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Abstract. Wavelet analysis has been widely used to analyze time series 
and has countless applications in astronomy. Because of its characteristics 
it is a method that is well suited to approximate functions, eliminate 
noise, detect points of change, discontinuities and periodicities. In this 
article an introduction to the wavelet theory and its use in time series is 
presented. Numerical simulations and some real examples are developed 
in the software R.
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1. Introduction

Fourier transform is widely used in signal processing and analysis and for its 
inherent characteristics it has had satisfactory results in the study of signals 
that are periodic and regular enough, but the same is not true when their spectra 
vary over time (non-stationary signals). If the function /(t) to be decomposed 
is a time series, and we think to analyze it, we have to take into account that 
the functions of the Fourier base are of infinite duration in time, but local in 
frequency. The Fourier Transform detects the presence of a certain frequency 
but does not provide information about the evolution in time of the spectral 
characteristics of the signal. Many temporal aspects of the signal, such as the 
beginning and end of a finite signal and the instant of appearance of a singularity 
in an instant of time, cannot be adequately analyzed by Fourier analysis. Even 
so, Fourier analysis is a cornerstone for the development of other mathematical 
and statistical theories including Wavelet analysis. In the following subsection 
we present the main concepts of Fourier analysis, which will be needed for the 
reading of the rest of the Chapter.

1.1. Some Concepts From Fourier Analysis

In this section we will review some concepts of Fourier analysis necessary for the 
following sections. Consider the space of all complex-valued functions f on R, 
such that f is absolutely integrable (ie: |/(t)|cZt < oo) and denote it as
T1(R) (Hardie et al. (1998)). For f G L^R), define the Fourier Transform of f 
by

Z
oo 

e^f^dx. (1)
-oo
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If /(£) is also absolutely integrable, define the Inverse Fourier Transform by

1 f'xM = Mj'iIfWi' (2)

at almost every point x. By extension, the Fourier transform can be defined for 
any f G L2(R) with If(x)pdx < oo.

Given a 27r-periodic function f on R, such that f G L2(0, 2tt) (JQ27r \f(x^\2dx < 
oo), it can be represented by its Fourier series by

M = £ ckeikx, (3)
k

where ck = ^ f^ f(t)e~lkxdx is named the fc-th Fourier coefficient. By period­
icity, this holds for all x G R.

Therefore there exists the basis of functions, ^e~,kx^kl in L2(R), for which we 
can write any function in L2(R) as an infinite linear combination of the members 
of this basis of functions. If we keep a finite number of terms on the right hand 
side of the equation (3), we will obtain an approximation of the function ffxf 
Due to the characteristics of the Fourier series (the functions sin(a;) and cos(t) 
in e-tkx are non-zero over almost the entire domain), a large number of terms 
in the series are needed to get a good approximation of f(xf In wavelet theory 
an alternative basis of functions is sought that has the property of being able to 
write any function in L2(R) as a series of the basis functions, but that they take 
values close to 0 outside a bounded interval, which allows a local adjustment in 
time and the use of few terms in the series to obtain a very good approximation 
of f(xY

Let {«a}agz denote an infinite sequence of real or complex-valued variables 
with the property that |«a|2 < oo what ensure that all the quantities we 
deal with are well defined. Then the complex function given by

OO
¿(r) = £ ake-M, (4)

k=—oo

is called the Discrete Fourier Transform (DFT) of VakHeZ, where r G R is 
a variable known as frequency (see Percibal & Walden (2000)). For the inter­
pretation of the formula in equation (4), |r| is the number of cycles that the 
sinusoidal curves in the real and imaginary terms of the function e-l27rrfc = 
cos^irrk^ — is'm(2Tvrk) (i.e. cos(27rrfc) and — siidTxrkf respectively), go over 
when k sweeps from 0 to 1. Any negative frequency r will map to some posi­
tive frequency when a physical interpretation is required (see Percibal & Walden 
(2000), Exercise [2.1]).

As intuition, if |A(?’)| is large (small), then the sequences {«a} and (e~127rrk} 
have a good agreement (bad agreement).

The sequence {«a} can be reconstructed or recovered from its DFT, A(?'), 
by '

ak = pA^e^dr, (5)
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where k E Z. The larger the value of |A(7’)|, the more important sinusoids of 
frequency r are in reconstructing {at}. If {«a} is a finite sequence for instance 
for k = 1, • • • , N, it is extended to k E Z by defining ak = 0 for all k < 0 and 
k > N. In this case, A(r) = E/Xi ake-12'Krk.

Filtering: In wavelets context it is often used the term “filter". Consider 
two infinite sequences of real or complex-valued variables, {«a} and {6a}, satis­
fying Ea^-oc M2 < °°, Ea^-oc IM2 < °°- The convolution of {afc} and {6a} 
is given by 

oo

(q*6)a= ^ aubk_u. (6)
u=—oo

This definition led us to the notion of filtering used in engineering. If we consider 
{«a} in equation (6) as a filter and {6a} as a sequence to be filtered, then their 
convolution, {(«*6)a}, is the filtered version of {6a}, filtered by the sequence {«a}. 
There are ‘low-pass’ filters that preserve low frequency components and attenuate 
high frequency ones; and there are ‘high-pass’ filters that make the contrary. 
Finally there is a cascade of filters, involved in wavelet coefficients computation 
from data (see section 3), which is nothing more than the consecutive application 
of a set of filters to a sequence, one after the other.

1.2. Short Time Fourier Transform
An intermediate step between Fourier and Wavelet analysis was the use of the 
Short Time Fourier Transform (STFT) to detect local phenomena in time. It per­
forms a time-dependent spectral analysis. The signal is divided into a sequence 
of time segments (depending on a window defined for this purpose) in which the 
signal can be considered as quasi-stationary and then the Fourier Transform is 
applied to each segment. Window functions are used to perform this procedure. 
To observe a signal over a finite period of time, we multiply it by a window 
function. The signal is divided into short fragments (short time intervals) delim­
ited in time, by means of a window function. The segments sometimes overlap. 
Through the individual spectral analysis of each windowed segment, a sequence 
of measurements or spectra is obtained, what constitutes the time-varying spec­
trum. The four most common window types are the Rectangular window, the 
Hanning window, the Hamming window and the Blackman window.

Three kinds of examples where STFT has been applied are presented below: 
two curves with marked periodicities that change according to the time instant 
in Figure 1, two curves without periodicities in Figure 3 and one curve with 
variable periodicity in Figure 4.

Figure 1 shows the STFT of two sinusoidal curves, a curve with three dif­
ferent periods and amplitudes:

/oC^) = sin(0.27ra;), Ji(t) = 1.5 sin(0.Sara;), f2(a;) = 2 sin(0.8ara;),

for the upper left panel, and

f3^ = sin(0.6a;), fEia) = 0.5sin(0.5ai), fs(aa) = 2sin(0.1a;),
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for the lower left panel. In right panels of Figure 1 the computation of the 
corresponding STFT is shown. Time-slices of length 80 are extracted from the 
vector (in case of short vectors the window size is chosen so that 10 windows fit 
in the vector). The shift of one time-slice to the next one is given by 24 (for short 
vectors the increment is selected so that 30 increments fit in the vector). The 
values of these time-slices are smoothed by multiplying them with a Hanning 
window function. For these obtained windows, the Fast Fourier Transform1 is 
computed. Then each window takes a segment of length 80 in time and is shifted 
by 24 which produces 414 calculations of the Fast Fourier transform. Therefore a 
matrix of 414 rows is produced where each row of the matrix contains the Fourier 
coefficients of one window which are plotted in a scale of 64 gray values, where 
white corresponds to the minimum value and black to the maximum. The right 
panel of the Figure 1 shows how the Fourier transform changes over time, which 
gives an indication of the change in periodicity over time. This is an advantage 
over the use of periodograms based on the Fourier transform in which the periods 
present are shown but without indicating their variability over time (see Figure 
2 where the Lomb Scargle periodogram of the sine wave 1 is displayed). With 
wavelet analysis it will be possible to construct a time-sensitive measure, of the 
STFT type, where on the ordinate axis the exact time is shown.

1Fast Fourier Transform: Calculating the DFT is time consuming and requires on the order 
of N2 floating point multiplications. As many of the multiplications are repeated by varying
the indexes, an efficient algorithm is used, called Fast Fourier Transform (FFT) which consists 
of a collection of routines designed to reduce the amount of redundant calculations. Different 
implementations of the FFT have different features and advantages. One of the algorithms used 
is the "split-radix" algorithm which requires approximately Arlog2(Ar) operations (Fischer- 
Cripps (2002)).

In the Figure 3 two curves and their STFT are shown. On the left upper 
panel a Gaussian white noise is plotted. This curve is completely random with 
no periodicities, therefore no time with a specific value is highlighted in its STFT 
(right upper panel). On the left lower panel a sample of an Autoregressive Mov­
ing Average (ARMA) process with parameters (2,2) is shown. This is a linear 
model for time series analysis and together with Autoregressive Integrated Mov­
ing Average ARIMA and Continuous Autoregressive Moving Average CARMA 
models have been used to model light curves in astronomy (Cáceres (2019), Ey- 
heramendy et al. (2018), Kelly et al. (2014)). The ARMA process is a stationary 
process with constant expectation and variance, so its representation contains 
no trend or periodicity. As a consequence, the STFT is less random than that of 
white Gaussian noise but with a time-varying Fourier transform. A curve with 
time-varying periodicity is plotted on the left panel of Figure 4. It can be seen 
that its STFT detects how the frequency decreases over time, although the exact 
time at which the changes occur or the exact trend of change is not visible due 
to the displacement of the windows used in the STFT calculation.

STFT allows that a certain location of a local phenomenon in a signal is 
detected. However, only the time interval in which the local phenomena occur 
will be known, since the location depends on the width of the window chosen. 
Moreover, the events will not be able to be differentiated or found if they are 
very close to each other, since it is not possible to distinguish different behaviors
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within the same window width. A mathematical tool to solve these problems is 
the Wavelet Transform.

In this Chapter, the theory of Wavelet analysis is described in Section 2 
including multiresolution analysis. Section 3 describes the Cascade Algorithm 
and the discrete wavelet transform while Section 4 is devoted to continuous 
wavelet transform and its applications. Finally, in Section 5 we present our 
conclusions.

2. Theory of Wavelet Analysis

We can say that the theory of the analysis of the wavelets began with Mr. Joseph 
Fourier (1807), with his theory of frequency analysis, today often referred to as 
Fourier analysis. After 1807 and from the development of the Fourier convergent 
and orthogonal systems, the notion of frequency analysis led to scale analysis. 
The first mention of the wavelets appears in an appendix of the thesis of A. Haar 
(1909). The wavelet theory was developed mainly in the 80’s by Meyer (1986), 
Daubechies (1988), Mallat (1989) and others.

Wavelets are used in a large number of applications, among them: astron­
omy, acoustics, nuclear engineering, sub-band code, signal and image processing, 
neurophysiology, bioinformatics, genetics, music, magnetic resonance imaging, 
classification of words in a text, optics, fractals, seismic turbulence prediction, 
radars, human vision, statistics (time series, correlations, stochastic processes, 
point processes, non-parametric regression, regression with census data) and 
mathematical applications such as: in pure frequency identification, eliminating 
signal noise, detecting discontinuities and cutting spots, detecting self-similarity 
(fractals), compression of data.

In this Chapter the use of wavelets focuses on their application to time series 
(i.e.: sequence of observations indexed on an ordered set of indices I which can 
be a discrete set of values such as integers or a subset of the real line, based on 
an independent variable t E I\ The variable t can be taken as time, depth, or 
distance along a line, among others. Examples of set of indexes are I = (0, +co), 
that is, all t > 0 are possible indexes, and I = {0,1,2, • • • , n}, where n can be 
any integer greater than 2.

The main points of the theory of wavelet analysis are developed to later an­
alyze its use in applications through approximations, scalograms built from the 
wavelet transform, signal reconstruction, among others. The Wavelet Transform 
is efficient for the local analysis of locally changing and non-stationary signals 
and, like the Windowed Fourier Transform2, assigns a time-scale representation 
to the signal. The time aspect of the signals is under consideration. The main 
difference with STFT is that the Transformed Wavelet has multiresolution anal­
ysis with variable windows. The analysis of higher range frequencies is done 
using narrow windows and the analysis of lower range frequencies is done using 
wide windows (Poularikas, 2010).

2Short Time Fourier Transform
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Sine wave 1

Time

STFT of Sine wave 1

STFT of Sine wave 2Sine wave 2

Time Time Windows

Figure 1. Examples of STFT. On the left panels, it can be seen two 
different sinusoidal curves and on the right panels their STFT. First, 
time segments of a fixed length are extracted from the data vector. 
This window is moved along the time axis by a fixed amount possibly 
smaller than the window size, which may produce an overlap between 
the time segments. The values of these time intervals are smoothed by 
multiplying them by a specified window function. For the windows thus 
obtained, the fast Fourier transform is calculated. For the data in the 
figure, segments of 80 time units were used. They were incremented 
by 24 units to obtain the next segment, which produced overlapping 
segments, yielding 414 windows. For each window 64 Fourier coefficients 
were calculated. The figure shows: on the x-axis the 414 windows and 
64 cells on the vertical axis of each window which were colored with 
a gray scale according to the magnitude of the Fourier coefficients. In 
the figure only the cells with gray colors are observed, the rest are only 
white. The dark regions in the graph correspond to high values of the 
coefficients at the particular time/frequency location.
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Lomb-Scargle Periodogram

Figure 2. In the figure the Lomb Scargle periodogram of Sine wave 1 
is shown. The frequencies of the curve 0.1 and 0.4 are clearly evidenced 
and more weakly the frequency 0.25.

Wavelets (small waves) are families of functions which, if they are translated 
and dilated, allow us to obtain an orthogonal base of functions in L2(R). A linear 
combination of the elements of this base of wavelet functions is used to represent 
a signal /(i).

The classical Fourier analysis has been widely used in the problem of recon­
structing a function / from dilations of a fixed sinusoidal function x H- e2™, 
when writing f(x') = J e2lT^x f^df,. The Fourier transform, /(£), is considered 
the amount of sinusoidal oscillation e27”^ present in the function /. Sinusoidal 
function bases are also used in Fourier series.

In the same way the wavelet basis of functions allows us to reconstruct the 
original signal through the inverse Wavelet Transform. There are several base 
wavelet functions, depending on the chosen family: Haar, Daubechies, Morlet,: 
Symmlets, among others. Depending on the selected wavelet family, a different 
base function is used (first brick in the construction) and a certain base of func­
tions is obtained which will allow the wavelet analysis to be performed. The 
main advantage of Wavelet analysis is that it is not only local in time, but also 
in frequency.
This feature allows using the continuous wavelet transform to detect an event in 
the data, either the period of a time series, a change point in the series, a dis­
continuity in a density function, and to know the moment (time) or abscissa at 
which it occurs. For example, knowing the time interval during which a detected 
period is present in the brightness measurements in a light curve, the moment 
when the flow of a river changes drastically, the day when an economic variable 
produces a change in its modeling.

Another feature of a wavelet functions basis is that any function in the 
function space L2 can be decomposed as an infinite sum of functions in the 
wavelet basis, as with the Fourier series, but because of their great flexibility to 
approximate functions efficiently only a small number of summands are needed 
to produce very good approximations. The latter is because wavelet functions 
vanish outside a bounded interval and the basis of functions is formed by a count-
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SFTF of white noiseWhite noise

Figure 3. Examples of STET: The upper panel shows a curve of 500 
data points from a Gaussian white noise and its STET. In the lower 
panel, the plots show the curve of a sample from an ARMA (2, 2) process 
and its STET. For the data in the upper right panel of the figure, 
segments of 50 time units were used. They were incremented by 16 
units to obtain the next segment, which produced overlapping segments, 
yielding 29 windows. For each window 64 Fourier coefficients were 
calculated. The figure shows: on the x-axis the 29 windows and 64 
cells on the vertical axis of each window which were colored with a 
gray scale according to the magnitude of the Fourier coefficients. The 
dark regions in the graph correspond to high values of the coefficients 
at the particular time/frequency location. In the lower right panel, 
segments of 6 time units with increments of 2 units were used, yielding 
29 windows.
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Figure 4. On the left panel, it can be seen a curve with periods 
varying over time and on the right panel its STFT, built from segments 
of 80 time units with increments of 24 units, yielding 39 windows on 
the x-axis. On the vertical axis of each window 64 cells were colored 
with a gray scale according to the magnitude of the Fourier coefficients. 
In this figure the dark regions, corresponding to a high magnitude of 
the Fourier coefficient, sweep across an interval as they move through 
time.

able number of dilations and contractions of a wavelet function called “parent", 
stretches and squashes of those functions and translations of all of them. This is 
equivalent to having bricks of various sizes and widths that can be placed under 
any house and that adding up all the volumes will give exactly the same volume 
of the house.

In the next section we will be introduced to multiresolution analysis, the 
main feature of wavelet analysis, which will allow us to define a basis of wavelet 
functions in L2(R) with which we can represent any function /(x) in L2(R) 
through an infinite countable linear combination of the basis.

2.1. Multiresolution Analysis

Wavelets can be considered as a basis of functions generated by dilations and 
translations of a simple function which, in general, is not sinusoidal. They are 
connected to the notion of multiresolution analysis (MRA) in which the objects 
(signals, functions, data) can be examined using several levels of approach, as if 
zooming in and out. In both cases we can obtain relevant information about the 
object. As an example, suppose we are looking at a house, the observation can 
be made from a large distance from where only the basic shapes and structure 
can be distinguished (if it has a garage, the shape of the roof); or one can observe 
from a closer distance and various other characteristics of the house will appear 
(the door is made of hardwood, for example).

The basis function will be generated from a basic function that is usually 
called parent wavelet or scaling function, which in turn allows us to build another 
basic function that we will call mother wavelet or wavelet function. The repre-
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sentation of a function /(t) will be done through two summands: the sum of the 
dilations and translations of the father wavelet, ip(xY will give us information 
about the general, coarse aspects (a kind of smoothing) of the /(t) and the sum 
of the dilations and translations of the mother wavelet, V'C^); will give us infor­
mation about the particular aspects and details (like a zoom) of the function. 
Each term in the second summand will add more clarity on the specific features.

In this section some basic concepts such as wavelet father, which provides 
smoothing, and wavelet mother, to describe the details, are defined to reach the 
multiresolution analysis definition. In the following it will be assumed that the 
function to be analyzed is a function of time t.
For </? G L2(R), k G Z, x G R, we denote ^okC^) = ^(x — fc) the family of 
translations of 92 and we denote

^■fc^) = ííip^x — k), j,k G Z,

the family of translations and dilations of <p with the indexes k and j respectively. 
The functional sub-spaces {V^Jjez, Vj Ç L2(R) are defined by:

• for j = 0:

Vo = < g g £2(R): gk^ = 52 ^^"" k^ 52 N2 < +o° 'I k k ,

that is, Vo is the subspace spanned by the translations of <^(t) by k, 
^{x — kf

• and for j G Z:
Vj = \h^ = gÇ^ : g GVoy

Then h^x-) G V^ if h^x-) = ^ cwY^x — k) f°r {c/J such that 52 lcA-|2 < 
k k

+oo, or, Vj1 is the subspace spanned by the functions {j?(231x — kY^^x.

Therefore </? generates the sequence of subspaces {V}}. The sequence {V}} 
is called multiresolution analysis if

1. {<^ok} is an ortonormal system in L2(R),

2. the subspaces are nested, that is,

^C^+ijGZ, (7)

3. every function in L2(R) can be obtained as a limit of a sequence of functions 
in U Vj, that is, every function f G L2(R) can be written as a series of 

j>o
elements in |J Vj.

j>o

In this case, </? is called Wavelet father. Another sequence {W^JjeNo is 
considered such that Wj is the orthogonal complement of Vj Ç Vj+i, Wj =
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^■+1 © Vj, then U Vj = Vo U (W © Vo) U (V2 © Vi) • • • U (Vj+1 © Vj) • • •. Then 
j>o

OO ~

U Vj = Vq © © (Y)-n © 15') is a direct sum of sub-spaces that completes A2(R) 
j>0 J " ‘ *

leading to
Q 00

L2(R) = Vo © © Wj,
3=0

therefore any function /(t) in L2(R) can be written as a linear combination of 
functions in Vq and {Wj}. For each j G No, let -0 be a function such that its 
translations and dilations, ^jk = í^2^^ac — k^, k G Z}, are an orthogonal basis 
of Wj. Then, for instance, the translations {V’oa/t) = 4’{x~k^k is an orthogonal 
system of Wq, this system is orthogonal to Vo and Vi = Vo © Wq is the subspace 
spanned by the system {{©om}m, {V’ofc}^}, where ©om(*T) = ©(t — m) for all m­

As a consequence, each function /(t) can be represented as a convergent 
series given by

00

/(t) = ^oy<pok(Vi + EEPjk^jk^^i (8)
kEZ 3=0kEZ

where
ak = j f(x)vok(x)d,x, Pjk = y f(x)^jk(x)dx. (9)

According to the function f(x') sometimes it is necessary to start with a 
subspace Vj0 with jo > 0, in that case, the first function in the sum, <pok(x^, is 
replaced by <pjok(x^ and the index j starts at Jo > 0 in the right term of equation 
(8). ' '

The representation of /(t) as an expansion of translations and dilations of 
functions tp and -0 is called wavelet expansion and -0 the Wavelet mother.

Each Wj in the sequence of sub-spaces {Wj} represents a resolution level of 
the multiresolution analysis. There are several levels j of resolution, what gives 
rise to its name.
The resolution level means a zoom level that is performed on the function, so 
each one will allow you to see details at different scopes. Thus the function is 
decomposed into an initial smoothing, given by the parent wavelet in the first 
term of the right-hand side of eq. (8) and different levels of details that are added 
according to the value of the level j in the second term of the right side. The 
greater the value of j, the greater the level of resolution and the finest details 
will be visible, which will be represented by the j-th term.

An example of wavelet system is the Haar system. The wavelet father and 
wavelet mother are given by

©(t) = 7(o,i] (t) , ^(x) = -7[0ii](t) + I^i^ (x) , (10)

respectively, where

r / \ f 1 if X G A
Ia (t) - I 0 q X^A
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and the interval (a, 6] is the set of real numbers between a and b, including b but 
not a. The basis of functions for the Haar wavelet system are:

VOk^ = {^(0,1] lx - k^kEZ,

M^ = 2^/2 (z(|il] (2^ - k) - /[o,|](2^ - k^ ,

for wavelet father and mother respectively, where j, k E Z, j > 0. We can observe 
that {<Fok(^)}kGZ is an orthonormal basis (ONB, i.e.: a basis of orthogonal and 
normalized vectors) in

bo = V1^ € -^2(R) : h^ is constant on (k, k + 1], k E Z},

^jk(^ = 2j/2<p(2jx - k)}kez is an ONB in

Vj = V1^ € -^2(R) : h^ = g^xY g^ E Vb},

Vj Ç Vj+i and Vj = V}-i®Wj_i, where Wj is spanned by ^Yjk-t^kEZ- Finally,
L2(R) = Vb ® Wo ® H® ® • • • H® ® • • •. ' '

By way of illustration,

1. {®ofc(*T)} is an ONB of Vq.

2. W = ^hiV) € ^2(R) : h(x') = g(2a;),g(T) E Vb} = {^(t) E T2(R) : 
h^ is constant on (^, ^^], k E Z} and it is spanned by the ONB 
{mM, YokY^ = ^[o,|] (® - k) - Içi^ (x - k^.

3. The functions <pik(^ = 2T/2<p(2x — k) for k E Z span W and can be written 
in terms of {<Fok(^)} and {V’ok(T)}> since I® = Vb ® Wq. For instance:

r V2 1
‘FioW = V2I^^x^ = -y(J(o,i] (®)-^0,i](®)+^(i,i] (®)) = -/iGfoo-vW,

</?n(a;) = V2Z(0,i](2a; - 1) = "^(^oo + V^oo).

A suitable property of the Haar wavelets is that they are cancelled out of a 
limited interval. Unfortunately, Haar wavelets are not continuously differentiable 
which limits their applications (see Figure 5). There are wavelet families with 
compact support (vanish out of an interval) and wavelet families defined over 
the whole line. Among the former wavelet families are Daubechies, Coiflets, 
Symmlets. Some examples of the last ones are the Battle-Lemarié and Morlet 
wavelets.

Father and mother wavelets can be defined from some of the properties of 
their Fourier transforms (see Hardie et al. (1998)).



Wavelet Analysis for Time Series 139

Figure 5. Some representations of Haar wavelet. On the top panel it 
is shown Haar father wavelet for (a) j = 0, k = 0, (6) j = 0, k = 1, (c) 
j = 1, k = 1/2. On the bottom panel it is shown Haar mother wavelet 
for (d) j = 0, k = 0, (e) j = 0, k = 1, (c) j = 1, k = 1.

2.2. Obtaining a Wavelet Expansion
In this section the conditions about functions </? and /’ that guarantee the exis­
tence of a wavelet system are formulated. That is to say, what characteristics 
should have so that ipo^. is an orthogonal and normalized system, the Vj are 
nested, the span of |J Vj is equal to L2(R), 4’jk is an orthogonal and normalized 

j
system of Wj, etc. This section follows closely Hardie et al. (1998).

Properties on ¿p, the Fourier transform of <^, are sought that guarantee the 
validity of the necessary and sufficient conditions for the wavelet expansion:

1. Vvok^k G Z} is an orthonormal system (ONS)

2. Vj C Ej+i, j G Z

3. U Vj is dense in L2(R) (i.e.: the linear combinations of functions in |J Vj 
j>0 j>0
span all the functional space L2(R)).

4. {^’(^ — k^, k G Z} is an ONB in Wq.

In what follows functions <p, that satisfy that there is a constant M > 0 
such that 52 ¡^(.t — k)| < M for x G R — A, will be considered, where A is a 

kez '
null measurement set.
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The following results that allow characterizing the father wavelet and the 
mother wavelet from properties of their Fourier transform can be demonstrated 
(see Hardie et al. (1998)).

(a) Set p E I?(RY The system {^oa*? k E Z} = {<^(t — kY k E Z} is an ONS if 
and only if,

^2|0(£ + 27rfc)|2 = 1, (ID

almost everywhere (a.e.), where p is the Fourier transform of the function 
y?.

(b) The sub-spaces ^Vj, j E Z}, spanned by translations and dilations of p, are 
nested Vj C Vj^i,j E Z, if and only if, there exists a 2tt - periodic function 
m-o G L2(0,2tt) such that

Moreover, mo(<)|2 + |w(€ + tt) |2 = 1 a.e.

(c) If p satisfies items (a) and (6) above then |J Vj is dense in L2(R).
j>0

(d) If p is a father wavelet that generates a MRA in L2(R), m-o(^) is a solution 
of equation (12) then

Y’^ = ™i

is the Fourier transform of a mother wavelet 0, where m-i(^) = m-o(^ + tt)c ^ 
and the bar represents the complex conjugate.

In summary, to construct a father wavelet p for a MRA, sufficient conditions 
on its Fourier transform p should satisfy the following restrictions:

where m-o G L2(0,2tt) is a periodic function of period 2tt such that

|w(O2 + |w(€ + <)|2 = 1,
(14)

_ mo(O) = 1,

where the last restriction in equation (14) is deduced of eq. (12) after adding 
the condition |0(O)| = | J p(t)dt\ = 1 for the father wavelet.
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Since Vq C 14, then y E 14 and it can be written as a linear combination of 
the system {V2<p(2x — k)}, an ONB of the subspace 14- Therefore, there is a 
sequence {/i/4 such that

ip(x') = V2 ^2 hk\p(2x — kf hk = V2 / ip^ip^x — kyix, (15) 
fcez J

with £ |/ifc|2 < 00 and the constraints
fcGZ

1. 52 hkhk+21 = dot

2. TyE^l- 
v k

where ¿0/ = 0 if I ^ 0 and <5q¿ = 1 if Z = 0. By the same argument the mother 
wavelet satisfies _

4(zr) = VT^Xk.y^ - k), (16)
k

where Xk = (-l^^hi-k*
Taking Fourier transform to both sides of left equation in (15) we obtain 

y = ^ ^k hkW^k^ and by eq. (12) we have that

™oK) = 4E'“e"y <17>
k

If the wavelets considered are compactly supported (i.e.: they vanish outside 
a bounded interval), the sums in eqs. (15), (16) and (17) have a non-zero number 
of terms. These relations allow us to determine the coefficients in eq. (9) of a 
function in its wavelet representation in eq. (8) through a linear transformation 
given by the product of a matrix by a vector.

Compactly supported wavelets

Some of the wavelet families with compact support are the Daubechies, 
Coiflets and Symmlets. We briefly describe each of them.
Ingrid Daubechies, to whom we owe the original construction of Wavelets with 
compact support (Daubechies (1988)), proposed to take mo(£) such that

mo(4)|2 = cn j sin2N Hxykx. (18)

where the constant cn is chosen to produce m-o(O) = 1. For such functions 
m-o(^) the coefficients ^hk^ are tabulated (see Daubechies (1988) or Hardie et al. 
(1998)). Wavelets constructed from the function mo(£) satisfying eq. (18) are 
called Daubechies Wavelets and they are denoted D2N or Db2N.
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For N = 1, we have D2 where cn = | and

I 1 P z x , 1 + COS^
|w(O = 2 J^ =----- 2----- ■

Choosing mo(7J = 1+1 ‘€ we obtain

V^ = lini H -(1 + e 27 ) =-------- ---—,
?2^og x x Z

3 = 1

hence Daubechies father wavelet D2 matches with Haar father wavelet, <^(t) = 
I^x G (0,1]}.

The supports of Daubechies father wavelet and mother wavelet are included 
in the intervals [0, 2N — 1] and [—N + 1,7V], respectively. Besides, Daubechies 
mother wavelet has null m-moment (i.e.: J xiric (t) dx = 0) for m = 0,..., N — 1.

Beylkin et al. (1991) proposed a new class of wavelets with essentially the 
same good properties of the Daubechies wavelets and, in addition, the father 
wavelet has some zero moments. If the father wavelet has certain null moments 
the wavelet coefficients could be approximated by evaluations of the function 
f (7) at discrete points:

with Tjk small enough. This can be a useful property in applications.

This class of wavelets was called Coiflets Wavelets and is denoted CK. To 
build the Coiflets wavelets, Beylkin et al. (1991) consider m-o(^) of the form

2K

Pl A,

where
K—l

PiA=
k=0

and F^ is a trigonometric polynomial chosen such that |m-o(^) |2 +1 m-o(^ +tt) |2 = 
1. The supports of Coiflets father wavelet and mother wavelet are included in 
the intervals [—2K, 4/< — 1] and [—4/< + 1, 2K\, respectively.

According to Daubechies (1992) the only symmetric wavelet with compact 
support is the Haar system (father wavelet). The family of Symmlet Wavelets is 
made up of wavelets for which mo(£) is chosen to be close to symmetry. They are 
denoted by SN, where N is the order of the wavelet. Symmlet mother wavelet 
has null m-moment (i.e.: J xin i/ (t) dx = 0) for m = 0,..., N — 1. The support 
of the father wavelet and mother wavelet are the intervals given by [0, 2N — 1] 
and [—N + 1,7V], respectively.
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3. Cascade Algorithm

Some recursive formulas are presented that will allow the calculation of the 
wavelet coefficients sequentially (see Hardie et al. (1998)). The procedure is 
called Cascade algorithm (or pyramidal). It was proposed by Mallat (1989).

This method (Hardie et al. (1998)) is used only with wavelet bases that van­
ish outside a finite interval and built from the function mo(£) = ^ hkWlk^ 

(see eq. (17)) where hk are coefficients of real values with only a finite number 
of non-zero values. This assumption is satisfied by the families of Daubechies, 
Coiflets and Symmlets wavelets, among others.

Given a function f(tj, the coefficients «jk =< f^jk >, 3jk =< fv^’jk > 
satisfy for j, k E Z the relationships:

Ojk = ^ hi-2k.aj+i,b (19)
k

3jk = '^^l-2kCtj+1'1 (20)
k

where Xk = (—l^^hi-k and ^hk^ are the coefficients of mo(£).

Indeed, by multiresolution analysis,

Pjk = 22 I flyc^^x — kjdx

= 2^ y2^s / f^V^^x — k^—s^dx

= 2"^ y2^s I f^V^^1® — 2k — s^dx

= ^sO'j+i,s+2fc = ^-2^3+1,i.

s I

The relation (19) is obtained in a similar way. The cascade algorithm is 
defined by both equations (19) and (20).

Only a finite number of coefficients a^k are non-zero in each level j. There­
fore if the vector of coefficients, y = {a^z} is known for a certain level ji, it is 
possible to recursively rebuild the coefficients «jk, 3jk for levels j < ji, with the 
use of the recursive equations (19) and (20).

If the procedure stops at level jo, the vector of resulting wavelets coefficients 
w = ^ajokV {^ofc},..., ^Pji-ykW can be computed by

w = Wy, (21)

where W is a matrix.
It is possible to invert the cascade algorithm to obtain the values of the 

coefficients y, starting from w by the recursive scheme:
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aj+l,s = ^ hs-2k.aj,k + ^ Xs-2k3j,k, (22)
k k

allowing j to vary from j'q to ji — 1.

3.1. Discrete Wavelet Transform
Given the initial values ^a(K, k), k = 0,..., 2K — 1} the Discrete Wavelet Trans­
form (DWT) recursively calculates the coefficients a(j, fc) and 3(3 fc) for 0 < 
k < 23 — 1 and 0 < j < K — 1, in the following manner:

3The remainder of dividing x by y is usually expressed as xmody.

a(j,k) = hi a(j + 1, (I + 2k) mod 23+1), (23)

3(j,k) =£A/ a(j + 1,(1 +2k) mod 23^). (24)
i

where (I + 2k) mod 2^+1 denotes3 the remainder of dividing (I + 2k) by 2j+1. 
Therefore the DWT is just a composition of linear orthogonal transformations 
presented by the recursions (23) and (24). These recursions can be extended to 
k E 7 and these extensions are periodic, in the sense that a(j, k) = 0(3, k + 
23), P(3, k) = 3(3 k + 23) for all k E Z.

The Discrete Inverse Wavelet Transform is defined in a similar way but with 
the data periodically extended. It starts with the vectors:

Mjm k), k = 0,..., 23o _ 1}> W()) k3 k = 0) ., 2jo _ 1}

and its periodic extensions are denoted by {«(jo, k), k E Z}, ^Uo^ k), k E Z}.
Then the vectors (a(j,s),s = 0, ...,23 — 1} are computed until level 3 = 

K — 1, following the recursive equations:

5(j + 1, s) = y2 ks-ík ã(3 k) + y2 Xs-2k 3(3 k),s E Z, (25) 
k k

a(j + 1, s) = 5(j + 1, s), s = 0,..., 2jl — 1. (26)

4. Continuous Wavelet Transform

The continuous wavelet transform is a wavelet transform where the dilation and 
translation parameters, named a and b in this case, vary continuously over R with 
a 7^ 0 (Daubechies (1992)). Given the wavelet 3 E Z2(R) such that J3(t)dt = 0 
and a function f E Z2(R), the Continuous Wavelet Transform (CWT), Tf, of 
f(t), with a 3 0 and b E R is defined by
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(TH(a^ (27)

The expression (27) computes the inner product in L2(R) of the function / 
against the family of functions, {V’a’b}> indexed by the parameters a, b, defined 
by

<’\S) = H^^) (28)
a

where a ^ 0 and b G R. The inner product is defined by < /, g >= J dtf(t)g(t), 
where /(t) is the complex conjugate of J If).

When a changes and b remains fixed, ,4’a’b(s^ = laM^’if) covers different 
frequency ranges. Changing the parameter b allows moving the location in time 
(x-axis or time-axis), every ■^a'b(s') is located around of s = b.

If -0 6 T2 and that satisfies the following condition of admissibility

Z
OO

d^WO2 <oo, (29)
-oo

where '0 is the Fourier transform of -0 (see eq. (1)), then the function / can be 
reconstructed from its CWT using the equation:

/=c-^ r r ^^ < /, ^ > r-\ (so) 

<7—00 <7—00

where 0a,{,(s) = |a|-1/20(^), and <,> denotes the inner product in I?. The 
constraint (29) is satisfied if 0 E L1(R) (i.e.: J |/(t)|dt < oo) and f 0(t)dx = 0 
since under this assumption -0 is continuous, then to get C^, < oo is sufficient 
that '0(0) = 0, or equivalently, J i/’(x)dx = 0.

As an example consider the Haar mother wavelet ^(x^ given in equation 
(10). For a > 0 we have

and the CWT
1 / fb+a \

(r/)(a,6) = ^== / f(t)dt — f(t)dt].
VN wb+i Jb )

For a < 0 the CWT is developed in a similar way. In the context of CWTs, 
some of the most frequently used wavelet families are real and complex Mor- 
let wavelet, real and complex Mexican hat wavelet, real and complex Shannon 
wavelet, among others.

The Morlet Wavelet or Gabor wavelet (Daubechies (1992)), is a continuous 
wavelet depending on parameter a. Its Fourier transform, 0, is a displaced 
Gaussian, tuned somewhat so that 0(0) = 0,

-0(0) = 7T ' ^-(WÇo)' /2 _ e-^ +Ç0)/2^ , (31)
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^(t) = 7T 4 ie ^ot _ e Çq/2^ e i , (32)

/ \l/2
where £o is often chosen as tt (— 5.336 or £o = 5 for simplicity. The
Morlet wavelet for £o = 5 is shown in Figure 6. This wavelet can be found in its 
complex version or in a real-valued version.

Figure 6. Morlet mother wavelet for £ = 5 is shown in blue colour.

The Mexican hat wavelet or the Ricker wavelet is the second derivative of 
the Gaussian e-^/2 and is defined by

^^ = ^^ ^^ ~ ^^ ^^

after normalization to get ||'0||2 = 1 (T2(R)-norm) and -0(0) > 0. Its plot is rem­
iniscent of a cross section of a Mexican hat. The complex Mexican hat wavelet is 
formulated in terms of its Fourier transform given by 0(£) = 2 ^Ivr^-'-^^e^aCf^^^

The Fourier transform of the Shannon wavelet (Mallat (1998)) is the follow­
ing:

^i^\ = / e~^ if £ G [-27b -7rl u K 27rl
[ 0 otherwise

and the continuous wavelet is '4’^ = ^^^Ã/í)^ ~ ^^t1-!/^^ • This wavelet 
has infinite continuous derivatives with decay as | at infinity due to the discon­
tinuities of 4’^ at £ = ±7T and £ = ±2tt.

4.1. Scalogram
The scalogram, a graph of the absolute value of the CWT, \Tf |, as a function of 
time, is used for different types of analysis. Color levels (high values of \Tf\ are 
in red) or gray levels are used (high values of \Tf\ are in black, zero in white) and 
c 1 is plotted on the ordered (y-axis). Some applications of the scalogram include



Wavelet Analysis for Time Series 147

period detection in time series, change point detection, function discontinuity 
detection, signals recovering, among others. In all cases, the wavelet transform 
can detect the location in time of the event found.

The CWTs of 4 time series examples are shown below. They were done with 
the package Wavecomp in R 4 that uses Morlet wavelet family. In the scalogram, 
a range of colors appears related to the p-value obtained from a hypothesis test 
that is carried out via simulations:

4 https: // cran.r-project.org/web/packages/WaveletComp/WaveletComp.pdf

Hy. There is no joint periodicity.

When Hq is rejected, it indicates a great possibility that the periodicity is 
present in the data set. Given a level of significance, for example 0.01 or 0.05, 
the null hypothesis will be rejected if the p-value is smaller than the level of 
significance chosen. The scalogram shows the CWT values for each time and 
period in a range of colors from blue to red and a black contour line where the 
maximum values of the CWT are found for each instant of time. This black line, 
like the red regions, is found at the times and periods of highest wavelet power 
levels, where Hq is rejected.

The first example is a sinusoidal data set with a period P=50. In Figure 
7 you can see, from left to right, the original signal, the scalogram (with the 
period on the y-axis) and the reconstruction of the signal from the CWT. In this 
example ’Time’ and ’Index’ on the x-axis correspond to the step of time of the 
curve. In the middle panel, you can see that the CWT detects the period of 50 
of the signal.

In Figure 8 the second example is showed: a signal with a variable period 
between P = 20 and P = 100. In this figure, from left to right, the original 
signal, the scalogram (with the period on the y-axis and the time step on the 
x-axis) and the reconstruction of the signal from the CWT can be seen. In the 
center panel of the figure, it is shown how the scalogram detects the variable 
period of the signal, its tendency and the reconstruction of the signal on the left 
panel is quite accurate. We can compare the performance of the scalogram with 
the STFT showed on the right panel of Figure 4.

In Figure 9, a signal with two periods: P = 30 and P = 80, both along 
all the range, is shown. In the figure, from left to right, the original signal, the 
scalogram (with the period on the y-axis and the time step called ’Index’ on the 
x-axis) can be observed. On the right panel, it is easy to see two zones in red 
with a black line across indicating the two periods present in the signal.

Figure 10 shows a signal with two periods: P = 30 and P = 80, in separate 
intervals of time. On the right panel, it is simple to see two intervals of time 
with two different periods for the signal. The CWT can detect the instant of 
time when the change of period occurs.

In the four examples presented, some of the potentialities of the CWT can 
be observed: it can detect one or more periods present in the curve and indicate 
the time interval in which the detected period influences the behavior of the 
time series as well as it can detect the points of change where the change between
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periods occurs. All of these are regarding an evenly sampled time series. Because 
of this, for 55 Cyg light curve (from TESS mission) a partition of the data is 
made and they are analyzed separately obtaining the scalograms in Figure 12. 
Although each partition still has irregularly sampled data, the time differences 
between the measurements are quite similar allowing the use of the Wavecomp 
package which is for equidistant time series.
Figure 12 shows two significant periods (solid black lines). A first period pi that 
starts with a value 2 < pi < 4, grows in time and stands at p <~ 4 at the end 
of the time interval (right panel); and a local in time period p = 2 that appears 
during the middle time of the first part of the data (middle panel) and decreases 
to a value just below 2 during the second part (right panel).

The graph is seen divided into two regions, one with brighter colours and 
the other with fainter colours. It corresponds to the cone of influence, described 
in Lenoir & Crucifix (2018), the wavelet analysis extends a little at the edges 
of the time series, due to the wavelet support (values where the wavelet is not 
null) then a part goes beyond after the last point of the time series, or before 
the first point of the time series. Due to this, one half cone is removed from the 
left end and another from the right end, from the area under analysis, producing 
the region with fainter colors. This situation is present in each of the plots but 
is more evident in this figure.

For data with time differences between more irregular measurements it is 
recommended to look for other alternatives. Some of them are listed below. 
Developments have been made by interpolating the data to obtain equispaced 
data (see for instance Thiebaut & Roques (2005)) or in other cases the con­
tinuous wavelet transform has been used on the raw data (Lenoir & Crucifix 
(2018)). Foster (1996) proposed the use of the weighted wavelet Z transform 
to face this problem. In his work the author proposed an adaptation of wavelet 
analysis for irregularly spaced data called Weighted Wavelet Z transform (WWZ- 
transform). It consists of analyzing the data through projections of the Morlet 
mother wavelet, which add up with some specific weighting. Foster (1996) showed 
the efficiency of the method in some signals although its limitation consists in 
detecting periods and amplitudes when the gap in data is larger than the pe­
riod to be detected. WWZ transform proved good performance discerning in 
frequency and time, period and amplitude of long-period stars in presence of 
unevenly data.

According to Lenoir & Crucifix (2018), interpolation procedures can signifi­
cantly affect the results especially when hypothesis testing is used. The authors 
proposed a method to analyzed unevenly time series by means of the scalogram 
of wavelet analysis without interpolation of the data. The authors proposed 
to use projections of the continuous Morlet mother wavelet, without weighting, 
and implemented his methodology in the WEAVEPAL software (developed on 
Python 2, Lenoir & Crucifix (2017)). The method seems efficient as long as the 
length of the intervals without observations is little variable. It is also observed 
as a limitation the inability to detect periods when the gap is larger than the 
period to be detected.

Tarnopolski et al. (2020) argue that irregular data makes it difficult to cal­
culate certain magnitudes and introduces spurious peaks in the power spectral
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density. To solve this problem the authors propose to interpolate the data to 
make them regular using a method based on the ARMA time series model called 
MIARMA. "

Figure 7. The original sinusoidal signal with period 50, the scalogram 
and the reconstruction from the CWT are shown from left to right 
panels.

— original
----reconstructed!

200 400 600 800 1000

Figure 8. The original sinusoidal signal with a variable period from 
20 to 100, the scalogram and the reconstruction from the CWT are 
shown from left to right panels. Center panel shows how the scalogram 
manages to capture the variable period.

5. Conclusions

In this paper we presented a brief summary of the theory of wavelet analysis, 
multiresolution analysis, and the continuous wavelet transform along with some 
applications in periodic time series to detect periods or points of change through 
simulations and real data. The R software was used for the implementation of 
numerical simulations and the wavelet analysis.
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Figure 9. The original sinusoidal signal with two periods (30,80) 
along the curve is shown on the left panel. The corresponding scalo- 
gram with the evidence of the two periods along all the range of the 
signal is shown on the right panel.

6. R Codes

Some of the R codes used in this Chapter are presented in this section. Note 
that the ’+’ sign is used in some commands to indicate that they continue on the 
next line. When running them in R you must select all the lines corresponding 
to the command, deleting the ’+’. For example, for the command:

plot(t,haar3, type=’l’, ylim=c(-2.1,2.1),xlim=c(-0.5,2.5),
+ col=’blue’)

put in R without ’+’ and select all the sentences in order to run it:

plot(t,haar3, type=’l’, ylim=c(-2.1,2.1),xlim=c(-0.5,2.5), col=’blue’)

6.1. STFT
Figure 1:

install.packages(5 el0715)
library(e!071)

tl<-seq(0,100,0.01)
length(tl)
xl<-sin((0.2*pi)*tl[1:3000])
x2<-l.5*sin(0.5*pi*tl[3001:4000])
x3<-2*sin((0.8*pi)*t1[4001:10001])
x<-c(xl,x2,x3)
zl<-sin((3/5)*t 1 [1:3000])
z2<-0.5*sin(0.5*tl[3001:6000])
z3<-2*sin((1/10)*tl[6001:10001])
obj<-c(zl,z2,z3)
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Figure 10. The original sinusoidal signal with two periods, F = 80 
for the first part of the curve and F = 30 for the final part is shown on 
the left panel. The corresponding scalogram with the evidence of the 
two detected periods and the time interval involving each one is shown 
on the right panel.

200 400 600 800 1000

par (mfrow=c (2,2))
plot(x, type=’l’, main=’Sine wave 1’, xlab=’Time’, ylab=’Signal’) 
y<-e!071::stft(x)
plot(y, xlab=’’, ylab=’’, main=’STFT of Sine wave 1’, ylim=c(0,15))
plot(obj, main=’Sine wave 2’, xlab=’Time’, ylab=’Signal’,type=’lines’) 
z<-e!071::stft(obj)
plot(z, xlab=’’, ylab=’’, main=’STFT of Sine wave 2’, ylim=c(0,15))

Figure 2:

install.packages(’lomb’) #Lomb Scargle periodogram 
library(lomb)
Isp(x, times=t1,ofac=5, xlim=c(0,0.5))

Figure 3:

install.packages(’ el071’) 
library(el071)

x<-rnorm(500)
y<-el071::stft(x)
obj<-arima.sim(n = 63, list(ar = c(0.8897, -0.4858), ma = c(-0.2279, 0.2488)),
+ sd = sqrt(0.1796))
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Figure 11. The scalogram of the same sinusoidal curve of Figure 7 
with period 50 where 50% of data was removed. In presence of irregular 
sampled data the scalogram underestimates the period.

z<-e!071::stft(obj)

plot(x, type=’l’, main=’White noise’, xlab=’Time’, ylab=’Signal’)
plot(y, xlab=’’, ylab=’’, main=’STFT of white noise’)
plot(obj, main=’ARMA(2,2)’, xlab=’Time’, ylab=’Signal’)
plot(z, xlab=”, ylab=”, main=’STFT of ARMA(2,2)’)

Figure 4:

install.packages(’WaveletComp’)
library(WaveletComp)

w = periodic.series(start.period = 20, end.period = 100, length = 1000)
w = w + 0.2*rnorm(1000)
wy<-el071::stft(w)

par(mfrow=c(l,2))
plot(w, type=’l’, main=’A signal with variable periods’, xlab=’Time’, ylab=’Signal’) 
plot(wy, xlab=’’, ylab=’’, main=’STFT of the signal’, ylim=c(0,20))

6.2. Haar Wavelet
Figure 5:

t<-seq(-2,3,0.01) 
length(t)
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Figure 12. The original light curve of 55 Cyg is shown on the left 
panel. After splitting the signal in two parts the two corresponding 
scalograms are shown on the right panels.
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par (mfrow=c (2,3))
title(’Wavelet Haar’)
# Plot 1: Wavelet Haar father: J=0 k=0. ---------------------------- ORIGINAL
haarl<-c(rep(0,200), rep(l,100), rep(0,201))
plot(t,haarl, type=’l’, ylim=c(-2.1,2.1),xlim=c(-0.5,2.5), col=’blue’,
+ ylab=”, xlab=’(a)’)
abline(v=0)
abline(h=0)

# Plot 2: Wavelet Haar father: j=0 k=l
haar2<-c(rep(0,300), rep(l,100), rep(0,101))
plot(t,haar2, type=’l’, ylim=c(-2.1,2.1),xlim=c(-0.5,2.5), col=’blue’,
+ ylab=”, xlab=’(b)’)
abline(v=0)
abline(h=0)

# Plot 3: Wavelet Haar father: j=l k=l/2
haar3<-c(rep(0,250), rep(2,25), rep(0,226))
plot(t,haar3, type=’l’, ylim=c(-2.1,2.1),xlim=c(-0.5,2.5), col=’blue’,
+ ylab=”, xlab=’(c)’)
abline(v=0)
abline(h=0)

# Plot 4: Wavelet Haar mather: j=0 k=0. ----------------------------ORIGINAL
haar4<-c(rep(0,200), rep(l,50), rep(-l,50),rep(0,201))
plot(t,haar4, type=’l’, ylim=c(-2.1,2.1),xlim=c(-0.5,2.5), col=’violet’,
+ ylab=”, xlab=’(d)’)
abline(v=0)
abline(h=0)

# Plot 5: Wavelet Haar mather: j=0 k=l
haar5<-c(rep(0,300), rep(1,50), rep(-1,50),rep(0,101))
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plot(t,haar5, type=’l’, ylim=c(-2.1,2.1),xlim=c(-0.5,2.5), col=’violet’,
+ ylab=’’, xlab=’(e)’)
abline(v=0)
abline(h=0)

#Plot 6: Wavelet Haar mather: j=l k=l
haar6<-c(rep(0,300), rep(2,25), rep(-2,25),rep(0,151))
plot(t,haar6, type=’l’, ylim=c(-2.1,2.1),xlim=c(-0.5,2.5), col=’violet’,
+ ylab=’’, xlab=’(f)’)
abline(v=0)
abline(h=0)

6.3. CWT and Scalogram
This section is based on Roesch & Schmidbauer (2018).

Figure 7: A series with a constant period, period equal 50

install.packages(’WaveletComp’) 
library(WaveletComp)

set.seed(l)
xl = periodic.series(start.period = 50, length = 1000) 
xl = xl + 0.2*rnorm(1000) # add some noise
plot(xl, type=’l’, xlab=’Time’) 
date=l:1000

my.data <- data.frame(date=date, x = xl) 
my.w <- analyze.wavelet(my.data, "x", 
loess.span = 0, 
dt = 1, dj = 1/250, 
lowerPeriod = 16, 
upperPeriod = 128, 
make.pval = TRUE, n.sim = 10) 
#scalogram 
wt.image(my.w, color.key = "quantile", n.levels = 250, 
legend.params = list(lab = "wavelet power levels", mar = 4.7)) 
#red zones with black lines corresponds to more significant periods

#recover the significant periods and the average period 
ta<-my.w$Period[which(my.w$Ridge==l,arr.ind = TRUE)[,1]] 
mean(ta)

#reconstruct the signal using wavelets
reconstruct(my.w, plot.waves = FALSE, Iwd = c(l,2), 
legend.coords = "bottomleft", ylim = c(-1.8, 1.8))
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Figure 8: A series with a variable period.

install.packages(’WaveletComp’) 
library(WaveletComp)

x = periodic.series(start.period = 20, end.period = 100, length = 1000) 
x = x + 0.2*rnorm(1000) 
plot(xl, type=’l’, xlab=’Time’)

my.data <- data.frame(x = x) 
my.w <- analyze.wavelet(my.data, "x", 
loess.span = 0, 
dt = 1, dj = 1/250, 
lowerPeriod = 16, 
upperPeriod = 128, 
make.pval = TRUE, n.sim = 10) 
wt.image(my.w, n.levels = 250, 
legend.params = list(lab = "wavelet power levels")) 
#The variable period is observed in the scalogram 

#reconstruction 
my.rec <- reconstruct(my.w)

Figure 9: A series with two periods.

install.packages(’WaveletComp’) 
library(WaveletComp)

set.seed(l)
xl <- periodic.series(start.period = 80, length = 1000) 
x2 <- periodic.series(start.period = 30, length = 1000) 
x <- xl + x2 + 0.2*rnorm(1000)
plot(x, type=’l’, xlab=’Time’)

my.data <- data.frame(x = x) 
my.w <- analyze.wavelet(my.data, "x", 
loess.span = 0, 
dt = 1, dj = 1/250, 
lowerPeriod = 16, 
upperPeriod = 128, 
make.pval = TRUE, n.sim = 10) 
wt.image(my.w, n.levels = 250, 
legend.params = list(lab = "wavelet power levels") )

#reconstruction
reconstruct(my.w, plot.waves = TRUE, Iwd = c(l,2), 
legend.coords = "bottomleft")
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Figure 10: A series with two periods in different times.

install.packages(’WaveletComp’)
library(WaveletComp)

set.seed(l)
xl <- periodic.series(start.period = 80, length = 1000) 
x2 <- periodic.series(start.period = 30, length = 1000) 
x <- c(xl , x2) + 0.2*rnorm(1000)
plot(x, type=’l’, xlab=’Time’)

my.data <- data.frame(x = x) 
my.w <- analyze.wavelet(my.data, "x", 
loess.span = 0, 
dt = 1, dj = 1/250, 
lowerPeriod = 16, 
upperPeriod = 128, 
make.pval = TRUE, n.sim = 10) 
wt.image(my.w, n.levels = 250, 
legend.params = list(lab = "wavelet power levels") )

Figure 11: An unevenly sampled data.

install.packages(’WaveletComp’)
library(WaveletComp)

set.seed(l)
xl = periodic.series(start.period = 50, length = 1000)
xl = xl + 0.2*rnorm(1000) # add some noise
date=l:1000

#Deleting some data to produce gaps
obs <- sample(seq(xl), 0.5*length(xl)) # 50% gaps
xll <- xl [sort(obs)]
datel <- date[sort(obs)]

par(mfrow=c(1,2))
plot(xl ~ date, pch=".", cex=2)
plot(xll ~ datel, pch=".", cex=2)

par(mfrow=c(1,1))

my.datall <- data.frame(date=datel, x = xll) #with unevenly data 
my.wll <- analyze.wavelet(my.datall, "x", 
loess.span = 0,
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dt = 1, dj = 1/250, 
lowerPeriod = 16, 
upperPeriod = 128, 
make.pval = TRUE, n.sim = 10)

wt.image(my.wll, color.key = "quantile", n.levels = 250, 
legend.params = list(lab = "wavelet power levels", mar = 4.7)) 
#In presence of unevenly data wavecomp subestime the period.

reconstruct(my.wll, plot.waves = FALSE, Iwd = c(l,2), 
legend.coords = "bottomleft", ylim = c(-1.8, 1.8)) 
#Be carefull, Wavecomp analyze the serie sticking the gaps

7. Notation

Some notation used in the article is the following:

R is the set of real numbers,

Z is the set of integer numbers,

© direct sum of two or more linear sub-spaces, that is, a new subspace spanned 
for generators of each sub-space in the direct sum where each is orthogonal 
to any other.

© of a subspace included in another subspace, if B C A, then A © B is the 
orthogonal complement of B within A,

IMI2 2-norm of functions, ||.||2 = J^ |f(t)|2dt,

L2(R) Hilbert space of real functions with finite 2-norm.
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