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Abstract. We give a short introduction to the methods of represent­
ing polynomial and trigonometric series that are often used in Celestial 
Mechanics. A few applications are also illustrated.

1. Overview

Algebraic manipulation on computer is a tool that has been developed quite 
soon, about one decade after the birth of computers, the first examples dating 
back to the end of the fifties of the last century. General purpose packages began 
to be developed during the sixties, and include, e.g., Reduce (1968), Macsyma 
(1978), muMath (1980), Maple (1984), Scratchpad (1984), Derive (1988), Math- 
ematica (1988), Pari/GP (1990) and Singular (1997) (the dates refer to the first 
release). However, most of the facilities of these general purpose manipulators 
are simply ignored when dealing with perturbation methods in Celestial Mechan­
ics. For this reason, the job of developing specially devised manipulation tools 
has been undertaken by many people, resulting in packages that have limited 
capabilities, but are definitely more effective in practical applications. Produc­
ing a list of these packages is a hard task, mainly because most of them are not 
publicly available. A list of “old time” packages may be found in Henrard (1989) 
and Laskar (1989). In recent times a manipulator developed by J. Laskar and 
M. Gastineau has become quite known.

Finding references to the methods implemented in specially devised pack­
ages is as difficult as giving a list. We know only a few papers by Broucke 
and Garthwaite (1969), Broucke (1989), Rom (1970), Henrard (1986 and 1989), 
Laskar (1989), Jorba (1999) and Biscani (2009). A complete account of the ex­
isting literature on the subject goes beyond the limits of the present note. The 
present work introduces some ideas that have been used by the authors in order 
to implement a package named Xqóvoç.

As a matter of fact, most of the algebraic manipulation used in Celestial 
Mechanics makes use of the so called “Poisson series”, namely series with a 
general term of the form

i cos, - _ x
Xf • . . . • XJ" . (M</?1 + . . . + kmpm) , sin
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(with obvious meaning of the symbols). Thus, a very minimal set of operations is 
required, namely sums, products and derivatives of polynomials and/or trigono­
metric polynomials. Traditionally, also the operation of inversion of functions, 
usually made again via series expansion, was required. However, the expansion 
methods based on Lie series and Lie transforms typically get rid of the latter 
operation (see, e.g., Henrard 1974).

Writing a program doing algebraic manipulation on series of the type above 
leads one to be confronted with a main question, namely how to represent a 
polynomial, trigonometric polynomial or Poisson series on a computer. The 
papers quoted above actually deal with this problem, suggesting some methods. 
In these lectures we provide an approach to this problem, followed by a few 
examples of applications.

In sect. 2 we include a brief discussion about the construction of normal form 
for a Hamiltonian system in the neighborhood of an elliptic equilibrium. We do 
not attempt to give a complete discussion, since it is available in many papers. 
We rather try to orient the reader’s attention on the problem of representing 
perturbation series.

In sect. 3-7 we introduce a method which turns out to be quite useful for the 
representation of a function as an array of coefficients. The basic idea has been 
suggested to one of the authors by the paper of Gustavson (1966) (who, however, 
just mentions that he used an indexing method, without giving any detail about 
its implementation). One introduces an indexing function which transforms an 
array of exponents in a polynomial (or trigonometric polynomial) in a single 
index within an array. The general scheme is described in sect. 3. The basics 
behind the construction of an indexing function are described in sect. 4. The 
details concerning the representation of polynomials and trigonometric polyno­
mials are reported in sects. 5 and 6, respectively. In sect. 7 we include some hints 
about the case of sparse series, that may be handled by combining the indexing 
functions above with a tree representation. Finally, sect. 8 is devoted to three 
applications, by giving a short account of the contents of published papers.

2. A common problem in perturbation theory

A typical application of computer algebra is concerned with the construction 
of first integrals or of a normal form for a Hamiltonian system. A nontrivial 
example, which however may be considered as a good starting point, is the 
calculation of a normal form for the celebrated model of Hénon and Heiles (1964), 
which has been done by Gustavson (1966). Some results on this model are 
reported in sect. 8.

We assume that the reader is not completely unfamiliar with the concept 
of normal form for a (possibly Hamiltonian) system of differential equations. 
Thus, let us briefly illustrate the problem by concentrating our attention on 
the algorithmic aspect and by explaining how algebraic manipulation may be 
introduced.

2.1. Computation of a normal form

Let us consider a canonical system of differential equations in the neighborhood 
of an elliptic equilibrium. The Hamiltonian may typically be given the form of
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a power series expansion
n

H(x, y) = H0(x, y) + H^xgy) + ... , H0(x,y) = ^^(x^ + yj) , (1)

where Hs{x,y) for s > 1 is a homogeneous polynomial of degree s + 2 in the 
canonical variables (x,y^ E R2”. Here u) E R” is the vector of the frequencies, 
that are assumed to be all different from zero.

In such a case the system is said to be in Birkhoff normal form in case the 
Hamiltonian takes the form

H{x,y) = H0(x,y) + Zi{x,y) + Z2(x,y) + ... with LHoZs = 0 , (2)

where Lh0 - = {Hq, •} is the Lie derivative with respect to the flow of Hq, actually 
the Poisson bracket with Hq.

The concept of Birkhoff normal form is better understood if one assumes 
also that the frequencies are non resonant, i.e., if

(k, 0)^0 for all k E Zn , k^O ,

where (k,^ = k3u)j. For, in this case the functions Zs(x,y^ turn out to be 
actually function only of the n actions of the system, namely of the quantities

It is immediate to remark that I±,... ,In are independent first integrals for the 
Hamiltonian, an that they are also in involution, so that, by Liouville’s theorem, 
the system turns out to be integrable. The definition of normal form given in (2) 
is more general, since it includes also the case of resonant frequencies.

The calculation of the normal form may be performed using the Lie trans­
form method, which turns out to be quite effective. We give here the algorithm 
without proof. A complete description may be found, e.g., in (Giorgilli 1978), 
and the description of a program implementing the method via computer alge­
bra is given in (Giorgilli 1979). The corresponding FORTRAN program is available 
from the CPC library.

The Lie transform is defined as follows. Let a generating sequence Xi{x,y), 
X2^x, y),... be given, and define the operator

^ = £ss (3)
s>0

where the sequence Eq , E±,... of operators is recursively defined as
s .

So = l, Es = ^23-LXjEs_3 (4)

This is a linear operator that is invertible and satisfies the interesting properties

TxUg^ = {Txf,TxgK TxU.g^=TJ.Txg . (5)



150 A. Giorgilli & M. Sansottera

Let now Z(x, y) = Hq(x, y) + Z^x^ y) + Z^x, y) + ... be a function such that

TXZ = H , (6)

where H is our original Hamiltonian, and let Z possess a first integral <L, i.e., a 
function satisfying {Z, <L} = 0. Then one has also

T^Z, £} = ^TXZ, Tx^ = {H, Tx^ = 0 ,

which means that if T is a first integral for Z then Tx^ is a first integral for H.
The question now is: can we find a generating sequence yq, X2, • • • such that 

the function Z satisfying (6) is in Birkhoff normal form?
The answer to this question is in the positive, and the generating se­

quence may be calculated via an explicit algorithm that can be effectively im­
plemented via computer algebra. We include here the algorithm, referring to, 
e.g., (Giorgilli 1978) for a complete deduction. Here we want only to stress that 
all operations that are required may be actually implemented on a computer.

The generating sequence is determined by solving for y and Z the equations

Zs — Lh0Xs = Hs + Qs , s > 1 , (7)

where Qs is a known homogeneous polynomial of degree s + 2 given by Qi = 0 
and

s-l .

Qs = — + ~^Xji Eg-jHo^ , s > 1 .

In order to solve (7) it is convenient to introduce complex variables £,77 via the 
canonical transformation

$j = ^Q + ¿777), yj = ^Q-^

which transforms Hq = i WjQrjj. In these variables the operator Lh0 takes a 
diagonal form, since

LHoQT]k =i(k-j,^Qr]k ,

where we have used the multi-index notation Q = ^ •... • ff", and similarly for 
77. Thus, writing the r.h.s. of (7) as a sum of monomials CjyQyk the most direct 
form of the solution is found by including in Z all monomials with (k —j, w) = 0, 
and adding ^yzjg^Q'rlk to Xs for all monomials with (k — j, w) 7^ 0. This is the 
usual way of constructing a normal form for the system (1).

Let us now examine in some more detail the algebraic aspect. With a 
little amount of patience one can verify that (7) involves only homogeneous 
polynomials of degree s + 2. Thus, one should be able to manipulate this kind 
of functions. Moreover, a careful examination of the algorithm shows that there 
are just elementary algebraic operations that are required, namely:

(i) sums and multiplication by scalar quantities;

(ii) Poisson brackets, which actually require derivatives of monomials, sums and 
products;
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(iii) linear substitution of variables, which may still be reduced to calculation 
of sums and products without affecting the degree of the polynomial;

(iv) solving equation (7), which just requires a division of coefficients.

These remarks should convince the reader that implementing the calculation of 
the normal form via algebraic manipulation on a computer is just matter of being 
able of representing homogeneous polynomials in many variables and performing 
on them a few elementary operations, such as sum, product and derivative.

2.2. A few elementary considerations
In order to have an even better understanding the reader may want to consider 
the elementary problem of representing polynomials in one single variable. We 
usually write such a polynomial of degree s (non homogeneous, in this case) as

/(t) = «o + ciix + ... + asxs .

A machine representation is implemented by storing the coefficients «o, «i,..., an 
as a one-dimensional array of floating point quantities, either real or complex. 
E.g., in FORTRAN language one can represent a polynomial of degree 100 by just 
saying, e.g., DIMENSION F(101) and storing the coefficient aj as F(j + 1) (here 
we do not use the extension of FORTRAN that allows using zero or even negative 
indices for an array). Similarly in a language like C one just says, e.g., double 
f[101] and stores cij as f [j ].

The operation of sum is a very elementary one: if /, g are two polynomials 
and the coefficients are stored in the arrays f ,g (in C language) then the sum h is 
the array h with elements h [ j ] = f [ j ] + g [ j ]. The derivative of / is the array 
fp with elements fp [j] = (j+1) *f [j+1]. In a similar way one can calculate 
the product, by just translating in a programming language the operations that 
are usually performed by hand.

The case of polynomials in two variables is just a bit more difficult. A 
homogeneous polynomial of degree s is usually written as

f(x, y) = as,oxs + ctg-i^y + ... + aoyys .

The naive (not recommended) representation would use an array with two indices 
(a matrix), by saying, e.g., DIMENSION F(101,101) and storing the coefficient 
cijy as F(j+1,k+l). Then the algebra is just a straightforward modification with 
respect to the one-dimensional case.

Such a representation is not recommended for at least two reasons. The 
first one is that arrays with arbitrary dimension are difficult to use, or even not 
allowed, in programming languages. The second and more conclusive reason is 
that such a method turns out to be very effective in wasting memory space. E.g., 
in the two dimensional case a polynomial of degree up to s requires a matrix 
with (s + I)2 elements, while only (s + l)(s + 2)/2 are actually used. Things go 
much worse in higher dimension, as one easily realizes.

The arguments above should have convinced the reader that an effective 
method of representing polynomials is a basic tool in order to perform computer 
algebra for problems like the calculation of normal form. Once such a method
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is available, the rest is essentially known algebra, that needs to be translated in 
a computer language.

The problem for Poisson series is a similar one, as the reader can easily imag­
ine. The following sections contains a detailed discussion of indexing methods 
particularly devised for polynomials and for Poisson series. The underlying idea 
is to represent the coefficients as a one-dimensional array by suitably packing 
them in an effective manner, so as to avoid wasting of space.

3. General scheme

The aim of this section is to illustrate how an appropriate algebraic structure 
may help in representing the particular classes of functions that usually appear 
in perturbation theory. We shall concentrate our attention only on polynomials 
and trigonometric polynomials, which are the simplest and most common cases. 
However, the reader will see that most of the arguments used here apply also to 
more general cases.

3.1. Polynomials and power series
Let P denote the vector space of polynomials in the independent variables x = 
(ti, ..., xn) E R”. A basis for this vector space is the set {«¿(t)}^^, where

Uk^ = xk = xkl • ... • xk" . (8)

In particular, we shall consider the subspaces Ps of P that contain all homo­
geneous polynomials of a given degree s > 0; the subspace Pq is the one­
dimensional space of constants, and its basis is {1}. The relevant algebraic 
properties are the following:

(i) every subspace Ps is closed with respect to sum and multiplication by a 
number, i.e., if / G Ps A g EPS then f + g EPS and a/ E Ps;

(ii) the product of homogeneous polynomials is a homogeneous polynomial, i.e., 
if / G Pr A g E Ps then fg E Pr+S;

(ill) the derivative with respect to one variable maps homogeneous polynomials 
into homogeneous polynomials, i.e., if f E Ps then dXjf E PS-\A if s = 0 
then 9Xjf = 0, of course.

These three properties are the basis for most of the algebraic manipulations that 
are commonly used in perturbation theory.

A power series is represented as a sum of homogeneous polynomials. Of 
course, in practical calculations the series will be truncated at some order. Since 
every homogeneous polynomial f E Ps can be represented as

fM = 52 fkUk(x) ’ 
bl=s

it is enough to store in a suitable manner the coefficients fk- A convenient way, 
particularly effective when most of the coefficients are different from zero, is



Methods of algebraic manipulation in perturbation theory 153

Table 1. Illustrating the function representation for power series. A mem­
ory block is assigned to the function f(x). The coefficient fk of Ukiy) is stored 
at the address resulting by adding the offset I^k) to the starting address of

^0 = 1^ e- k = (0,0,. ..,0)
^1 = 1^ <- k = (1,0,..., 0)

<— 1^ ^ k = (ki, k2, • • •, kn)

based on the usual lexicographic ordering of polynomials (to be pedantic, inverse 
lexicographic). E.g., a homogeneous polynomial of degree s in two variables is 
ordered as

Os.O^l + dg—1,1^ ^$2 + • • • + G-0,siC2 •

The idea is to use the position of a monomial xk in the lexicographic order as an 
index I(ki,..., k^ in an array of coefficients. We call I and indexing function. 
Here we illustrate how to use it, deferring to sect. 5 the actual construction of 
the function.

The method is illustrated in table 1. Let / be a power series, truncated 
at some finite order s. A memory block is assigned to /. The size of the block 
is easily determined as /((0,..., 0, s)). For, (0,. ..,0, s) is the last vector of 
length s. The starting address of the block is assigned to the coefficient of 
U(o,o,...,o); the next address is assigned to the coefficient of U(i,o,...,o), because 
(1,0,..., 0) is the first vector of length 1, and so on. Therefore, the address 
assigned to the coefficient of u^,..,^ is the starting address of the block in­
cremented by I^ki,... ^kn'iy If / is a homogeneous polynomial of degree s the 
same scheme works fine with a few minor differences: the length of the block is 
/((0,..., 0, s)) — I((0,..., 0, s — 1)), the starting address of the block is associ­
ated to the coefficient of U(s,o,...,o), and the coefficient of u^,...^ is stored at 
the relative address I ((ki,... ,kn)) — /((0,..., 0, s — 1)). This avoids leaving an 
empty space at the top of the memory block.

In view of the form above of the representation a function is identified with 
a set of pairs (k, f^b where k E Z” is the vector of the exponents, acting as the 
label of the elements of the basis, and fk is the numerical coefficient. Actually the 
vector k is not stored, since it is found via the index. The algebraic operations 
of sum, product and differentiation can be considered as operations on the latter 
set.
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(i) If f, g E Pg then the operation of calculating the sum / + g is represented as

H ^^(k,fk + gk), 
9k) J

to be executed over all k such that |fc| = s.

(ii) If / G TV and g E Ps then the operation of calculating the product fg is 
represented as

(6; /k) 1 , 7/; / r ^ \k + k , jkgk') , 
(K , 9k'))

to be executed over all k, k' such that |fc| = r and \k'\ = s.

(iii) If/ 6 Ps then the operation of differentiating / with respect to, e.g., $i is 
represented as

0 for ki = 0 ,
(k', kifk) for ky + 0 ,

(M^^

where k* = (ki — 1, k?, • • •, kn\

It is perhaps worthwhile to spend a few words about how to make the vector 
k to run over all its allowed values. In the case of sum, we do not really need it: 
since the indexes of both addends and of the result are the same, the operation 
can actually be performed no matter which k is involved: just check that the 
indexes are in the correct range.1 In order to perform product and differentiation 
it is essential to know the values of k and k'. To this end, we can either use 
the inverse of the indexing function, or generate the whole sequence by using a 
function that gives the vector next to a given k.

1For a homogeneous polynomial of degree s the first vector is (s, 0,..., 0), and the last one is 
(0,..., 0, s). The indexes of these two vectors are the limits of the indexes in the sum.

3.2. Fourier series
Let us denote by p = (<^i..., </?.„) 6 T” the independent variables. The Fourier 
expansion of a real function on T” takes the form

H<P) = ^(a.co^ipHbk^k,^ , (9)

where ak and bk are numerical coefficients. In this representation there is actually 
a lot of redundancy: in view of cos(—a) = cos a and sin(—a) = — sin a the modes 
—k and k can be arbitrarily interchanged. On the other hand, it seems that we 
actually need two different arrays for the sin and cos components, respectively. 
A straightforward way out is to use the exponential representation ^2k ake^k’v', 
but a moment’s thought leads us to the conclusion that the redundancy is not 
removed at all. However, we can at the same time remove the redundancy 
and reduce the representation to a single array by introducing a suitable basis 
^uk(<p^k£^ . Let k E X"; we shall say that k is even if the first non zero
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component of k is positive, and that k is odd if the first non zero component of 
k is negative. The null vector k = 0 is said to be even. Then we set

(cos^k,^ 
|_sm(fc, <p)

for k even , 
for k odd . (10)

This makes the representation /(</?) = 52^^ MukÁpj unique and redundancy 
free. It may be convenient to remark that the notation for the sin function may 
create some confusion. Usually, working with one variable, we write sin <p. The 
convention above means that we should rather write — sin(—<^), which is correct, 
but a bit funny. This should be taken into account when, after having accurately 
programmed all the operations, we discover that our manipulator says, e.g., that 
¿cosy? = -sin(-y?).

In view of the discussion in the previous section it should now be evident 
that a truncated Fourier expansion of a function /(</?) can easily be represented 
by storing the coefficient of Uk^ at an appropriate memory address, as calcu­
lated by the indexing function 1^ of sect. 6.

The considerations of the previous section can be easily extended to the 
problem of calculating the sum and/or product of two functions, and of differ­
entiating a function. Let us identify any term of the Fourier expansion of the 
function / with the pair (k, JkY Let us also introduce the functions od(fc) and 
ev(fc) as follows: if k is odd, then od(fc) = k and ev(k^ = — k; else od(fc) = —k 
and ev(fc) = k. That, is, force k to be odd or even, as needed, by possibly 
changing its sign.

(i) Denoting by (k, f^ and (k, g^ the same Fourier components of two functions 
/ and g, respectively, the sum is computed as

/, X f ^ (^, Jk + 9k) • 
(«, 9k))

(11)

(ii) Denoting by (k,/^ and {k',gk') any two terms in the Fourier expansion of 
the functions / and g, respectively, the product is computed as

ev(k + k'Y ÍYUlX u (ev(k — k'Y ÍYUl\ for /¿even 
2 / V 2 ) .

' and k even,
od(fc + k'Y ^'^ U ^od(fc — k'Y —^k^k for /¿even 

' and k' odd ,
od(fc + k'Y ^k^ ^ U ^od(fc — k'Y ^^ ^ for fcodd 

' ' ' " and k' even,
Çev(k + k'Y _^k^k ^ u Çev(k — k'Y ^k^ ^ for A: odd

. and k' odd .
. , . (12)

Remark that the product always produces two distinct terms, unless k = 0 
or U = 0.
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(iii) Denoting by (k,/^ any term in the Fourier expansion of a function f, 
differentiation with respect to, e.g., <pi is performed as

MW (~k, -kifk)
(~k, k^fA

for k even , 
for k odd . (13)

All these formulae follow from well known trigonometric identities.

4. Indexing functions

The basic remark for constructing an index function is the following. Suppose 
that we are given a countable set A. Suppose also that A is equipped with a 
relation of complete ordering, that we shall denote by the symbols A, ^, >- and 
A. So, for any two elements a, b E A exactly one of the relations a -< b, a = b 
and b A a is true. Suppose also that there is a minimal element in A, i.e., there 
is «o € A such that a >- ay for all a E A such that a A ao- Then an index 
function I is naturally defined as

1(a) = #{6 E A : b -< a} . (14)

If A is a finite set containing N elements, then 1(A) = {0,1,..., N — 1}. If 
A is an infinite (but countable) set, then 1(A) = Z+, the set of non negative 
integers. For instance, the trivial case is A = Z equipped with the usual 
ordering relation. In such a case the indexing function is just the identity.

Having defined the function IAA we are interested in performing the fol­
lowing basic operations:

(i) for a given a E A, find the index Z(a);

(ii) for a given a E A, find the element next (or prior) to a, if it exists;

(iii) for a given I E I{A), find / 1 (7). i.e., the element a E A such that 1(a) = L

The problem here is to implement an effective construction of the index 
for some particular subsets of Z” that we are interested in. In order to avoid 
confusions, we shall use the symbols -<, A, ^ and A when dealing with an 
ordering relation in the subset of Z” under consideration. The symbols <, <, > 
and > will always denote the usual ordering relation between integers.

As a first elementary example, let us consider the case A = Z. The usual 
ordering relation < does not fulfill our requests, because there is no minimal 
element. However, we can construct a different ordering satisfying our requests 
as follows.
Let k, k' E Z. We shall say that k' -< k in case one of the following relations is 
true:

(i) \k'\ < \k\ ;

(ii) \k'\ = |k| A k' > k .
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The resulting order is 0,1, —1, 2, —2,..., so that 0 is the minimal element.
Constructing the indexing function in this case is easy. Indeed, we have

n k \ /2a-1 for a > 0 ,7(0) = 0, 7(a) = ¿ (15)
f — 2a tor a < 0 .

The inverse function is also easily constructed:

/Ao)-o, = Ct?!/2 *™')odd' (16)
1/2 tor I even .

In the rest of this section we show how an indexing function can be constructed 
for two particularly interesting cases, namely polynomials and trigonometric 
polynomials. However, we stress that the procedure we are using is a quite 
general one, so it can be extended to other interesting situations.

5. The polynomial case

Let us first take An = X”, i.e., integer vectors with non negative components; 
formally

An = {7 = (7i,..., kA E L" : 7’i > 0,..., kn > 0} .
The index n in An denotes the dimension of the space. This case is named 
“polynomial” because it occurs precisely in the representation of homogeneous 
polynomials, and so also in the Taylor expansion of a function of n variables: 
the integer vectors 7 G An represent all possible exponents.

We shall denote by |7| = 7q + ... + kn the length (or norm) of the vector 
7 6 X". Furthermore, to a given vector 7 = (7i,..., kA E An we shall associate 
the vector t(A E An~i (the tail of 7) defined as t(A = (7’2,..., kA- This 
definition is meaningful only if n > 1, of course.

5.1. Ordering relation

Pick a fixed n, and consider the finite family of sets All = Z+,..., An = X”.
Let k, k' E Am, with any 1 < m < n. We shall say that k' -< 7 in case one of 
the following conditions is true:

(i) m. > 1 A \k'\ < |7| ;

(ii) m > 1 A \k'\ = 171 A 7( > 7’i ;

(iii) m, > 1 A \k'\ = |7| A 7( = 7’i A 7(7') -< t(A •

In table 2 the ordering resulting from this definition is illustrated for the cases 
m- = 2,3,4,5.

If m. = 1 then only (i) applies, and this ordering coincides with the natural 
one in X+. For m- > 1, if (i) and (ii) are both false, then (iii) means that one 
must decrease the dimension n by replacing 7 with its tail t(7), and retry the 
comparison. For this reason the ordering has been established for 1 < m < n. 
Eventually, one ends up with m- = 1, to which only (i) applies.
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Table 2. Ordering of integer vectors in Z™ for m = 2, 3,4, 5.

IW m = 2 m = 3 m = 4 m = 5
0 (0,0) (0,0,0) (0,0, 0,0) (0,0, 0,0,0)
1 (1,0) (1,0,0) (1,0, 0,0) (1,0, 0,0,0)
2 (0,1) (0,1,0) (0,1,0,0) (0,1, 0,0,0)
3 (2,0) (0,0,1) (0,0,1,0) (0,0,1,0,0)
4 (1,D (2,0,0) (0,0,0,1) (0,0,0,1,0)
5 (0,2) (1,1,0) (2, 0,0,0) (0,0, 0,0,1)
6 (3,0) (1,0,1) (1,1,0,0) (2, 0,0, 0,0)
7 (2,1) (0,2,0) (1,0,1,0) (1,1,0,0,0)
8 (1,2) (0,1,1) (1,0,0,1) (1,0,1,0,0)
9 (0,3) (0,0,2) (0,2, 0,0) (1,0,0,1,0)

10 (4,0) (3,0,0) (0,1,1,0) (1,0,0,0,1)
11 (3,1) (2,1,0) (0,1,0,1) (0,2, 0,0,0)
12 (2,2) (2,0,1) (0,0, 2,0) (0,1,1,0,0)
13 (1,3) (1,2,0) (0,0,1,1) (0,1,0,1,0)
14 (0,4) (1,1,D (0,0, 0,2) (0,1,0,0,1)
15 (5,0) (1,0,2) (3, 0,0,0) (0,0, 2, 0,0)
16 (4,1) (0,3,0) (2,1,0,0) (0,0,1,1,0)
17 (3,2) (0,2,1) (2,0,1,0) (0,0,1,0,1)
18 (2,3) (0,1,2) (2,0,0,1) (0,0, 0,2,0)
19 (1,4) (0,0,3) (1,2,0,0) (0,0,0,1,1)
20 (0,5) (4,0,0) (1,1,1,0) (0,0, 0,0, 2)

It is convenient to define PnW as the set of the elements which precede k; 
formally:

' -p^ = ^k' G An : k' -< k^ .

With the latter notation the indexing function is simply defined as 1^ = 
^Vn(k). The following definitions are also useful. Pick a vector k E An, and 
define the sets Bn\k^ Bn^Çk) and Bn”\k^ as the subsets of An satisfying (i), 
(ii) and (iii), respectively, in the ordering algorithm above. Formally:

^W(O) = B("An = B^W = B^Hk1) = B^k1) = 0 ,

B^^ = ^k' E A.n 
B^^ = {^' G An 
B^^ = W E An

\k'\ <\kn,

1^1 = \k\ A k'y > M ,
\k'\ = |fc| A ky = k\ A t(k') < t(k^ . (17)
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The sets £>„\k), M’’\fc) and M’*^^) are pairwise disjoint, and moreover 

B^^ U B^^ U B^\k) = Pn^ .

This easily follows from the definition.

5.2. Indexing function for polynomials
Let k E An- In view of the definitions and of the properties above the index 
function, defined as in (14), turns out to be

Z(0) = 0 , 1^ = #6^) + #6^ + *B^^ . (18)

Let us introduce the functions

J(n,s) = ^k E An : |fc| = s} ,
s

N(n, s) = J(n, j) for n > 1, s > 0 . (19)
j=o

These functions will be referred to in the following as J-table and N-table.
We claim that the indexing function can be recursively computed

Z(0) = 0 ,
N(n, \k\ — 1) for ki = \k\ ,

N(n, |fc| — 1) + Kt(k')') for ki < |k| .
IW =

The claim follows from

#S«(fe)=W(n,|fe|-l) ;
0 for ki = |fc| ,

N(n — 1, |fc| — ki — 1) for ki < |fc| ;

as

(20)

(21)

(22)

(23)
,. (l(t(kY) f°r ki = Ifcl ,
” [L(t(k)) — N^n — l,\k\ - ki - 1) for ^ < |fc| .

The equality (21) is a straightforward consequence of the definition of the 
Al-table. The equality (22) follows from (17). Indeed, for |fc| = ki we have 
B^'Miy = 0, and for |fc| > ki we have

B^ = U ^k' E An". k'1=j A |t(^)| = \k\ - j} 
ki<j<\k\

= U ^k' ^An : k[ = |fc|-Z A \t(k^\ =Z} ; 
0<Z<|fc| —A?i

Coming to (23), first remark that

B^A^ = ^k' E An : k'T = kl A ^k'^ = |fc| - kT A t(k/') A t(k^ ,
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so that

#6^^ = #{A G .1 : IA| = \k\ - k! A A A t(k^ .

Then, the equality follows by remarking that

Pn-Mk^j = {A G A. . : |A| = \k\-ki A A A t(k^ 
U{AgAu : |A| <\k\-M •

Adding up all contributions (20) follows.

5.3. Construction of the tables

In view of (19) and (20) the indexing function is completely determined in ex­
plicit form by the J-table. We show now how to compute the J-table recursively. 
For n = 1 we have, trivially, J(l, s) = 1 for s > 0. For n > 1 use the elementary 
property

{k G An : |k| = s} = (J {fc G An : ki = s - j A |t(fc)| = j} . 
0<j<s

Therefore

J(l,s) = 1 ,
s

J(n, s) = ^ J(n — 1, j) for n > 1 . (24)
j=0

This also means that, according to (19), we have N^n, s) = J(n + 1,s).
By the way, one will recognize that the J-table is actually the table of 

binomial coefficients, being J(n,s) = (^í^1) •

5.4. Inversion of the index function
The problem is to find the vector k G Z” corresponding to a given index I.

For n = 1 we have / 1 (/) = I, of course. Therefore, let us assume n > 1. 
We shall construct a recursive algorithm which calculates the inverse function 
by just showing how to determine ki and I^t^y

(i) If I = 0, then k = 0, and there is nothing else to do.

(ii) If I > 0, find an integer s satisfying N(n, s — 1) < I < N(n,s). In view of 
(20) we have |fc| = s and I(t(k^ = I — N(n, s — 1). Hence, by the same 
method, we can determine |t(k)|, and so also ki = s — |t(k)|.

5.5. An example of implementation
We include here an example of actual implementation of the indexing scheme 
for polynomials. This is part of a program for the calculation of first integrals 
that is fully described in (Giorgilli 1979). The complete computer code is also 
available from the CPC program library.
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We should mention that the FORTRAN code included here has been written in 
1976. Hence it may appear a little strange to programmers who are familiar with 
the nowadays compilers, since it does not use many features that are available 
in FORTRAN 90 or in the current versions of the compiler. It rather uses the 
standard of FORTRAN II, with the only exception of the statement PARAMETER 
that has been introduced later.

The PARAMETERS included in the code allow the user to control the allocation 
of memory, and may be changed in order to adapt the program to different needs. 
NPMAX is the maximum number of degrees of freedom 
NQRDMX is the maximal polynomial degree that will be used
NBN1 and NBN2 are calculated from the previous parameters, and are used in order 
to allocate the correct amount of memory for the table of binomial coefficients. 
Here are the statements:

PARAMETER (NPMAX=3)
PARAMETER (N0RDMX=40)
PARAMETER (NBN2=2*NPMAX)
PARAMETER (NBN1=NORDMX+NBN2)

As explained in the previous sections, the indexing function for polynomials 
uses the table of binomial coefficients. The table is stored in a common block 
named BINTAB so that it is available to all program modules. In the same block 
there are also some constants that are used by the indexing functions and are 
defined in the subroutine BINOM below. Here is the statement that must be 
included in every source module that uses these data:

COMMON /BINTAB/ IBIN(NBN1,NBN2),NPIU1,NMEN1,NFAT,NBIN
Subroutine BINOM fills the data in the common block BINTAB. It must be 

called at the beginning of the execution, so that the constants become available. 
Forgetting this call will produce unpredictable results. The calling arguments 
are the following.
NLIB : the number of polynomial variables. In the Hamiltonian case considered 
in the present notes it must be set as 2n, where n is the number of degrees of 
freedom. It must not exceed the value of the parameter NPMAX.
NORD : the wanted order of calculation of the polynomials, which in our case 
is the maximal order of the normal form. It must not exceed the value of the 
parameter NFAT.

The subroutine checks the limits on the calling arguments; if the limits are 
violated then the execution is terminated with an error message. The calculation 
of the part of the table of binomial coefficients that will be used is based on well 
known formulae.

SUBROUTINE BINOM(NLIB,NORD)
C
C Compute the table of the binomial coefficients.
C

COMMON /BINTAB/ IBIN(NBN1,NBN2),NPIU1,NMEN1,NFAT,NBIN
C

NFAT=NORD+NLIB
NBIN=NLIB
IF(NFAT.GT.NBN1.OR.NBIN.GT.NBN2) GO TO 10
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NPIU1 = NLIB+1
NMEN1 = NLIB-1
DO 1 1=1, NF AT 
IBIN(I,1) = I 
DO 1 K=2,NBIN 
IF(I-K) 2,3,4 

2 IBIN(I,K) = 0
GO TO 1

3 IBIN(I,K) = 1
GO TO 1

4 IBIN(I,K) = IBIN(I-1,K-1)+IBIN(I-1,K)
1 CONTINUE

RETURN
10 WRITE(6,1000) NFAT,NBIN

STOP
1000 FORMAT(//,5X,15HERR0R SUB BIN0M,2I10,//) 

END
Function INDICE implements the calculation of the indexing function for 

polynomials. The argument J is an integer array of dimension NLIB which con­
tains the exponents of the monomial. It must contain non negative values with 
sum not exceeding the value NORD initially passed to the subroutine BINQM. These 
limits are not checked in order to avoid wasting time: note that this function 
may be called several millions of times in a program. The code actually imple­
ments the recursive formula (20) using iteration. Recall that recursion was not 
implemented in FORTRAN II.

FUNCTION INDICE(J,NLIB)
C
C Compute the relative address I corresponding to the
C exponents J.
C

COMMON /BINTAB/ IBIN(NBN1,NBN2),NPIU1,NMEN1,NFAT,NBIN 
DIMENSION J(NLIB)

C
NP=NLIB+1
INDICE = J(NLIB)
M = J(NLIB)-1
DO 1 1=2,NLIB 
IB=NP-I
M = M + J(IB)
IB=M+I
INDICE = INDICE + IBIN(IB,I)

1 CONTINUE
RETURN
END

Subroutine ESPON is the inverse of the indexing function. Given the index N 
it calculates the array J of dimension NLIB which contains the exponents. The 
value of N must be positive (not checked) and must not exceed the maximal index
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implicitly introduced by the initial choice of NLIB and NORD passed to BINOM. The 
latter error is actually checked (this does not increase the computation time). 
The code implements the recursive algorithm described in sect. 5.4, again using 
iteration.

SUBROUTINE ESP0N(N,J,NLIB)
C
C Compute the exponents J correponding to the
C index N.
C

COMMON /BINTAB/ IBIN(NBN1,NBN2),NPIU1,NMEN1,NFAT,NBIN 
DIMENSION J(NLIB)

C
NM=NLIB-1
NP=NLIB+1
DO 1 K=NLIB,NFAT
IF (N.LT.IBIN(K,NLIB)) GO TO 2

1 CONTINUE
WRITE(6,1000)
STOP

2 NN = K-l
M = N-IBIN(NN,NLIB)
IF(NLIB-2) 8,6,7

7 DO 3 I = 2,NM
L = NP-I
DO 4 K=L,NFAT
IF(M.LT.IBIN(K,L)) GO TO 5

4 CONTINUE
5 IB=NLIB-L

J(IB) = NN-K
NN = K-l
M = M - IBIN(NN,L)

3 CONTINUE
6 J(NM) = NN-M-1

J(NLIB) = M 
RETURN

8 J(1)=N
RETURN

1000 FORMAT(//,5X,15HERR0R SUB ESPON,//) 
END

The code described here is the skeleton of a program performing algebraic 
manipulation on polynomial. Such a program must include a call to BINOM in 
order to initialize the table of binomial coefficients.

In order to store the coefficient of a monomial with exponents J (an integer 
array with dimension NLIB the user must include a statement like

K = INDICE(J,NLIB)
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and then say, e.g., F(K)=... which stores the coefficient at the address K of the 
array F.

Suppose instead that we must perform an operation on all coefficients of 
degree I ORD of a given function F. We need to perform a loop on all the corre­
sponding indices and retrieve the corresponding exponents. Here is a sketch of 
the code.

C Compute the minimum and maximum index NMIN and NMAX
C of the coefficients of order I0RD. 
C

IB=IDRD+NMEN1
NMIN = IBIN(IB,NLIB)
IB=IORD+NLIB
NMAX = IBIN(IB,NLIB) - 1

C
C Loop on all coefficients
C

DO 1 N = NMIN,NMAX
CALL ESP0N(N,J,NLIB)
. . . more code to operate on the coefficient F(N) . . .

1 CONTINUE
Let us add a few words of explanation. According to (20), the index of the first 
coefficient of degree s in n variables is I(s, 0,..., 0) = N(n, s — 1), and we also 
have N(n, s — 1) = (”+^~ ) as explained at the end of sect. 5.3. This explains 
how the limits NMIN and NMAX are calculated as N(n,s — 1) and N(n, s + 1) — 
1, respectively. The rest of the code is the loop that retrieves the exponents 
corresponding to the coefficient of index N.

6. Trigonometric polynomials

Let us now consider the more general case An = X". The index n in An denotes 
again the dimension of the space. The name used in the title of the section is 
justified because this case occurs precisely in the representation of trigonometric 
polynomials, as explained in sect. 3.2.

We shall now denote by |fe| = |fei| + ... + \kn\ the length (or norm) of 
the vector k E XL. The tail t^ of a vector k will be defined again as t(k^ = 
(k2, • • •, M-

6.1. Ordering relation

Pick a fixed n, and consider the finite family of sets Ai = X,..., An = XL
Let k, k' E Am, with any 1 < m < n. We shall say k' -< k in case one of the 
following conditions is true:

(i) m. > 1 A \k'\ < |fe| ;

(ii) m > 1 A \k'\ = \k\ ^ |fe(| > Ifei| ;

(iii) m > 1 A \k'\ = |fe| A |fe(| = |feiI A k^ > ki ;
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(iv) m > 1 A \k'\ = |fc| A k'T = ki A tik^ -< i(k) .

Table 3. Ordering of integer vectors in Zm for m = 2, 3,4.

m = 2 m = 3 m- = 4
0 ( o, 0) ( o, 0, 0) ( 0, 0, 0, 0)
1 ( 1, 0) ( i, o, 0) ( 1, 0, 0, 0)
2 (-1, 0) (-1, 0, 0) (-1, 0, 0, 0)
3 ( 0, 1) ( 0, 1, 0) ( 0, 1, 0, 0)
4 ( 0,-1) ( 0,-1, 0) ( 0,-1, 0, 0)
5 ( 2, 0) ( 0, 0, 1) ( 0, 0, 1, 0)
6 (-2, 0) ( 0, 0,-1) ( 0, 0,-1, 0)
7 ( 1, D ( 2, 0, 0) ( 0, 0, 0, 1)
8 ( 1,-D (-2, 0, 0) ( 0, 0, 0,-1)
9 (-1, D ( i, i, 0) ( 2, 0, 0, 0)

10 (-1,-D ( 1,-1, 0) (-2, 0, 0, 0)
11 ( 0, 2) ( i, 0, 1) ( 1, 1, 0, 0)
12 ( 0,-2) ( 1, 0,-1) ( 1,-1, 0, 0)
13 ( 3, 0) (-1, 1, 0) ( 1, 0, 1, 0)
14 (-3, 0) (-1,-1, 0) ( 1, 0,-1, 0)
15 ( 2, 1) (-1, 0, 1) ( 1, 0, 0, 1)
16 ( 2,-1) (-1, 0,-1) ( 1, 0, 0,-1)
17 (-2, 1) ( 0, 2, 0) (-1, 1, 0, 0)
18 (-2,-1) ( 0,-2, 0) (-1,-1, 0, 0)
19 ( 1, 2) ( 0, 1, 1) (-1, 0, 1, 0)
20 ( 1,-2) ( 0, 1,-1) (-1, 0,-1, 0)
21 (-1, 2) ( 0,-1, 1) (-1, 0, 0, 1)
22 (-1,-2) ( 0,-l,-l) (-1, 0, 0,-1)
23 ( 0, 3) ( 0, 0, 2) ( 0, 2, 0, 0)
24 ( 0,-3) ( 0, 0,-2) ( 0,-2, 0, 0)

In table 3 the order resulting from this definition is illustrated for the cases 
m = 2, 3,4.

If m. = 1 this ordering coincides with the ordering in Z introduced in sect 4. 
For m- > 1, if (i), (ii) and (iii) do not apply, then (iv) means that one must 
decrease the dimension n by replacing k with its tail tfkb and retry the compar­
ison. Eventually, one ends up with m- = 1, falling back to the one dimensional 
case to which only (i) and (iii) apply.
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The ordering in this section has been defined for the case An = Xn. How­
ever, it will be useful to consider particular subsets of X". The natural choice 
will be to use again the ordering relation defined here. For example, the case of 
integer vectors with non negative components discussed in sect. 5.1 can be con­
sidered as a particular case: the restriction of the ordering relation to that case 
gives exactly the order introduced in sect. 5.1. Just remark that the condition 
(iii) above becomes meaningless in that case, so that it can be removed.

The set Pn^ of the elements preceding k E A" in the order above is 
defined as in sect. 5.1. Following the line of the discussion in that section it is 
also convenient to give some more definitions. Pick a vector k E An, and define 
the sets S„\fc), Bn^AAi Bn^AA and BiAX^ as the subsets of An satisfying 
(i), (ii), (iii) and (iv), respectively, in the ordering algorithm above. Formally,

B^^ = B^W = ^^(O) = 23,^(O) = B^AA = B^AA = 0 ,

B$AA = {k' E An : |fe'|<|fe|},

B^AA = {k'E An : \k'\ = \k\ A |fel| >1^1},

B^AA = {^ G An : \k'\ = \k\ A \k'A = \ki\ A k{> k^ ,

B^AA = W E An : \k'\ = |fc| A k^ = ki A t^kA < t(kA . (25)

The sets BnXk\ Bn^AAt bX^AA and bX^AA are pairwise disjoint, and 
moreover

B^Xk)UBXlXk^B^Xk^B^Xk)=P^ .

This easily follows from the definition.

6.2. Indexing function for trigonometric polynomials

Let k E An- In view of the definitions and of the properties above the index 
function, defined as in (14), turns out to be

Z(0) = 0 , IVA = tEXX^ + fB^AA + tB^AA + #B^Xk) • (26)

Let us introduce the J-table and the TV-table as

J(n,s) = #^_k E An : |fc| = s} ,
s

NAe s) = y^ J(n, j) for n > 1, s > 0 . (27)
j=o
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We claim that the index function can be recursively computed as

7(0) = 0 ,
N(n, |k| — 1) for |ki| = |k|

and ki > 0 ,
N(n, \k\ — 1) + 1 for |ki| = \k\

and ki < 0 ,
N(n, \k\ — 1) + N(n — 1, \k\ — |ki| — 1) + I(t(k# for |ki| < \k\, 

and ki > 0 ,
N(n, \k\ - 1) + N(n - 1,\k\ - 1^1) + I(t(kY) for 1^1 < \k\

This formula follows from
# B^^ = N(n,\k\-l^ ;

Í0
# B^U# = <

\2N(n- l,|k| - 1^1 - 1)

# B^^k) = J °
\j(n-#\k\-\M)

o . ÜW^
#B#\k) =

|Z(t(k)) -N#i-#\k\ - |ki|

and ki < 0 , 
(28)

(29)
for |ki| = Iki ,

(30)
for IfciI < |k| ;
for |ki| < |k| A ki > 0 ,
for |ki| < |k| A ki < 0 ’

(31)
for 1*11 = 1*1 • (32)

— 1) for |ki| < |k| .

The equality (29) is a straightforward consequence of the definition (25). 
The equality (30) follows by remarking that for |ki| = |k| we have Bn^iJ# = 0, 
and for |ki| < |k| we have

B^W = b+#) u b;#^ , B+(k) n b;#^ = 0 ,

with
B+#) = J {kz EAn : k'1 = \k\-l A \t##\=Q , 

O<z<|fc|-|fci|

B;1J#= U {kz E#.n : k( =Z-|k| A |t(k)| =Z} ;
0<Z<|fc|-|fci|

use also #B^{k) = #Bn #Y The equality (31) follows from

S^(k) =
^k' E An : k( = |ki| A \#k'Y = |k| - |ki|}

for |ki| = |k| 
and ki > 0 , 

for Iki| = \k\
and ki < 0 .
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Coming to (32), remark that

B^\k) = ^k' G An : Mk'^ = \k\ -\M A t(k') A t(k^ .

Proceeding as in the polynomial case we find again

#B^(k) = #{A G An-i : IA| = \k\ -\ki\ A A A t(k^ ,

and (32) follows by remarking that

Pn-l(i(fe)) = {A G An-1 : |A| = \k\ - \M A A A t(k^ 
U{Ag An-1 : |A| < |fe|-N} .

Adding up all contributions (28) follows.

6.3. Construction of the tables

We show now how to construct recursively the J-table, so that the Al-table can 
be constructed, too. For n = 1 we have, trivially, J(l, 0) = 1 and J(l, s) = 2 for 
s > 0. For n > 1 use the elementary property

{k G An : |k| = s} = U {fc G An : ki = j ^ |t(fc)| = s - |j|} .
-s<j<s

Therefore

J(l,0) = 1 ,
J(l,s) = 2 ,

J(n, s) = y^ J(n — 1, s — |j|) for n > 1 . 
j=s

(33)

This completely determines the J-table.

6.4. Inversion of the index function

The problem is to find the vector k of given dimension n corresponding to the 
given index I. For n = 1 the function Kk^ and its inverse / 1 (7) are given by (15) 
and (16). Therefore in the rest of this section we shall assume n > 1. We shall 
give a recursive algorithm, showing how to determine ki and iÇt^y

(i) If I = 0 then k = 0, and there is nothing else to do.

(ii) Assuming that I > 0, determine s such that

N(n, s — 1) < I < N(n, s) .

From this we know that |fc| = s.
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(iii) Define k = I — N(n,s — 1), so that l(t(k^ < k by (28). If Zi = 0 set 
si = 0; else, determine s' such that

N(n - 1, s' - 1) < k < N(n - 1, s') ;

and let si = min(s/,s). In view of I^t^k^ < k we know that |t(k)| < si. 
Remark also that si = 0 if and only if Zi = 0. For, if si > 1 then we have 
k > N(n — 1, 0) = 1.

(iv) If k = 0, then by the first of (28) we conclude

ki = |fc| = s , t(k) = 0 , 

and there is nothing else to do.

(v) If k = 1, then by the second of (28) we conclude

ki = —|fc| = — s , t(k) = 0 , 

and there is nothing else to do.

(vi) If k > 1 and si > 0, we first look if we can set 0 < ki < |fc|. In view of the 
third of (28) we should have

|Zc| — ki = si , |i(&) I = si , I(t(Zc)) = k — N(n — 1, si — 1) .

This can be consistently made provided the conditions

si > 0 and l(t(k^ > N(n — 1, si — 1)

are fulfilled. The condition s > 0 is already satisfied. By (28), the second 
condition is fulfilled provided k > 2N(n—1, si — 1). This has to be checked.

(vi.a) If the second condition is true, then set ki = |fc| — si, and recall that 
t(k)| = si. Hence, we can replace n, I, and s by n — 1, Zi — N^n — 
l,si — 1) and si, respectively, and proceed by recursion restarting 
again from the point (iii).

(vi.b) If the second condition is false, then we proceed with the next 
point.

(vii) Recall that k > 1, and remark that we have also si > 1. Indeed, we 
already know si > 0, so we have to exclude the case si = 1. Let, by 
contradiction, si = 1. Then we have Zi > 2 = 2N(n — l,si — 1), which 
is the case already excluded by (vi). We conclude si > 1. We look now 
for the possibility of setting |fci| < |fc| and ki < 0. In view of the fourth 
of (28) we should have

|Zc| + ki = si — 1 , \t(k) I = si — 1 , I(t(k^ = Zi — A^(n — 1, si — 1) .

This can be consistently made provided the conditions

si > 1 and Z(t(fc)) > AZ(n — 1, si — 2)

are fulfilled. The condition si > 1 is already satisfied. As to the second 
condition, by (28) it is fulfilled provided k > N^n — l,si — 1) + N(n — 
1, si — 2). This has to be checked.
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(vii.a) If the second condition is true, then set k± = — |fc| + si — 1, and 
recall that |t(fc) = si — 1. Hence, we can replace n, I, and s by n — 1, 
Zi — N(n — 1, si — 2) and si — 1, respectively, and proceed by recursion 
restarting again from the point (iii).

(vii.b) If the second condition is false we must decrease si by one and 
start again with the point (vi); remark that si > 1 implies si — 1 > 0, 
which is the first of the two conditions to be satisfied at the point (vi), 
hence the recursion is correct.

Since Zi > 1 we have Zi > 2N(n — 1,0), so that the conditions of point (vi) are 
satisfied for s = 1. Hence the algorithm above does not fall into an infinite loop 
between points (vi) and (vii). On the other hand, for n = 1 either (iii) or (iv) 
applies, so that the algorithm stops at that point.

7. Storing the coefficients for sparse functions

The method of storing the coefficient using the index, as illustrated in sect. 3, is 
the most direct one, but reveals to be ineffective when most of the coefficients 
of a function are zero (sparse function). For, allocating memory space for all 
coefficients results in a wasting of memory.

A method that we often use is to store the coefficients using a tree struc­
ture based on the index. However we should warn the reader that the method 
described here has the advantage of being easily programmed, but does not pre­
tend to be the most effective one. Efficient programming of tree structure is 
described, e.g., in the monumental books The art of computing programming, 
by D.E. Knuth (1968).

7.1. The tree structure

The first information we need is how many bits are needed in order to represent 
the maximum index for a function. We shall refer to this number as the length of 
the index. In the scheme that we are presenting here this is actually the length 
of the path from the root of the tree to its leave, where the coefficient is found.

In fig. 1 we illustrate the scheme assuming that 4 bits are enough, i.e., 
there are at most 16 coefficients indexed from 0 to 15. The case is elementary, 
of course, but the method is the general one, and is extended to, e.g., several 
millions of coefficients (with a length a little more than 20) in a straightforward 
manner. The bits are labeled by their position, starting from the less significant 
one (choosing the most significant one as the first bit is not forbidden, of course, 
and sometimes may be convenient). The label of the bit corresponds to a level 
in the tree structure, level 0 being the root and level 3 being the last one, in our 
case. At level zero we find a cell containing two pointers, corresponding to the 
digit 0 and 1, respectively. To each digit we associate a cell of level 1, which 
contains a pair of pointers, and so on until we reach the last level (3 in our 
case). Every number that may be represented with 4 bits generates a unique 
path along the tree, and the last cell contains pointers to the coefficient. The 
example in the figure represents the path associated with the binary index 1010, 
namely 10 in decimal notation.



Methods of algebraic manipulation in perturbation theory 171

1 0 1 0

Figure 1. Illustrating the tree structure for a 4-bit long index (see text).

Let us also illustrate how this structure may be represented in memory, 
trying to avoid wasting of space. We use two separate arrays, the first one for 
pointers and the second one for the coefficients, as illustrated in fig. 2. The cells 
containing pairs of pointers are allocated in the first array, the root of the tree 
having label zero. The label of a cell is always even: the first element corresponds 
to the zero bit, the next one (with odd label) to the bit one.

The arrays are initially allocated with appropriate size, and are cleared. A 
good method is to fill the array of pointers with — 1 (denoting an unused pointer) 
and the coefficients table with zeros. We also keep track of the first unused cell 
in the array, which initially is set to 2 because the root cell is considered to be 
in use, and of the first free coefficient, which initially is 0.

We shall use the following notations: cell(2j) is the cell with even label 2j 
in the array; cell(2j, 0) and cell(2j, 1) are the pointers corresponding to a bit 
0 or 1 which are stored at locations 2j and 2j + 1, respectively, in the array of 
pointers; coef (j) is the j-th element of the array of coefficients; cc is the current 
cell and cb is the current bit (see below for the meaning); fp is the label of the 
first free (unused) cell of pointers; f c is the label of the first free coefficient; t is 
the length of the index.

7.2. Storing the first coefficient

Let us describe how the first coefficient is stored. Suppose we want to store the 
value x as the coefficient corresponding to a given index. Here is the scheme.

(i) Initialization: set cc = 0 and cb = 0. The values of fp = 2 and fc = 0 have 
already been set when during the array allocation.

(ii) Creating a path: repeat the following steps until cb equals £ — 1:

(ii.a) if the bit at position cb in the index is 0, then redefine cell(cc, 0) = 
fp; else redefine cell(cc, 1) = fp;
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Figure 2. Illustrating how the tree structure is stored in memory (see text).

(ii.b) set cc = fp and increment fp by 2 (point to the next free cell);
(ii.c) increment cb by 1 (next bit).

(iii) Store the coefficient:

(iii.a) if the bit at position cb in the index is 0, then redefine cell(cc, 0) = 
fc; else redefine cell(cc, 1) = f c;

(iii.b) set coef(fc) = ag
(iii.c) increment fc by 1 (point to the next free coefficient).

Programming this algorithm in a language such as C or FORTRAN requires some 
10 to 20 statements.

Let us see in detail what happens if we want to store the coefficient 0.6180339 
with index 1010 and I = 4, as illustrated in fig. 2. Here is the sequence of 
operations actually made

After this, the contents of the arrays are as represented in fig. 2.

step (i): cc = 0 , cb = 0 , fp = 2 , fc = 0 ;
step (ii): cell(0,0) = 2 , cc = 2 , fp = 4 , cb = 1 , then ,

cell(2,1) = 4 , cc = 4 , fp = 6 , cb = 2 , then ,
cell(4,0) = 6 , cc = 6 , fp = 8 , cb = 3 , end of loop ;

step (iii): cell(6,1) = 0 , coef(0)==0.6180339 , fc = 1 , end of game
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7.3. Retrieving a coefficient
The second main operation is to retrieve a coefficient, which possibly has never 
been stored. In the latter case, we assume that the wanted coefficient is zero. 
Here is a scheme.

(i) Initialization: set cc = 0 and cb = 0.

(ii) Follow a path: repeat the following steps until cb equals t:

(ii.a) save the current value of cc;
(ii.b) if the bit at position cb in the index is 0, then redefine cc as 

cell(cc, 0); else redefine cc as cell(cc, 1);
(ii.c) if cc = —1 then the coefficient is undefined. Return 0 as the value 

of the coefficient;
(ii.d) increment cb by 1 (next bit).

(iii) Coefficient found: return the coefficient coef(cc).

Let us give a couple of examples in order to better illustrate the algorithm. 
Suppose that we are looking for the coefficient corresponding to the binary index 
1010. By following the algorithm step by step, and recalling that in our example 
the length of the index is 4, the reader should be able to check that the sequence 
of operations is the following:

step (i): cc = 0 , cb = 0 ;
step (ii): cc = 2 , cb = 1 , then ,

cc = 4 , cb = 2 , then ,
cc = 6 , cb = 3 , then ,
cc = 0 cb = 4 , end of path ;

step (iii): return 0.6180339

The returned value is that of coef (0), stored in the location 0 of the coefficients 
array.

Suppose now that we are looking for the coefficient corresponding to the
binary index 1110. Here is the actual sequence of operations:

step (i): cc = 0 , cb = 0 ;
step (ii): cc = 2 , cb = 1 , then ,

cc = 4 , cb = 2 , then ,
cc = —1 , cb = 2 , return zero

Here the algorithm stops because a coefficient has not been found.

7.4. Other operations
Having implemented the two operations above, the reader should be able to 
implement also the following operations:

(i) storing a new coefficient corresponding to a given index’
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Figure 3. Inserting a new coefficient in a tree structure (see text).

(ii) adding something to a given coefficient;

(iii) multiplying a given coefficient by a number.

These are the basic operations that we need in order to perform an elementary 
computer algebra. Let us add a few hints.

Storing a new coefficient requires perhaps some moment of thinking. Using 
the index, one should follow the corresponding path in the tree (as in the oper­
ation of retrieving) until either happens: the coefficient is found, or the search 
fails at some point. If the coefficient is found, then it can be overwritten if the 
new value has to replace the old one. On failure, the path must be completed by 
appropriately defining the pointers (as in the case of the first coefficient), and 
then the coefficient can be stored in the appropriate location. As an exercise, 
suppose that we want to store the coefficient 1.4142136 corresponding to the 
binary index 1110. After completing the operation the memory should look as 
in fig. 3.

Adding something to a given coefficient is not very different from the pre­
vious operation. Just follow the path. If the coefficient is found, then add the 
wanted value to it. On failure, just change the “add” operation to a “store” one, 
and proceed as in the case (i).

Multiplying a coefficient by a constant is even easier. If the coefficient is 
found, then do the multiplication. On failure, just do nothing.

Further operations can be imagined, but we think that we have described 
the basic ones. There are just a couple of remarks.

The method illustrated here uses an amount of memory that clearly depends 
on the number of non zero coefficients of a function. However, this amount is
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typically not known in advance. Thus, enough memory should be allocated at 
the beginning in order to assure that there is enough room. When a function 
is filled, and we know that it will not be changed, the excess of memory can 
be freed and reused for other purposes. Every operating system and language 
provides functions that allow the programmer to allocate memory blocks and 
resize them on need.

A second remark is that other storing methods can be imagined. E.g., once 
a function is entirely defined it may be more convenient to represent it as a 
sequential list of pairs (index, coefficient). This is definitely a very compact 
representation for a sparse function (although not the best for a crowded one).

8. Applications

We report here some examples of application of algebraic manipulation that have 
been obtained by implementing the formal algorithm of sect. 2. We consider 
three cases, namely the model of Hénon and Heiles, the Lagrangian triangular 
equilibria for the Sun-Jupiter system and the planetary problem including Sun, 
Jupiter, Saturn and Uranus (SJSU).

8.1. The model of Hénon and Heiles
A wide class of canonical system with Hamiltonian of the form

H(x,y) = y(yi +$1) + y(y§ +^2) +^2 (34)

has been studied by Contopoulos, starting at the end of the fifties, for different 
values of the frequencies. This approximates the motion of a star in a galaxy, at 
different distances from the center. A wide discussion on the use of these models 
in galactic dynamics and on the construction of the so called “third integral” can 
be found in the book of Contopoulos (2002). The third integral is constructed as 
a power series T = $2+^.3 + - • • where <bs is a homogeneous polynomial of degree 
s which is the solution of the equation {H. 4>} = 0, where {•, •} is the Poisson 
bracket (see, e.g., Whittaker 1916 or Contopoulos 1960). A different method is 
based on the construction of the Birkhoff normal form (Birkhoff 1927).

A particular case with two equal frequencies and Hamiltonian

H(x, y) = 2 (^i + $i) + 2 ^2 + ^2) + ®i®2 — ~®2 (35)

has been studied by Hénon and Heiles in 1964. This work has become famous 
since for the first time the existence of a chaotic behavior in a very simple 
system has been stressed, showing some figures. It should be remarked that 
the existence of chaos had been discovered by Poincaré in his memory on the 
problem of three bodies (Poincare 1889), but it had been essentially forgotten.

A program for the construction of the third integral has been implemented 
by Contopoulos since 1960. He made several comparisons between the level lines 
of the integral so found on the surface of constant energy and the figures given by 
the Poincaré sections of the orbits. A similar calculation for the case of Hénon 
and Heiles has been made by Gustavson (1966), who used the normal form
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Figure 4. Poincare sections for the Hénon and Heiles model. The energies 
are as in the original paper.

E=l

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

method. The third integral was expanded up to order 8, which may seem quite 
low today, but it was really difficult to do better with the computers available at 
that time. Here we reproduce the figures of Gustavson extending the calculation 
up to order 58, which is now easily reached even on a PC.

In fig. 4 we show the Poincare sections for the values of energy used by 
Hénon and Heiles in their paper. As stressed by the authors, an essentially 
ordered motion is found for A < ^. while the chaotic orbits become predominant 
at higher energies.

The comparison with the level lines of the third integral at energy E = ^ 
is reported in fig. 5. The correspondence with the Poincare sections is evident 
even at order 8, as calculated also by Gustavson. We do not produce the figures
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Figure 5. Level lines of the first integral truncated at orders 4 and 8, for 
energy E g^. The figure for truncation orders up to 58 are actually the 
same as for order 8.

for higher orders because they are actually identical with the one for order 8. 
This may raise the hope that the series for the first integral is a convergent one.

Actually, a theorem of Siegel states that for the Birkhoff normal form diver­
gence is a typical case (Siegel 1941). A detailed numerical study has been made 
in (Contopolus 2003 and 2004), showing the mechanism of divergence. More­
over, it was understood by Poincare that perturbations series typically have an 
asymptotic character (see Poincare 1892, Vol. II). Estimates of this type have 
been given, e.g., in (Giorgilli 1988 and 1989).

For energy E = E (fig. 6) the asymptotic character of the series starts to 
appear. Indeed already at order 8 we have a good correspondence between the 
level lines and the Poincare section, as was shown also Gustavson’s paper. If 
we increase the approximation we see that the correspondence remains good 
up to order 32, but then the divergence of the series shows up, since at order 
43 an unwanted “island” appears on the right side of the figure which has no 
correspondent in the actual orbits, and at order 58 a bizarre behavior shows up.

The phenomenon is much more evident for energy E = ^ (fig. 7). Here some 
rough correspondence is found around order 9, but then the bizarre behavior of 
the previous case definitely appears already at order 27.

The non convergence of the normal form is illustrated in fig. 8. Writing the 
homogeneous terms of degree s of the third integral as <hs = ^^ k <pjyx^yk, we 
may introduce the norm

INGERI-
j,k
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Order Õ Order K

Figure 6. Level lines of the first integral truncated at orders 8, 32, 43 and 
58, for energy E = ¿. A good correspondence with the Poincare sections is 
found at orders, roughly, 8 to 32. Then the level lines start to disprove, in 
agreement with the asymptotic character of the series.

Then an indication of the convergence radius may be found by calculating one 
of the quantities

INI
IIMI

INI
IIMI

1/2

The first quantity corresponds to the root criterion for power series. The second 
one corresponds to the ratio criterion. The third one is similar to the ratio 
criterion, but in the present case turns out to be more effective because it takes 
into account the peculiar behavior of the series for odd and even degrees. The 
values given by the root criterion are plotted in the left panel of fig. 8. The data 
for the ratio criterion are plotted in the right panel, where open dots and solid
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Order 0 Order 0

Figure 7. Level lines of the first integral truncated at orders 8, 9, 10 and 27, 
for energy E = r. Some correspondence with the Poincare sections is found 
around the order 9. Then the level lines are definitely worse, making even 
more evident the asymptotic character of the series.

dots refer to the second and third quantities in the formula above, respectively. 
In all cases it is evident that the values steadily increase, with no tendency 
to a definite limit. The almost linear increase is consistent with the behavior 
||$s 11 ~ s! predicted by the theory.

8.2. The Trojan asteroids

The asymptotic behavior of the series lies at the basis of Nekhoroshev theory 
on exponential stability. The general result, referring for simplicity to the case 
above, is that in a ball of radius q and center at the origin one has

H) - $(0)| < O^ for |t| < O(exp(l/y“)) ,
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Figure 8. The convergence radius evaluated with the ratio (left) and the 
root (right) criterion. In both cases the non convergence of the series is 
evident.

for some positive a < 1. This is indeed the result given by the theory (see, 
e.g., Giorgilli 1988). In rough terms the idea is the following. Due to the 
estimate H^sll ~ s! and remarking that T = ^H, <h} starts with terms of degree 
s + 1, one gets |$| = O(s!ys+1). Then one looks for an optimal degree s which 
minimizes the time derivative, i.e., s ~ 1/y. By truncating the integrals at the 
optimal order one finds the exponential estimate.

However, the theoretical estimates usually give a value of q which is useless 
in practical applications, being definitely too small. Realistic results may be 
obtained instead if the construction of first integrals for a given system if per­
formed by computer algebra. That is, one constructs the expansion of the first 
integral up to an high order, compatibly with the computer resources available, 
and then looks for the optimal truncation order by numerical evaluation of the 
norms.

The numerical optimization has been performed for the expansion of the 
Hamiltonian in a neighborhood of the Lagrangian point £4, in the framework 
of the planar circular restricted problem of three bodies in the Sun-Jupiter 
case. This has a direct application to the dynamics of the Trojan asteroids 
(see Giorgilli 1997).

The two first integrals which are perturbations of the harmonic actions have 
been constructed up to order 34 (close to the best possible with the computers 
at that time). The estimate of the time of stability is reported in fig. 9. The 
lower panel gives the optimal truncation order vs. log10 q. In the upper panel 
we calculate the stability time as follows: for an initial datum inside a ball of 
radius qo we determine the minimal time required for the distance to increase 
up to 2^o- Remark that the vertical scale is logarithmic. The units are chosen
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Figure 9. The estimated stability time and the optimal truncation order 
for the L4 point of the Sun-Jupiter system.

so that q = 1 is the distance of Jupiter from the Sun, and t = 2tt is the period 
of Jupiter. With this time unit the estimated age of the universe is about 109. 
The figure shows that the obtained data are already realistic, although, due to 
the unavoidable approximations, only four of the asteroids close to L4 known at 
the time of that work did fall inside the region of stability for a time as long as 
the age of the Universe.

8.3. The SJSU system
As a third application we consider the problem of stability for the planar secular 
planetary model including the Sun and three planets, namely Jupiter, Saturn and 
Uranus. The aim is evaluate how long the semi-major axes and the eccentricities 
of the orbits remain close to the current value (see, Sansottera 2010).

The problem here is much more difficult than in the previous cases. The 
Hamiltonian must be expanded in Poincare variables, and is expressed in action­
angle variables for the fast motions and in Cartesian variables for the slow mo­
tions, for a total of 9 polynomial and 3 trigonometric variables. The expansion of 
the Hamiltonian in these variables clearly is a major task, that has been handled 
via computer algebra.
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Figure 10. The estimated stability time and the optimal truncation order 
for the SJSU planar system. The dashed line corresponds to the estimated 
age of the Universe.

The reduction to the secular problem actually removes the fast motions, so 
that we get an equilibrium corresponding to an orbit of eccentricity zero close 
to a circular Keplerian one, and a Hamiltonian expanded in the neighborhood 
of the equilibrium, which is still represented as a system of perturbed harmonic 
oscillators, as in the cases above. Thus, after a long preparatory work, we find a 
problem similar to the previous one, that can be handled with the same methods.

The results are represented in fig. 10, where we report again the optimal 
truncation order and the estimated stability time, in the same sense as above. 
The time unit here is the year, and the distance is chosen so that qo = 1 corre­
sponds to the actual eccentricity of the three planets. The result is still realistic, 
although a stability for a time of the order of the age of Universe holds only 
inside a radius corresponding roughly to 70% of the real one.
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