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Abstract As is known, the existence of a small noncommu-
tativity between coordinates would generate nonlocal self-
interactions in the electromagnetic theory. To explore some
consequences of this effect on the propagation of photons we
consider Moyal space half-filled with a static and homoge-
neous electric field and analyze electromagnetic fluctuations
on top of this step-like background. Both the localization of
photons and the possibility of photon production by strong
electric fields are addressed. Several aspects of the Klein
paradox in this setup are discussed as well.
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1 Introduction

As a rule, photons do not interact among themselves. Nev-
ertheless, such self-interaction is possible in noncommuta-
tive (NC) spacetimes. Moyal spacetime is a most natural
NC scenario where noncommutativity between coordinates
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can be represented by the Moyal �-product between fields
[1,2]. Electrodynamics in this spacetime, known as U (1)�,
has been extensively studied: as a first remarkable feature
one finds that noncommutativity introduces nonlinearities in
Maxwell’s equations through a self-interaction which is non-
local already at the classical level. In other words, since gauge
fields – as functions of NC coordinates – do not commute,
U (1)� holds a close resemblance with nonabelian Yang–
Mills theories (see the recent lecture notes [3]).

The goal of the present work is to expose some aspects of
this self-interaction in the scattering of photons by a static
electric field background. One of our original motivations
was the question of whether noncommutativity allows pho-
ton creation by intense electromagnetic fields (the effects of
noncommutativity on electron/positron production by strong
electric fields can be found in [4]). Although the answer
requires a quantum field theoretic approach, the full set of
stationary solutions contained in this article lays down the
ingredients for a subsequent analysis of Schwinger effect in
this framework (either through the S-matrix formalism [5,6]
or with heat-kernel techniques [7]).

In spite of the similarity between U (1)� and commutative
Yang–Mills theories, constant chromoelectric fields do cre-
ate gluons [8] whereas homogeneous fields do not produce
photons in NC space (some aspects of photon propagation
on homogeneous electromagnetic fields have been analyzed
in [9] and [10]). For this reason, we study the propagation of
photons across the interface of two regions, one with and the
other without a background electric field. For simplicity, we
take an electrostatic potential that only varies along a fixed
spatial direction, and such that an homogeneous electric field
is suddenly built up: NC space gets then split into halves by a
flat interface. Next, we study the propagation of fluctuations
of this background.

More specifically, our setting is the following. We start
with (d + 1)-dimensional Moyal spacetime, whose coor-
dinates satisfy [x̂μ, x̂ν] = 2iθμν , where θμν are elements
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of a real antisymmetric matrix. For simplicity, we take the
time coordinate x0 as an ordinary commuting parameter, i.e.,
θμ0 = 0. We then introduce a particular background, namely,
a static electric field which vanishes on the left half-space
x̂1 < 0, takes a constant value on the right half-space x̂1 > 0,
and is perpendicular to the interface x̂1 = 0. The potential
A0 = −E(|x̂1| + x̂1)/2 generates such a step-like field; the
constant E gives the electric field.

Due to the self-interaction introduced by noncommuta-
tivity, photons are scattered by this background. However,
as will be shown, in the Moyal representation the interface
effectively acts as a step of finite width with (depending on
the polarization) delta-functions at the boundaries. This step
scatters oblique incident photons; perpendicular beams do
not experience any interaction with the electric field. Accord-
ing to the intensity of the background field, the energy and
the direction of the incident photons one recognizes differ-
ent regimes. Apart from the usual scattering – where inci-
dent photons split into partially transmitted and reflected light
beams – one also finds, for a background which is not partic-
ularly strong, the propagation of edge states (viz. localized
along the interface). Bound states as perturbations of soli-
tonic solutions have already been found in [11].

On the other hand, for extremely intense electric fields
(roughly, |E | ∼ 1/|θμν |) a realization of the Klein paradox
arises. Our result for the scattering of vector particles is sim-
ilar to the usual (i.e., commutative) Klein paradox for scalar
particles [12]: the reflection coefficient R for a wave packet
is greater than one. This would indicate that at the boundary
of regions with strong electric fields photon beams could be
produced.

There is an interesting result of our calculations that con-
cerns two different manifestations of the Klein paradox. As
is well-known, a reflection coefficient R greater than one is
found either for monochromatic solutions of Dirac equation
or for localized solutions of Klein–Gordon equation. In both
cases this is considered as a sign of particle creation. At the
same time, one finds (both for spinor and scalar particles) the
paradoxical result that the transmission coefficient T does not
vanish for infinitely strong barriers [13]. In the problem stud-
ied in this article we find R > 1 (for a localized packet) but,
on the other hand, T → 0 as the background field grows to
infinity. This shows that these two aspects are not necessar-
ily connected. It also suggests the need to perform a second
quantized approach to reliably determine the rate of photon
production.

Another aspect which is usually considered in the Klein
regime is the divergence of the transmission coefficient for
some value of the incident energy; this is usually called super-
Klein tunneling (see e.g. [14]). For a bosonic field colliding
against an abrupt step this occurs at incident energy equal to
half the step height. In our setting there is no super-Klein tun-
neling, i.e., the transmission coefficient remains finite. The

reason lies in the smearing introduced by noncommutativity
which turns the abrupt edge into a region of finite slope (cf.
[12]).

All these features of photon propagation are analyzed in
the present article both for TE as well as for TM modes; some-
times called s-polarized and p-polarized waves, respectively.
The former are not affected by gauge transformations; for the
latter we choose the temporal gauge. Interestingly, this gauge
choice introduces a singular background in the equation of
motion. We show that this is a general picture in the Klein
regime – independently of the background profile. However,
the origin of the singularity can be clearly identified and its
consequences removed.

Since its discovery [15], the Klein paradox has been thor-
oughly analyzed from different perspectives. Many aspects
of its relation with particle creation in quantum field theory
have been thoroughly discussed – we mention, e.g., [16–21].
More recently, techniques based on the space-time resolved
solutions have provided further insight into the behavior of
such systems (see, e.g., [22–25]). We think that the example
considered in this article gives interesting information on the
Klein paradox in a different setup, namely, one with propa-
gating photons under nonlocal interactions. Moreover, for a
specific photon polarization, we are lead to the problem of a
single scalar field colliding against a step of finite width.1 We
consequently analyze some aspects of the solutions which,
to the best of our knowledge, have not been studied before
(see [27]).

Although our explicit solutions and their properties were
obtained for a specific electric background, many calcula-
tions were carried out for a generic potential A0(x1) so some
qualitative aspects of the propagation of perturbations can be
also inferred for more general background profiles – as long
as they vary along a unique direction. In particular, some
results still hold for a smoothed version of our setting, in
which the interface where the electric background changes
abruptly from zero to a finite value is replaced by a region
of finite width. Further details in this respect are given in
Sect. 10.

In the last section before our conclusions we also address,
for comparison, the case of an interface which limits a region
supporting an homogeneous static magnetic background. As
in the case of the electric background, the scattering of pho-
tons due to the magnetic field ends up restricted within a
small region around the interface. The explicit solutions for
the magnetic case can be read from the analysis of the electric
background but, as expected, their physical implications are
quite different. In particular, no Klein paradox is observed.

Our article is organized as follows. In Sect. 2 we briefly
review the construction of U (1)� and focus on the dynamics
of fluctuations around a classical background. In Sect. 3 we

1 This is the scalar version of Sauter’s seminal paper [26].
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introduce our specific background and perform the decou-
pling between TE and TM modes. In Sect. 4 we identify
the different regimes according to the energy of the incident
beam. Sections 5 and 6 are devoted to the study of TE and TM
modes, respectively. Singularities arising in the Klein region
are resolved in Sect. 7. In Sect. 8 we analyze the existence of
edge states. In Sect. 9 the case of a magnetic background is
briefly discussed. Finally, in Sect. 10, we draw our conclu-
sions.

2 Electrodynamics in Moyal spacetime

A natural procedure to set up a (d + 1)-dimensional NC
spacetime2 is to introduce Hermitian operators x̂μ (with μ =
0, . . . , d) such that

[x̂μ, x̂ν] = 2iθμν. (2.1)

The real constants θμν represent minimal measurable
areas, according to the uncertainty relation �xμ�xν �
|θμν |. In other words, commutation relation (2.1) implies
that states whose xμ coordinate is localized within a small
scale, say L , get smeared along a distance ∼ |θμν |/L in the
xν-direction. This phenomenon leads to the famous UV/IR
mixing which jeopardizes renormalizability due to the low-
momentum divergence of the one-loop propagator of virtual
particles [28] (see also [29,30]).

As functions of the coordinate operators x̂μ, classical
fields φ(x̂) furnish a NC algebra which can be put in one-
to-one correspondence with the space of ordinary functions
φ(x) onRd+1, henceforth called Moyal spacetime. This map
can be established through the Weyl–Wigner transform,

φ(x̂) =
�

dd+1x dd+1 p

(2π)d+1 eip(x̂−x) φ(x), (2.2)

which produces the totally symmetric ordering in the opera-
tors x̂μ. We use x̂μ to denote NC coordinates and unhatted xμ

for the ordinary commuting coordinates of Moyal spacetime.
Under this correspondence the composition of operators is
mapped into the Groenewold–Moyal product of functions,
defined as

φ(x̂) · ψ(x̂) ↔ φ(x) � ψ(x) = φ(xμ + iθμν∂ν) ψ(x)

= ψ(xμ − iθμν∂ν) φ(x).
(2.3)

This representation can be readily checked, for example,
on the original commutator [xμ, xν] = xμ � xν − xν � xμ =

2 We adopt the mostly minus signature η = (+ − · · · −).

2iθμν . Although not commutative, this product inherits the
associativity of the composition of operators.

To construct an action in terms of the trace of an Hermitian
operator we first note that any cyclic trace in the algebra of
operators φ(x̂) gives, up to a normalization factor, the integral
on R

d+1 of the corresponding function of the fields φ(x) on
Moyal spacetime [2]. In short, the NC generalization of a field
theory is obtained by replacing in the action every ordinary
multiplication by the Moyal �-product.

Since the composition of two operators commute under a
trace, noncommutativity does not alter the tree-level propa-
gators but only plays a role in interaction terms. Most impor-
tantly, the NC generalization of local field theories turns out
to be nonlocal because interactions become, roughly speak-
ing, smeared over distances of order

√|θμν |. As we will see
next, invariance under nonlocal gauge transformations turns
NC electrodynamics into a self-interacting theory.

As in the commutative case, the symmetryU (1)� is imple-
mented through the covariant derivative

Dμ = ∂μ + i Aμ (2.4)

that introduces a gauge field Aμ(x). A gauge transformation
of this field is defined as

Aμ → U (x) � Aμ �U †(x) − iU (x) � ∂μU
†(x), (2.5)

where U (x) can be written as

U (x) = eiα(x)
� = 1 + iα(x) − 1

2
α � α + · · · (2.6)

and U (x) � U †(x) = 1. Under this transformation, Dμ →
U � Dμ � U †. In the sequel only gauge fields will be con-
sidered so in all cases the covariant derivative will act in the
adjoint representation. Consequently, for notational conve-
nience, from now on the action of Dμ should be understood
as [Dμ, · ], where, of course, the commutator is computed
with the �-product.

The commutator [Dμ, Dν] = i[Fμν, ·] defines the covari-
ant field strength

Fμν = ∂μAν − ∂ν Aμ + i [Aμ, Aν], (2.7)

which clearly shows the resemblance between electromag-
netism in Moyal spacetime and ordinary Yang–Mills theo-
ries. Under the gauge transformation (2.5) the field strength
changes as Fμν → U � Fμν �U †.

As briefly explained above, the generalization of Maxwell
action to Moyal spacetime is simply given by

S[A] =
�

dd+1x

�
−1

4
Fμν � Fμν − Jμ � Aμ

�
. (2.8)
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Upon integration by parts the �-product can be removed
from quadratic terms in the action but it must be retained
in cubic and quartic self-interactions. To introduce in our
setting a background electric field we have included a fixed
external source Jμ(x). Due to the cyclicity of the Moyal
product under the integral sign, in the absence of an external
source the action (2.8) is U (1)� invariant.

At the classical level, several works on the dynamics of
matter on external gauge field configurations can be found
in the literature: the hydrogen atom [31], Stark and Zee-
man effects [31], Landau problem [32–36], Aharonov–Bohm
effect [37–42], quantum Hall effect [39,41,43], Aharonov–
Casher effect [44], the Dirac quantization condition [45]. In
this article we consider instead a static charge configuration
which acts as the source Jμ in (2.8) of a fixed Aμ and study
the dynamics of perturbations around this specific solution
for the gauge field.

The equation of motion

DμF
μν = J ν (2.9)

determines the configuration of the gauge field for any given
external source. An immediate implication of (2.9) is that the
current must be covariantly constant,

Dμ J
μ = 0. (2.10)

Let us now assume a specific solution Aμ(x) and introduce
small fluctuations aμ(x) around this background. If we write
the full gauge field as Aμ(x) + aμ(x), the (linearized) field
tensor becomes

Fμν + Dμaν − Dνaμ. (2.11)

In this expression and hereafter, Fμν and Dμ are computed
exclusively in terms of the background field Aμ. Replacing
(2.11) into (2.9) we obtain the linearized equation of motion
for the perturbations,

−ημν D2aν + DμDνa
ν − 2i [Fμν, a

ν] = 0. (2.12)

Note also that, since Jμ is the same for Aμ and Aμ + aμ,
condition (2.10) now implies

[aμ, Jμ] = 0. (2.13)

Before considering in detail a specific background, let us
examine gauge invariance on the perturbations. In the pres-
ence of a background field, gauge invariance remains as a
small U (1)� symmetry on the fluctuations,

δaμ = Dμα(x), (2.14)

that preserves their equation of motion as long as

0 = [DμF
μν, α] = [J ν, α]. (2.15)

Therefore, we can conveniently gauge the perturbations
with a parameter α(x) that commutes with the external
source.

3 The background

Let us define our specific setup. As already mentioned, we are
interested on the effects of spatial noncommutativity, so we
take the time coordinate x0 as a commuting variable [46,47].
As for the space coordinates, note that after an appropriate
choice the antisymmetric matrix θμν can be diagonalized
in 2 × 2 blocks. In this way, space becomes decomposed
into several Moyal planes such that coordinates from differ-
ent planes commute with each other. For our purposes it is
enough to distinguish the coordinates x1, x2 of one of these
planes from the remaining d − 2 spatial coordinates. Non-
commutativity is then characterized by a positive parameter
θ through

[x1, x2] = 2iθ (3.1)

together with a (d − 2) × (d − 2) antisymmetric matrix in
the rest of Moyal space. As will become evident soon, if the
background does not depend on these d −2 coordinates then
this antisymmetric matrix is irrelevant.

We now introduce a background A0 = A0(x1) that varies
only along the direction of x1, and set the spatial compo-
nents to zero: A1 = · · · = Ad = 0. We will shortly choose a
specific x1-dependence for A0. This static background rep-
resents a purely electric field E(x1) = −A�

0(x
1) in the x1–

direction, and originates on a static distribution of charge
density J 0 = −A��

0(x
1); spatial components of the current

vanish as well, J 1 = · · · = Jd = 0.
Since the static background does not change with the trans-

verse coordinates x⊥ = (x2, . . . , xd), we analyze fluctu-
ations that propagate with fixed energy k0 and transverse
momentum k⊥ = (k2, . . . , kd),

aμ(x) = aμ(x1) e−ik0x0+ik⊥x⊥ . (3.2)

Here, k⊥x⊥ = k2x2 + · · · + kd xd .
It is now important to point out that the commutator

between any background which only depends on x1 and any
field with definite momentum k2 can be written as an ordinary
multiplication between the same field and another function
which, roughly, evaluates the variation of the original func-
tion at distances �x1 ∼ θk2. For example,
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Fig. 1 Decomposition of the gauge field into TE modes aT (green)
and TM modes a1, aP (blue)

[A0(x
1), aμ(x1) e−ik0x0+ik⊥x⊥] = δA0(x

1) aμ(x1)

× e−ik0x0+ik⊥x⊥ , (3.3)

with

δA0(x
1) = A0(x

1 − θk2) − A0(x
1 + θk2). (3.4)

This expression shows that if k⊥ has no component in
the direction of x2 the background is transparent to photon
beams. As already mentioned, since the background only
depends on x1, the propagation of photons will only be
affected by θ , and the remaining NC parameters will have
no physical consequence.

Before solving (2.12) for our specific background, let
us establish some convenient notation. We decompose the
fluctuations aμ = (a0, . . . , ad) = (a0, a1; a⊥) as follows.
In an asymptotic region – where the background eventu-
ally vanishes – the fluctuations propagate with momentum
�k = (k1, . . . , kd) = (k1; k⊥); as expected, in the absence
of a background the wave equation (2.12) indicates that the
spatial part of aμ is perpendicular to �k. We separate from the
transverse field a⊥ two components: (i) the projection aP in
the plane of incidence (i.e., the component parallel to k⊥),
and (ii) aT , which is a (d − 3)-component vector perpendic-
ular to the direction of x1 and to k⊥. This decomposition is
illustrated in Fig. 1 for an incoming wave entering a region of
non-vanishing background (represented by the flat surface).

With some abuse of notation,

aμ = a0 ⊕ a1 ⊕ aP ⊕ aT . (3.5)

In the asymptotic region the electric field of an incoming
wave is proportional to the spatial components of the gauge
field. Therefore, a1, aP describe a beam with electric field in
the plane of incidence (TM mode or p-polarized wave). On

the other hand, the components aT give an electric field per-
pendicular to the plane of incidence (TE mode or s-polarized
wave).

Through the equation of motion (2.12) each component
of aT gets completely decoupled,

�
(k0 − δA0)

2 − |k⊥|2 + ∂2
1

�
aT = 0. (3.6)

TM modes then satisfy Klein–Gordon equation for a charged
field of mass |k⊥| in interaction with an electrostatic potential
δA0(x1). After choosing a specific background δA0 we will
solve this equation in Sect. 5.

The remaining components a0(x1), a1(x1), aP (x1) sat-
isfy the coupled equations

a��
0 − |k⊥|2a0 − (k0 − δA0)

�
ia�

1 − |k⊥| aP
� + 2iδA�

0 a1 = 0,

(3.7)�
(k0 − δA0)

2 − |k⊥|2
�
a1 + i(k0 − δA0)a

�
0 − i |k⊥|a�

P

+ iδA�
0 a0 = 0, (3.8)

(k0 − δA0)
2aP + a��

P − |k⊥| 	(k0 − δA0)a0 + ia�
1


 = 0.

(3.9)

These equations imply condition (2.13), which can now be
written as δJ 0 a0 = 0 or, equivalently, as δA��

0 a0 = 0. Under
this condition any two equations among (3.7)–(3.9) imply the
third one. Consequently, we will choose the temporal gauge
a0 = 0, which trivially satisfies (2.13), and will use (3.7) and
(3.8) to find a1 and aP . This will be done in Sect. 6.

Now it is time to choose a specific profile for the back-
ground A0(x1): We take a slope that begins abruptly at
x1 = 0 (as in Fig. 2),

A0(x
1) =

�
0 x1 < 0
−E x1 x1 > 0

. (3.10)

The parameter E ∈ R gives the intensity of the electric
field. From the viewpoint of the NC spacetime, this poten-
tial represents the boundary of a region supporting a static
homogeneous electric field. This setting can be considered as
a first approach to the study of the dynamics of fluctuations
at the interface where an electric field is built up.

Recall that, according to (3.3), the action of A0(x1) on
oscillations (3.2) turns the slope-like potential into a broad-
ened step of small width 2L (Fig. 3), with

L = θ |k2|. (3.11)

In fact, inserting (3.10) into (3.4) one obtains

δA0(x
1) =

⎧⎨
⎩

0 x1 < −L
−E(x1 + L) |x1| < L
−2EL x1 > L

. (3.12)
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Fig. 2 Background slope from the NC spacetime perspective. In the
picture E < 0 so the electric field points towards the left

Fig. 3 The background as it interacts with incoming photons (for
sign(k2)E > 0). The width of the step depends on the transverse
momentum k2; its slope, on the electric field E

In this expression and in the rest of this article we assume
sign(k2) < 0; if the component k2 is positive one simply
changes the sign of E . Correspondingly, the adjoint action
of the electric field is given by

[F01, · ] = −δA�
0(x

1) =
�

0 |x1| > L
E |x1| < L

. (3.13)

This shows that photons effectively interact with the elec-
tric field only in a narrow region of width 2L .

Correspondingly, the homogeneous background on the
half-plane is generated by a charge density J 0 = 1

2 E δ(x1)

together with a second parallel plate of opposite charge den-
sity and located at x1 = +∞. Condition δ J 0 a0 = 0 now
forces a0 to vanish at the edges of the step.

4 Energy regimes

Fluctuations (3.2) are characterized by their energy k0 and
their transverse momentum k⊥. As already mentioned, pho-
tons incident normally to the interface – or even with no k2

component – do not interact with the background. Let us call
β the angle between the plane of incidence and the x1x2-
plane. One can distinguish, both for TE and TM modes, dif-
ferent energy regimes according to the intensity of the electric
field: (i) very strong electric fields such that θ |E | cos β > 1,
and (ii) ordinary electric fields for which θ |E | cos β < 1.

Case (i) is represented in Figs. 4 and 5 for E < 0 and
E > 0, respectively. The transverse momentum k⊥ intro-
duces a mass gap. Accordingly, five different energy regimes
can be identified: the blue lines represent photons with posi-
tive or negative energy that collide against the step-like back-

Fig. 4 The black solid line represents the potential δA0 for a strong
electric field E < 0. Horizontal lines correspond to five different energy
regimes

ground and generate reflected and transmitted waves; this we
call the propagation region. Orange dashed lines represent
photons which propagate only at one side of the interface
with an energy that lies within the mass gap at the other side.
Therefore, the photon does propagate across the interface and
suffers a total reflection. Finally, there exists a finite interval
of energies, usually called Klein zone, for which the incident
photon lies above and below the surface of the Dirac sea,
depending on the side of the step. This is represented by the
red horizontal lines in the figures. In this regime particles
(with positive kinetic energy) at one side of the step are seen
as antiparticles (with negative kinetic energy) at the other
side.

In case (ii) one also finds the usual propagation region but
the electric field is not strong enough to separate the mass
gaps and generate a Klein zone. As a consequence, there is
an overlapping between the mass gaps at either side of the
interface so that one could eventually find states localized
close to this surface (edge states). This possibility will be
analyzed in Sect. 8.

5 TE modes

We begin by solving equation of motion for TE modes aT .
Recall that each of the d − 2 components – which we now
generically denote as φ(x1) – satisfies the Klein–Gordon
equation for a charged scalar field of mass |k⊥| scattered by an
electrostatic potential δA0. Taking into account the piecewise
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Fig. 5 The black solid line represents the potential δA0 for a strong
electric field E > 0. Horizontal lines correspond to five different energy
regimes

definition of δA0(x1), we solve (3.6) by appropriately match-
ing at x1 = ±L the solutions in the left region x1 < −L , the
right region x1 > L , and the intermediate region |x1| < L .
These we denote by φL , φR and φI , respectively.

In the regions |x1| > L the background δA0 is constant so
the solutions are simply incoming and outgoing plane waves
at either side of the step,

φL(x1) = a eik
1x1 + b e−ik1x1

for x1 < −L , (5.1)

φR(x1) = c eiκ
1x1 + d e−iκ1x1

for x1 > L , (5.2)

with

k1 = +
�
k2

0 − |k⊥|2, (5.3)

κ1 = +
�

(k0 + 2EL)2 − |k⊥|2. (5.4)

In the intermediate region |x1| < L the function δA0 is linear
in x1 so the field satisfies

−φ��
I +

�
|k⊥|2 − E2z2

�
φI = 0, (5.5)

where we have shifted the x1 coordinate as

z = x1 + L + k0

E
. (5.6)

The solutions can be written as

φI (x
1) = A F(x1) + B G(x1) for − L < x1 < L ,

(5.7)

in terms of parabolic functions

F(x1) = �(−ν)√
2i |E |

�
Dν(−

�
2i |E | k0

E )Dν(
�

2i |E |z)

−Dν(
�

2i |E | k0
E )Dν(−

�
2i |E |z)

�
, (5.8)

G(x1) = �(−ν)
�
D�

ν(−
�

2i |E | k0
E )Dν(

�
2i |E |z)

+D�
ν(

�
2i |E | k0

E )Dν(−
�

2i |E |z)
�
, (5.9)

where ν = −1/2 + ik2⊥/2|E |. These particular combina-
tions were chosen to satisfy F(−L) = G �(−L) = 0 and
F �(−L) = G(−L).

After imposing continuity of φ and its derivative at x1 =
±L one obtains four equations: two of them give the coeffi-
cients A, B in the intermediate region in terms of a, b, c, d;
the remaining two equations determine the elements of the
S-matrix,

S =
�
tL rR
rL tR

�
, (5.10)

that relates the outgoing coefficients b, c with the incoming
coefficients a, d through

�√
κ1 c√
k1 b

�
= S

� √
k1 a√
κ1 d

�
. (5.11)

A straightforward calculation gives

rL ,R = iκ1
�
ik1FL ± GL

� ∓ ik1F �
L − G �

L

iκ1
�
ik1FL − GL

� − ik1F �
L + G �

L

e−2ikL ,R L ,

(5.12)

tL ,R =
√

8πk1κ1 i

iκ1
�
ik1FL − GL

� − ik1F �
L + G �

L

e−i(kL+kR)L .

(5.13)

The upper (lower) sign corresponds to rL (rR). We have
also defined kL = k1 and kR = κ1. We use FL ,GL to denote
F(L),G(L), and similarly for the derivatives.

Relation (5.11) parametrizes the two-dimensional space
of solutions. The coefficients a and d represent incoming
waves from the left and from the right, respectively. Thus, if
d = 0 then b is related to the reflection coefficient and c to
the transmission coefficient of a wave colliding the step from
the left. Correspondingly, a = 0 describes a wave colliding
from the right and the roles of b and c get interchanged. To
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define reflection and transmission coefficients we compute
the conserved current3

J (x1) = Im (φ∗φ�), (5.14)

which according to (3.6) must be x1-independent. For x1 <

−L , expression (5.1) gives

J = Re(k1)
�
|a|2e−2x1Im(k1) − |b|2e2x1Im(k1)

�

− 2 Im(k1) Im
�
ab∗e2i x1Re(k1)

�
. (5.15)

The same expression holds for x1 > L if one makes the
following replacements: k1 → κ1, a → c and b → d.

For energies in the propagation and in the Klein regimes
both k1 and κ1 are positive real numbers, so current conser-
vation J (−∞) = J (+∞) implies

k1|a|2 − k1|b|2 = κ1|c|2 − κ1|d|2. (5.16)

This expression – valid for arbitrary values of the constants
a, d – proves that S is a unitary matrix. Further relations
between the elements of the S-matrix can be obtained by
noting that the complex conjugates of (5.1) and (5.2) provide
another stationary solution but where the roles of b, c anda, d
are played by a∗, d∗ and b∗, c∗, respectively. This implies
tR = tL and |rL | = |rR |. Although these relations can be
readily checked in (5.12) and (5.13), their derivation did not
make use of the specific form of the background. In fact,
this is a well-known result from one-dimensional scattering:
reflection (and transmission) coefficients for left- or right-
incident waves coincide.

Reflection and transmission coefficients are then defined
as R = |rL |2 = |rR |2 and T = |tL |2 = |tT |2. Unitarity of S
implies R + T = 1. Figure 6 displays R as a function of the
incident energy k0.

The reflection coefficient decreases monotonically from 1
to 0 with increasing |k0|. If the energy lies within one of the
mass gaps then either k1 or κ1 are pure imaginary so J = 0
and the incoming photon is totally reflected at the interface
(R = 1).

In the Klein zone R is smaller than 1 but to get an appro-
priate interpretation of the reflection coefficient it is crucial to
recall that for these energies phase and group velocities have
opposite signs. Let us consider, for example, the case E < 0
(Fig. 4). For incident energies |k⊥| < k0 < −2EL − |k⊥|
both momenta k1 and κ1 are real but the group velocity at
x1 > L is

v = dk0

dκ1 = κ1

k0 + 2EL
< 0. (5.17)

3 This current corresponds to the conserved (canonical) momentum of
the electromagnetic field. This issue is discussed in Sect. 10.

Fig. 6 R vs. k0 for monochromatic TE modes (|E |θ cos β > 1 and
E < 0). In this picture k2 = 0.25, k⊥ = 0.5, E = −8 in length units
of

√
θ

Fig. 7 T vs. |E | for a pulse of TE modes. At the left of the orange
dashed line lies the propagation zone; at the right of the red dashed line,
the Klein zone. In this picture E < 0, k2 = 0.25, k⊥ = 0.5, k0 = 1 in
length units of

√
θ

Therefore, the stationary solutions which are relevant to
model the scattering of a left-incident wave packet are not
obtained by choosing d = 0 in (5.1) and (5.2) but instead
by taking c = 0. The reflection and transmission coefficients
are then given by R = 1/|rL |2 and T = |tL |2/|rL |2 and the
relation R = 1 + T > 1 holds. This is the Klein paradox
which is interpreted as the result of a total reflection of the
incident packet together with the creation of pairs of photons
at the interface at a rate T .

Alternatively, the term “Klein paradox” is sometimes used
to refer to the existence of a non-vanishing transmission coef-
ficient even for a infinitely high barrier – this is the case for a
Klein–Gordon or Dirac particle colliding an ordinary abrupt
step. Interestingly, this does not happen in our setting. In fact,
the leading behavior of (5.8) and (5.9) for large |E | reads [48]

F(x1) ∼ −�
� 1

4

�
z−

1
2 |E |− 3

4 sin
�

1
2 z

2|E | + π
8

�
, (5.18)

G(x1) ∼ −2�
� 3

4

�
z−

1
2 |E |− 1

4 cos
�

1
2 z

2|E | − π
8

�
. (5.19)
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Consequently, the behavior of T for large values of the elec-
tric field is given by

T = |tL |2
|rL |2 ∼ 2πk1

	
�( 3

4 )

2 √|E |

. (5.20)

The dependence of T on the electric field E is shown in
Fig. 7 for a wave packet. In the propagation region 0 < T <

1. If the energy of the packet falls in the mass gap then T = 0.
For strong backgrounds, T may be even greater than 1 – the
transmitted pulse is interpreted as photons created at the step.
Nevertheless, T → 0 as |E | → ∞.

Finally, let us recall that for an ordinary scalar field pulse
colliding against an abrupt step (i.e., a step of zero width)
the coefficients R and T diverge if the energy is half the
step height – this is usually known as super-Klein tunnel-
ing. However, the reflection coefficient shown in Fig. 6 (for a
monochromatic wave) does never vanish so the correspond-
ing coefficient for the wave packet (obtained by replacing
R → 1/R) does not diverge. This is a consequence of the
smearing of the step in Moyal space. In the limit case θ → 0
and |E | → ∞ (with |E |θ finite) one obtains and abrupt step
and the reflection coefficient for a monochromatic wave cer-
tainly vanishes if its energy is exactly half the step height and
one recovers super-Klein tunneling in this specific limit.

6 TM modes

Components aT are unaffected by a gauge transforma-
tion (2.14) but to determine a0, a1, aP we need to fix a
specific gauge. We solve (3.7)–(3.9) by setting a0(x1) =
0 with an appropriate parameter of the form α(x) =
α(x1) e−ik0x0+ik⊥x⊥ . Condition (2.15) requires α(x1) to van-
ish at the edges of the step x1 = ±L but, since any solution
a0(x1) vanishes at those points, one can consistently choose
α such that a0 + D0α = 0.

For a0 = 0 Eqs. (3.7) and (3.8) read

−(k0 − δA0)
�
ia�

1 − |k⊥| aP
� + 2i δA�

0 a1 = 0, (6.1)�
(k0 − δA0)

2 − |k⊥|2
�
a1 − i |k⊥|a�

P = 0. (6.2)

As already mentioned, (3.9) can be derived from these two
equations. From (6.1) we eliminate the component which is
parallel to the transverse momentum k⊥,

−i |k⊥|aP = a�
1 − 2

δA�
0

k0 − δA0
a1. (6.3)

The other component can be written as

a1 = ϕ(x1)

k0 − δA0
, (6.4)

where ϕ(x1) satisfies the Schrödinger-like equation

φ�� −
�
k2⊥ − (k0 − δA0)2 + 2δA�

0
2

(k0 − δA0)2 + δA��
0

2

k0 − δA0

�
φ = 0 .

(6.5)

Up to now we have not used the explicit dependence of
the background on x1. For the step-like potential (3.12) the
fourth term inside the square brackets only introduces delta-
functions at the edges of the step,

δA��
0 = E

�
δ(x1 − L) − δ(x1 + L)

�
. (6.6)

We now solve (6.5) in the same fashion as for the TE
modes: we find a piecewise solution and match the coeffi-
cients by imposing the appropriate behavior at the edges of
the step. At x1 < −L and x1 > L the field ϕ (respectively
denoted by ϕL and ϕR) takes the form

ϕL = a eik
1x1 + b e−ik1x1

, (6.7)

ϕR = c eiκ
1x1 + d e−iκ1x1

, (6.8)

with k1 and κ1 once more given by (5.3) and (5.4). At the
interval |x1| < L the field (denoted by ϕI ) satisfies

−ϕ��
I +

�
|k⊥|2 − E2z2 + 2

z2

�
ϕI = 0, (6.9)

where the variable z is the same as (5.6). It is interesting to
make a comparison with the equation for the TM modes (5.5):
the dynamics of TE modes contains an additional, singular
term 1/z2. The effect of this term will be discussed in some
detail.

Solutions to (6.9) can be written as combinations of the
following confluent hypergeometric functions,

f1(x
1) = 1

z
e− i

2 |E |z2

1F1

�
− 1

4 − i |k⊥|2
4|E | ,− 1

2 ; i |E |z2
�

,

(6.10)

f2(x
1) = z2 e− i

2 |E |z2

1F1

�
5
4 − i |k⊥|2

4|E | , 5
2 ; i |E |z2

�
. (6.11)

The field at the intermediate region is thus determined by two
coefficients A, B,

ϕI = A F̄(x1) + B Ḡ(x1), (6.12)

where now

F̄(x1) = − 1
3

�
f2(−L) f1(x

1) − f1(−L) f2(x
1)

�
, (6.13)

Ḡ(x1) = 1
3

�
f �
2(−L) f1(x

1) − f �
1(−L) f2(x

1)
�
. (6.14)
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Fig. 8 Gauge field components a1 (blue) and aP (orange) with energy
in the propagation regime. In black, the background field (E < 0). The
delta-functions at x1 = ±L introduce discontinuities in the derivatives

These particular solutions have been chosen such that
F̄(−L) = Ḡ �(−L) = 0 and F̄ �(−L) = Ḡ(−L) = 1.

Next, we match the behavior of ϕL , ϕR, ϕI at the edges of
the step to construct the full solution ϕ. We demand conti-
nuity of the wave function but, in accordance with (6.6), we
introduce discontinuities on the derivatives. The matching
conditions then read

ϕL(−L) = ϕI (−L), (6.15)

ϕ�
L(−L) = ϕ�

I (−L) + E

k0
ϕI (−L), (6.16)

ϕR(L) = ϕI (L), (6.17)

ϕ�
R(L) = ϕ�

I (L) + E

k0 + 2EL
ϕI (L). (6.18)

From these four equations we compute the elements r̄L , r̄R,

t̄L , t̄R of the S-matrix which, as in (5.11), relate outgoing
with incoming coefficients,

r̄L ,R = −
�

E
k0

∓ ik1
�
F̄ �
L − Ḡ �

L +
�

E
k0+2EL ∓ iκ1

� ��
E
k0

∓ ik1
�
F̄L − ḠL

�
�

E
k0

+ ik1
�
F̄ �
L − Ḡ �

L +
�

E
k0+2EL − iκ1

� ��
E
k0

+ ik1
�
F̄L − ḠL

� e−2ikL ,R L , (6.19)

t̄L ,R = 2i
√
k1κ1 e−i(kL+kR)L�

E
k0

+ ik1
�
F̄ �
L − Ḡ �

L +
�

E
k0+2EL − iκ1

� ��
E
k0

+ ik1
�
F̄L − ḠL

� . (6.20)

As before, the upper (lower) sign corresponds to rL (rR);
we define kL = k1 and kR = κ1 and we use F̄L , ḠL , F̄ �

L , Ḡ �
L

to denote F̄(L), Ḡ(L), F̄ �(L), Ḡ �(L).
Figure 8 shows the full solution for the gauge field compo-

nents a1(x), aP (x1) with energy in the propagation regime.
As expected, the wave is continuous but its derivative jumps
at the edges of the step.

Figure 9 displays instead both componentsa1(x1), aP (x1)

in the case where the energy of the gauge field lies in the

Fig. 9 Gauge field components a1 (blue) and aP (orange) with energy
in the Klein regime. The background field (black) corresponds to E < 0.
Due to the singularity in (6.9), the solutions diverge at z = 0

Klein zone. The most remarkable feature is the singularity at
some x1 ∈ [−L , L]. The obvious reason for this divergence
is the singularity in the differential equation (6.9) at z = 0.
For energies in the propagation region z never vanishes in
the interval x1 ∈ [−L , L] but in the Klein regime there is
some value of x1 in this interval where z = 0. In consistence
with Fig. 9, the component a1 has a double pole, whereas
aP has a simple pole. We postpone to Sect. 7 a more detailed
discussion of the physical origin of this divergence and a
procedure to appropriately remove it.

Let us comment on the solutions (6.19) and (6.20). We
have obtained tL = tR and, since F̄, Ḡ are real functions,
one readily checks |rL | = |rR|, as long as k1, κ1 ∈ R. The
reflection coefficient for a monochromatic wave is then given
by R = |rL |2. As before, unitarity of the S-matrix implies
R + T = 1. Figure 10 shows the reflection coefficient as a
function of the photon energy k0.

The plot is similar to the one corresponding to TE modes
but with a sudden decrease in the vicinity of the mass-gap

regions, where R = 1. The figure shows that, in general, TE
modes suffer a higher reflection than TM modes.

7 The Klein zone

Let us analyze the divergences that occur in the Klein zone
for TM modes. The emergence of singularities stems from
the covariant derivative D0 = ∂0 + i A0(x1) which acting on

123



Eur. Phys. J. C (2024) 84 :411 Page 11 of 16 411

stationary solutions introduces the factor k0 − δA0(x1). In a
typical Klein paradox scenario the potential attains asymp-
totically constant values δA0(±∞); for intense backgrounds
their difference δA0(+∞) − δA0(−∞) exceeds the mass
gap and thus the band of energies known as Klein zone
is created. For k0 within this band there is necessarily at
least one point x1 (assuming continuous backgrounds) such
that k0 = δA0(x1), so the covariant derivative vanishes at
this point. Decoupling the components of the gauge field in
(3.7)–(3.9) then leads to the appearance of a singular term
(k0 − δA0)

−2 in the equation of motion (third term in (6.5)).
To be more concrete, let us turn back to our background

(3.12), which behaves as δA0 = −E(x1 + L) = −Ez + k0

for x1 ∈ [−L , L]. Therefore, k0 −δA0 ∼ z. For any k0 in the
Klein zone the coordinate z vanishes at x1 = −L − k0/E ∈
[−L , L]. As a consequence, the field ϕ(x1) scatters against
a singular background of the type z−2. Close to a singular-
ity of this type the solutions show two different behaviors:
z−1 and z2 (as shown by (6.10) and (6.11), respectively). The
regular solution (6.11) leads to finite gauge field components
a1(x1), aP (x1) but How do we interpret the singular gauge
field that arises from the solution (6.10)? The answer is that
the singular behavior comes from a singular gauge transfor-
mation. Consider a (non-singular) solution of the set of equa-
tions (3.7)–(3.9) before any specific gauge choice. In general
a0(x1) �= 0 but we can impose the temporal gauge by choos-
ing α(x1) such that D0α(x1) = −i(k0 − δA0(x1))α(x1) =
−a0(x1). Therefore, in the Klein zone α(x1) has a singular-
ity at x1 = −L − k0/E . As a consequence, in this gauge the
time component vanishes but the spatial components a1, aP
become singular. In fact, since α has a simple pole at z = 0,
the transformation aμ → aμ+Dμα introduces a simple pole
inaP and double pole ina1. This is precisely what one obtains
if one inserts the solution ϕ ∼ z−1 into (6.3) and (6.4). For-
tunately, it is not necessary to abandon this gauge choice:
one can undo the singular gauge transformation from (6.12)
to obtain a regular gauge field (Fig. 11) or, alternatively, one
can keep the singular solution but choosing the appropriate
behavior at z = 0. We choose the latter approach.

In general, one-dimensional scattering against a singular-
ity detaches the solutions at both sides of the singular point
unless a certain matching condition is specified. In other
words, one could choose a certain value for the coefficients
A, B at one side of the singularity and a different value at
the other side. If one is interested – to give an example – in
solutions of definite parity, then one should choose them such
that only one of the solutions (6.10) or (6.11) remains. One
could even choose A = B = 0 at one side of the singularity if
it fits the physical setting. In our case, we must keep in mind
that after removing the simple pole from the solution ϕ one
must get regular fields a0, a1, aP . Therefore, the values of
both coefficients A, B must not change after crossing z = 0.
This solves the ambiguity that arises due to the singularity

Fig. 10 R vs. k0 (for |E |θ > 1 and E < 0) for a monochromatic
TM mode (blue). The interval within the red vertical dashed lines is
the Klein zone. The intervals where R = 1 correspond to the mass
gaps. The outer region, delimited by the orange vertical dashed lines
is the propagation region. We also display the reflection coefficient for
the TE modes (dashed green) as in Fig. 6. We have chosen k2 = 0.25,
k⊥ = 0.5, E = −8 in length units of

√
θ

Fig. 11 Gauge field components a0 (magenta), a1 (blue) and aP
(orange) after removing the singular gauge transformation for the same
parameters as in Fig. 9. To display all components in the same figure,
a0 (magenta) has been amplified and a1 (blue) reduced by a factor 10

and permits to match the solutions (6.7) and (6.8) to deter-
mine the relation between the constants a, b, c, d. For this
reason, the result expressed in (6.19) and (6.20) still holds in
the Klein zone.

Note that, as for the TE modes, R < 1 even in the Klein
zone. Of course, for a monochromatic wave with positive
group velocity at x1 > L , one takes c = 0 and d = 1 in
(6.7)–(6.8), the reflection coefficient results 1/|rL |2 and is
thus greater than 1.

As for TE modes, this is interpreted as the result of photon
production: the wave is totally reflected but a flux of photons
created at the step runs in both directions.

Finally, one can also evaluate for TM modes the Klein
paradox in the sense of a non-vanishing transmitted wave
even for an infinitely high step. As for the TE modes, this does
not occur for TM modes either. Using the standard asymp-
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Fig. 12 T vs. |E | for a wave packet of TM modes (blue). At the left
of the orange dashed line, the propagation zone; at the right of the red
dashed line, the Klein zone. We also display T for TE modes (dashed
green) as in Fig. 7. We have chosen E < 0, k2 = 0.25, k⊥ = 0.5,
k0 = 1 in length units of

√
θ

totic behavior of confluent hypergeometric functions [48]
one obtains the transmission coefficient for a wave packet
for large values of the background electric field,4

T = |tL |2
|rL |2 ∼ 2π k2

0

[�( 3
4 )]2 k1

√|E | . (7.1)

Figure 12 shows T as a function of E .

8 Edge states

For very intense electric fields such that θ |E | < |k⊥|/|k2|
a Klein zone is created between the left- and the right-mass
gaps. Propagation with energies within this zone has been
discussed in the previous sections.

On the contrary, for θ |E | < |k⊥|/|k2| there is an overlap-
ping between both mass gaps. If the energy lies within this
overlapping then both k1 and κ1 are purely imaginary, so it
could be possible to find waves localized in the vicinity of the
interface x1 = 0 (edge states). Of course, for this to happen
the solution must be appropriately matched all along the x1

axis.
Propagation of TE modes is described by the Klein–

Gordon equation with a step-like electrostatic potential that
generates an homogeneous electric field in a region of width
2L , so states localized in the x1-direction are not to be
expected.

As regards the TM modes, inspection of (6.5) shows that,
apart from the same step-like potential, the field is subject to
extra terms which depend on the incident energy k0. One of

4 For large |E | the transmission coefficient oscillates around this
expression. For simplicity, we omit the oscillatory behavior.

these terms includes a delta-function with a negative coeffi-
cient so the equation could admit, a priori, bounded solutions.

To obtain bound states in the x1-direction we look for solu-
tions (6.7) and (6.8) with k1 and κ1 in the negative imaginary
semi-axis,

k1 = −i
�
k2⊥ − k2

0, (8.1)

κ1 = −i
�
k2⊥ − (k0 + 2EL)2, (8.2)

such that b = c = 0 to match the appropriate behavior at
x1 → ±∞. This condition can only be implemented if the
S-matrix is singular. In conclusion, the equation det S = 0
determines the energies at which edge states could occur.
Figure 13 shows that for some values of the parameters
E, θ, k2, k⊥ there is a finite number of edge states.

9 A magnetic background

As a complement of our results we give in this section a qual-
itative discussion of the fluctuations of a static homogeneous
magnetic field which is localized at one side of a flat interface.
We consider the noncommutative generalization ofR3+1 but,
as before, we choose coordinates such that [x̂1, x̂2] = 2iθ
and x̂3 commutes with both x̂1 and x̂2. We assume that in the
region x̂1 > 0 there exists a static homogeneous magnetic
field with intensity B and directed along a unit vector ťB ,
tangent to the interface x̂1 = 0 or, equivalently, orthogonal
to ı̌ , the unit vector in the x1-direction.

The external current Jμ is supported at x̂1 = 0 and
directed along the unit vector ť J = ı̌ × ťB . For any given
solution for the gauge field perturbations aμ = (a0, �a),
conditions (2.15) act as an obstruction to the choice of the
temporal gauge; still, we can impose the axial gauge condi-
tion �aJ = �a · ť J = 0. In this gauge the field, if written as
aμ(x1) e−ik0x0−ik2x2−ik3x3

, can be decomposed as

aμ(x1) = aT (kB, k0 ťB) + aL (k0, kB ťB) + a1(x
1) ı̌ . (9.1)

In this expression kB = �k · ťB , where �k = (k2, k3). Note
that the three terms in the decomposition are mutually orthog-
onal with respect to the Minkowski metric.

In this basis the component aT (x1) decouples and one gets

−a��
T + [−k2

0 + (k2 − δA2)
2 + k2

3] aT = 0. (9.2)

This equation is to be compared with (3.6) for the TE mode in
the case of an electric background. In the asymptotic regions
|x1| > L = |θk2|, where δA2 is constant, the dispersion
relation for a plane wave of momentum kμ reads (see, e.g.,
[49])
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Fig. 13 The figure shows det S
as a function of k0 for different
values of the electric field
(E < 0). Each curve is defined
in the interval
−2EL − kP < k0 < kP , which
corresponds to the overlapping
of the mass gaps. The transverse
momenta were chosen as
k2 = 0.25, kP = 1 (in units of√

θ .) Each intersection with the
horizontal axis gives the energy
of an edge state. The number of
edge states decreases with
increasing |E |

k2
0 = k2

1 + (k2 − δA2)
2 + k2

3 . (9.3)

A wave propagates as long as its energy k0 does not fall within
the mass gaps in the regions x1 → ±∞. Since both gaps are
centered at the origin, there is no Klein region and, as a conse-
quence, no photon production; the field perturbation suffers
an ordinary scattering (R + T = 1). However, for strong
enough magnetic backgrounds, the gap at x1 > L might be
wider than the one at x1 < −L . In that case, low-energy
photons get totally reflected at the magnetic step (R = 1).
This is the expected behavior for a charged spinless particle
scattered by an homogeneous magnetic field confined within
parallel planes, which is the system described by (9.2).

Components a1, aL remain coupled but they satisfy rela-
tions completely analogous to (6.3), (6.4) and (6.5), with
the obvious interchanges in the subindices corresponding to
the x0- and x2-directions. As a consequence, the dispersion
relation in the asymptotic regions is again dictated by (9.3).
Therefore, the scattering of this polarization is qualitatively
similar to the one already described for aT : ordinary scatter-
ing (R + T = 1), total reflection for strong magnetic fields,
and no photon production. The specific form of the reflection
and transmission coefficients are expected to differ between
both polarizations because, as for the electric background,
they satisfy different equations at |x1| < L .

10 Conclusions

Electromagnetism in Moyal space is a self-interacting theory,
so perturbations of a classical configuration do not propagate
freely but interact with the underlying background. Since this
interaction does not show up for homogeneous backgrounds,
we have considered two half-spaces separated by a flat inter-
face: one half is free from background fields, the other is
filled up with an homogeneous electric field. One each side
a photon beam propagates free from interactions but suffers

scattering at the interface. In this article we have determined
the stationary states, both for TE and TM modes.

Each gauge field component which is perpendicular to the
plane of incidence (TE mode) decouples and propagates as
a massive, charged scalar particle. The mass is given by the
momentum component parallel to the interface. Since the
gauge field belongs to the adjoint representation of the �-
product, each TE mode only interacts with a homogeneous
electric field restricted to a narrow region around the inter-
face. As a consequence, TE modes reproduce the dynamics
of a relativistic scalar field interacting with a step-like elec-
trostatic field: R < 1 for a monochromatic wave (but R > 1
for a wave packet in the Klein regime) and, due to the finite
width of the potential, super-Klein tunneling is suppressed
and the transmission coefficients vanishes as the step height
tends to infinity.

To solve for TM modes one needs to choose a particular
gauge. We take the temporal gauge and solve the equations
of motion. The reflection coefficient is computed and com-
pared to the result for TE modes (Fig. 10). Also in this case,
R < 1 for a monochromatic wave (as for scalar fields; unlike
fermionic fields). In the Klein regime the wave interacts with
a singularity, which is an artifact of the gauge choice. A care-
ful analysis allows one to determine the appropriate matching
conditions across the singularity. After removing the singu-
larity with a gauge transformation, we determine the profiles
of the propagating gauge fields.

As the electric field goes to infinity, the transmission coef-
ficient also vanishes. The asymptotic behavior of T for TE
and TM modes obeys the same power law but with a different
coefficient ((5.20) and (7.1)).

For moderate electric fields, such that there is no separa-
tion between the left- and right-mass gaps, it might be pos-
sible that the electric field supports waves localized in the
vicinity of the interface. Of course, this could only be the
case for TM modes, for which the one-dimensional equation
(6.5) contains a delta-function with a negative coefficient.
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Figure 13 shows that for some values of the electric field a
finite number of edge states may appear.

It is important to point out that the conserved current
computed in this article – both for TE and TM modes –
can be obtained from the asymptotic behavior of the canon-
ical energy-momentum tensor Tμν = − 1

2 {Fμρ, ∂ν Aρ}� +
1
4ημνF2

� (see [50]). As in ordinary Yang–Mills theories the
construction of symmetric, traceless, gauge covariant or
(covariantly) conserved energy-momentum tensors in NC
gauge theories has been thoroughly studied [50–52]. Nev-
ertheless, the conserved current considered in the present
article is only used to illustrate the asymptotic behavior of
the gauge fields profiles; our main purpose is to present the
classical solutions which can be subsequently used to expand
the quantized gauge field.

Before concluding we would like to put our results in a
broader context. Let us first mention that although we have
performed an analysis of the explicit solutions on top of
a specific background A0(x1), the conclusions of the pre-
ceding paragraphs can be applied to more general profiles.
For instance, by analyzing the equations of motion satisfied
by small perturbations of an arbitrary background A0(x1)

we have shown that the residual symmetry admits the tem-
poral gauge. This choice allows the decoupling of TE and
TM modes, whose dynamics is governed by Eqs. (3.6) and
(6.5), respectively. Through these equations and according
to the analysis followed in Sect. 4, one concludes that if
the electric field takes constant asymptotic values E± at
x1 → ±∞ then a Klein zone is produced if and only if
|(E+ − E−) θ cos β| > 1. Therefore, as long as one main-
tains the asymptotic behavior of the background, the precise
details of the electric field in the vicinity of the interface do
not alter some qualitative aspects of the solutions, such as the
generation of a Klein zone.

On the other hand, the specific behavior of the background
in the vicinity of the interface can be analyzed along the lines
of Sect. 8 in order to determine the existence of edge states for
both types of polarizations. In fact, for appropriate δA0(x1)

both (3.6) and (6.5) might admit bound states. Of course,
|(E+ − E−) θ cos β| < 1 arises as a necessary condition,
i.e., edge states and photon production cannot occur simulta-
neously. This analysis holds for a general electric background
but perpendicular to the interface.

On the contrary, cases in which the electric field has com-
ponents which are tangent to the interface are much more
difficult to approach because a nontrivial dependence on two
coordinates becomes strongly intertwined through the Moyal
product and separability gets spoiled. Nevertheless, note that
whenever a surface separates a region with no electric field
from a region with nonvanishing electric field �E (as long as
this field is generated uniquely by the electrostatic potential
A0) then �E at the surface is normal.

A similar conclusion applies to the case of the magnetic
background considered in Sect. 9: a homogeneous magnetic
field tangent to the interface can be seen as an approximation
in the neighborhood of a surface carrying a stationary current.
As already mentioned, the solutions for the magnetic back-
ground can be readily obtained from the results of the electric
background. The equations are completely analogous, their
physical interpretation, of course, is qualitatively different.

This article therefore provides the spectrum of fluctua-
tions around a specific background. In particular, fluctuation
modes with energies in the Klein zone would indicate that
inhomogeneities in a background electric field are capable
of generating photon beams. We think that an expansion of
the quantum field in the stationary modes described in this
article would provide the rate of photon creation. In the S-
matrix formalism, this is usually connected with the integral
of the transmission coefficient – as a function of the incident
energy – in the Klein region. On the other hand, the spectral
decomposition of the operator of quantum fluctuations can
also be used to compute the heat-trace, from which the imag-
inary part of the effective action (and, thus, the stability of the
vacuum) can be studied. It would be interesting to compare
the results with the already studied heat-kernel methods for
NC theories [53–55]. Work along these two lines of research
is currently under consideration.
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