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Resumen / El objetivo de este trabajo es investigar si un agujero negro puede estar presente en un universo que 
atraviesa una fase de contracción, rebote y expansión. Para ello, modelamos una inhomogeneidad embebida en 
universo de Friedmann-Lemaitre-Robertson-Walker mediante la métrica generalizada comovil de McVittie, la cual 
tiene en cuenta la interacción de la masa central con el fluido cosmológico. Calculamos los horizontes atrapados, 
regiones espacio-temporales y determinamos la estructura de los conos de luz. Del análisis de la estructura causal 
concluimos que el agujero negro sobrevive al rebote y continúa su existencia en la fase de expansión. Esto implica 
que los modelos cosmológicos de rebote permiten la existencia de agujeros negros en todas las fases del universo, 
y a su vez que los agujeros negros provenientes de la época de contracción podrían jugar algún rol en la etapa de 
expansión.

Abstract / We analyze whether a black hole could exist and persist in a universe that goes through a phase of 
contraction, bounce and subsequent expansion. To this end, we investigate the comoving generalized McVittie 
metric that represents an inhomogeneity embedded in Friedmann-Lemaitre-Robertson-Walker universe and allows 
interaction with the cosmic fluid. We compute the trapping horizons, spacetime regions and determine the light 
cone structure. The analysis of the causal structure leads us to conclude that a dynamical black hole survives 
the cosmological bounce and continues to exist in the expanding phase of the universe. This result implies that 
bouncing cosmologies admit black holes at all epochs and that these black holes might play some role in the 
expanding phase of the universe.
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1. Introduction
Though the ACDM model is the most successful cos
mological model up to date, being able to explain most 
of the available data Planck Collaboration et al. (2020); 
Ade et al. (2016), it is deficient in several aspects. One 
of its major problems is the initial cosmological singu
larity. Bouncing cosmologies provide an alternative to 
overcome this problem. In these models the universe 
contracts from a very diluted phase and then smoothly 
evolves into a bounce that leads to the current expan
sion epoch as described by the ACDM model. As the 
universe contracts, the temperature and density increase 
erasing all structure in the process. Black holes, how
ever, might survive the bounce and play some role in 
the subsequent expanding phase of the universe.

The survival of black holes to a cosmological bounce, 
however, is unclear. Some authors have explored the 
problem using different approaches (Carr & Coley, 2011; 
Clifton et al., 2017; Gorkavyi & Tyul’bashev, 2021). 
Since black holes are essentially spacetime regions with 
a particular curvature, the global evolution of the uni
verse should affect their horizons, especially close to a 
bounce. The whole process is dynamical, and hence can
not be investigated using the standard static solutions.

In a previous series of works Pérez et al. (2021a,b) 
we considered the evolution of the McVittie metric be
fore, during, and after a cosmic bounce and showed that 
although the metric describes a black hole in the past of

the bounce, the trapping horizon disappears close to it, 
when it merges with the cosmic horizon. In the McVittie 
metric, however, the central mass does not interact with 
the cosmic fluid (its mass remains constant), a situation 
that does not seem realistic. In this work, we deal with 
this problem and we investigate a black hole described 
by a generalized McVittie metric. These solutions are 
able to represent the interaction of the central object 
with the cosmic fluid and evolve with the universe.

2. Scale factor of the bouncing cosmological 
model

There are many mechanisms that could generate a cos
mological bounce, either by classical or quantum effects. 
Novello & Bergliaffa (2008). We choose a scale factor 
that was derived by Celani and collaborators (Celani 
et al., 2017) considering quantum corrections to the clas
sical evolution of the scale factor Pinto-Neto & Fabris 
(2013). It has the form

(1)

Here, T is the cosmic time and I}, fixes the bounce time 
scale, where 1011 s < Τι, < 101 s Frión et al. (2020). 
We adopt a value close to the upper limit (Tb = 101 s), 
so we consider a classical bounce for simplicity.
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3. Comoving Generalized McVittie spacetime
The McVittie metric (McVittie, 1933) is a solution 
of Einstein field equations that describes an inhomo
geneity embedded in a Friedmann-Lemaitre-Robertson- 
Walker (FLRW) cosmological background. This solu
tion was later generalized by Faraoni & Jacques (2007). 
The corresponding line element in isotropic coordinates 
(Τ,τ,θ,φ) reads

The expansion of the null vector Ia (na) when 
the geodesic to which it is tangent is not necessarily 
affinelly-parametrized can be computed using the ex
pression Faraoni (2015)

(2)

Here, dQ2 = d02i A-sin2 θάφ2, a(T) is the scale factor 
of the cosmological background model and m(T) is a 
function that depends on the cosmic time T.

In this work, we focus on a particular class of gener
alized McVittie models that corresponds to the choice 
m(T) = mo, where m^ is a constant. Under this pre
scription, the line element (2) is

(3)

(4)

(5)

The analysis of the causal structure is much simpler 
if performed in Painlevé-Gullstrand (PG) coordinates 
(ί,Γ,θ,φ). Under this coordinate transformation, the 
line element (3) now takes the form*

(6)

(7)

The outgoing (ingoing) radial null geodesic congruence 
of (7) have tangent fields (Nielsen & Visser, 2006):

3.1. Trapping horizons

(8)

(9)

This metric is usually referred as Comoving Gener
alized McVittie (CGMcV) spacetime. In the limit 
a(T) —> 1, the Schwarzschild metric in isotropic coor
dinates is recovered, and if m^ —> 0, we obtain the 
Friedmann-Lemaitre-Robertson-Walker (FLRW) cos
mological spacetime.

In order to determine whether the metric (3) repre
sents a black hole that exists and survives in a universe 
that goes through a cosmological bounce, a full anal
ysis of the causal structure of the spacetime is neces
sary. This includes studying the existence of trapping 
horizons, the determination of regular trapped and anti
trapped regions, and the computation of the trajectories 
of ingoing and outgoing radial null geodesics.

Trapping horizons are defined as the surfaces where 
null geodesics change their focusing properties Hayward 
(1994). Mathematically, these horizons are determined 
by the condition 0in0out = 0 where 0¡n (0out) stands for 
the expansion of ingoing (outgoing) radial null geodesics 
with tangent field na (Ia). Spacetime regions can be 
classified as:

• Regular if 0in0Out < 0.
• Anti-trapped if 0in0Out > 0, where θ[¸ > 0 and 0out > 

0.
• Trapped if 0in0Out > 0, where 0¡n < 0 and 0out < 0. 

Trapped regions are a key feature that allow to identify 
the presence of a black hole Hayward (1994): in the 
trapped region of a black hole ingoing and outgoing null 
rays are converging and remain confined and enclosed 
by a horizon.

We use these two vectors to calculate 0out and 0¡n. In 
terms of the scale factor given by (1), the dimensionless 
cosmic time T = T ¡T^ and x = r/rg (rg = Gm^jc2), 
the expansions take the form

We show in Fig. la plot of the location of the trap
ping horizons and the different spacetime regions.

We obtain the equation that determines the trajectories 
of outgoing and ingoing radial null geodesics by setting

3.2. Radial null geodesics and light cones

(10)

‘Notice that there are two intermediate coordinate trans
formations: (Τ,Γ,θ,φ) —> (Τ,Γ,θ,φ), isotropic to radius co
ordinate; (Τ,Γ,θ,φ) -4 (τ,Γ,θ,φ), cosmic time to conformal 
time, and then to PG coordinates.
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Figure 1: The blue and red lines indicates the conditions 
^out = 0 and θ[η = 0, respectively. The dashed green line 
denotes the surface r = 2rg. The trapped regions are painted 
in light blue, the anti-trapped are coloured in light pink and 
the regular zones are in white. Here, Tb = 10-4 s and mg = 
10 .W. .

where the <+= (<—=) corresponds to the outgoing (in
going) case. We integrate this equation and show the 
result in Fig. 2. The dotted curves represent the null 
ingoing geodesics while the dashed curves the null out
going ones. The grey shadow regions show some light 
cones and the black arrow indicates the local future di
rection.

The trajectories of ingoing radial null geodesics have 
a negative slope for all values T and x. Those ingoing 
null rays that go through the surface τ = 2, end up at 
the singular surface τ = 0. These geodesics can cross 
the surface i = 2 in only one way: from i > 2 to i < 2 
since the region enclosed by τ = 2 is trapped.

Outgoing null geodesics are expanding in the region 
t > 2 for all values of the cosmic time. As they get 
closer to τ = 2, the slope of the trajectories becomes 
smaller and in the limit τ —> 2, the slope goes to zero. 
In the trapped region (t < 2), the slope of outgoing null 
rays is negative and these geodesics are interrupted at 
the singularity.

The light cone structure makes evident that the sur
face t = 2 acts as a one way membrane behaving

Figure 2: The dotted (dashed) curves represent the null in
going (outgoing) radial geodesics. The grey shadow regions 
show some light cones and the black arrow indicates the fu
ture direction. Here, Tb = 10~4 s and mg = 10 Mg,.

like an event horizon that is present at all cosmological 
epochs of the universe (contraction, bounce and expan
sion). Thus, we conclude that the comoving generalized 
McVittie spacetime in a bouncing cosmological model 
includes a dynamical black hole at all times

4. Conclusions
We have analyzed the causal structure of the comoving 
generalized McVittie spacetime in a bouncing cosmolog
ical model. We have computed the trapping horizons, 
spacetime regions, and derived the trajectories of radial 
null rays. We have probed that a dynamical black hole 
is present at all stages of the cosmic evolution, before, 
during and after the bounce.

If black holes survive through a cosmological bounce, 
they might play an important role in the subsequent 
expanding phase of the universe. For instance, these 
surviving black holes might contribute to a fraction of 
the total dark matter component or provide the seeds 
for the formation of galaxies Carr & Silk (2018); Carr 
& Kühnel (2020). Some of these issues will be explored 
in a future work.
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