the single jet
channel is quoted as the final result. This limit applies to
R-hadrons decaying to a gluon and lightest supersymmet-
ric particle (mχ̃0

1
= 100 GeV) with a lifetime between 10−5

to 103 seconds as described in Sect. 4. The limit takes into
account systematic uncertainties on the signal cross-section
and efficiency as well as on the background estimate, as de-
scribed above.

Limits are set on the signal cross-section for each gluino
mass, mg̃ , using a Bayesian method [28] with a uni-
form prior. Given the expected cross-section as a func-
tion of mass, and a limit on the expected number of sig-
nal events, gluino R-hadrons with a mass mg̃ < 341 GeV
(294 GeV) are excluded at 95 % credibility level (C.L.) for
the Generic (Regge) model. Gluino masses mg̃ < 200 GeV
are not investigated. Figure 4 shows the expected and ob-
served 95 % C.L. limit and the ±1 and ±2 standard devi-
ation bands. The cross-section limit changes rapidly in the

Fig. 3 Distributions of jet energy for the single jet (a) and multi-jet
(b) channels, for selected events before the leading jet energy require-
ment is applied. In each case the signal region is defined as those events
which have leading jet energy above 100 GeV. The background and
control samples predict cosmic-ray muon yields, but do not include
the background from beam halo. The signal distributions shown corre-
spond to gluino decays to a gluon and a χ̃0 with 100 GeV mass. The
signal distributions do not change for any gluino R-hadron lifetime be-
tween 10−5 and 103 seconds

200 < mg̃ < 300 GeV region as, with the increasing gluino
mass, more decays pass the 100 GeV jet energy selection.
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Fig. 4 The 95 % C.L. limit on the gluino pair production cross-section
as a function of gluino mass, mg̃ , assuming mχ̃0

1
= 100 GeV. Limits are

shown for the Generic stopping model and g̃ → gχ̃0 decay

Above 300 GeV the limit depends only moderately on the
gluino mass. The −2σ and −1σ variations of the expected
limit coincide with the observed limit since no events are ob-
served in the final selected data sample, and the background
is low.

Both the D0 and CMS collaborations performed searches
yielding comparable results for similar lifetime ranges. The
D0 collaboration analysed 410 pb−1 of proton–antiproton
data collected from collisions at

√
s = 1.96 TeV and de-

rived a 95 % C.L. limit, excluding mg̃ < 270 GeV. The CMS
collaboration used 10 pb−1 of proton–proton data collected
from collisions at

√
s = 7 TeV. They derived a 95 % C.L.

limit, excluding mg̃ < 370 GeV.

10 Summary

A search is presented for long-lived gluinos which have
stopped in the ATLAS detector, using 7 TeV proton–proton
collisions at the LHC. No evidence for the subsequent de-
cay of these particles into gχ̃0 is found, in a dataset with
peak instantaneous luminosity of 2 × 1032 cm−2 s−1 and
an integrated luminosity of 31 pb−1, during time periods
where there are no proton–proton collisions. A dedicated
calorimeter trigger is employed, and the observed events
are consistent with the background expectation derived from
control samples in data. Limits on the gluino pair produc-
tion as a function of gluino lifetime are derived and ex-
clude 200 < mg̃ < 341 GeV at 95 % C.L. for lifetimes be-
tween 10−5 to 103 seconds with a fixed neutralino mass of
mχ̃0

1
= 100 GeV and the Generic matter interaction model.
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