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The Maxirum Blas of Robust Covarlances

BY RICARDO A. MARONNA AND VIOTOR J. YOHAI

ABSTRACT

This paper deals with the madimam ssymptotic bias of two clssses of robust estimates of the dispersioca
matrix V of  p-dimensional random vector 3, under 2 contamination model of the form P = (1~¢)Po+eb(z -
where P s the distribution of 3, Py Is a spherical distribution, and 6(x,) is a polut mass at 2+, Ftimai -
Vg.a of the first class minimise the a quantile of 'V !5 among all symmetric positive-definkic matrices V
for some a € (0,1). The "mimimum volnme ellipsoid® estimator proposed by Rousssenw belongs to this
class with @ = 0.5. These estimators have breakdown polat min{a,1 — a) for all p. The second class of
estimators consist of the M-estimators, from which the seemingly most robust member was choses; mamely
the Tyler estimate defined as the solution Vr of E¥'Vy'2/2's = Vr. This estimatcr has breakdown paint
1/p. '.l‘hennme:kalnmlhahovthumeptlnrcvuydoaetol/p,Vrhuhmenlamllumn.‘:nmm

blas than Vge; and that the maximum blas of the latter may be extremely large even for ¢ much smaller
thas its breakdown point.
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1.INTRODUOTION

Let 5 be a p-dimensional vector with an eipsoidal distribution, Le., 5 = Ay+p, where A is a noasingular
pxp matrix, & is a p-dimensional vector and the random vector y is spherically distribated. Several methods
have been proposed io estimate the "dispersion matrix® V = AA' (where / stands for the transpose) and the
location vector p when the data may couiain outliers Among them, M-estimators are defined 23 rolutions
of the equations

;0(&)(3 A)=0 (1)

3 ) Bl =AY = TV (13)

where & == (2 — a)P=1(s; — ) and w,v, 3ad w© are positive functicns. Usnéer sultable sssumptions an
these functions (see Marcnna {1978) aud Huber (1921)) thess estlmators cre consisient and ssymptoticaliy
aormal. They are affino-isvariant znd they can bs computed namerically by az Rerstive algorithia, A Zmit
cas¢ I» the estimator Vr studied by Tyler (1587), which has v = 1 aad () == pjt.

- One measure.of the robustaess of an estimaior is Hs asymptotic bias whea the distribution P ol x s
* contaminated’ by s fraction of outliers, Le., the difference betwesn the asymptotic value of the estimator at
the "central model” for =, bere an eflipecidal distribation Py, and the asymptotic value for the distribution
P = (1~ ¢)P, + ¢Q,where Q is sa arbitrary distribution. For M-estimators, it bas been proved (Marosza
(1976), Huber (1981)) that the maximam bias of V" when s is known is infinite i ¢ > 1/p, Le., the breakdown
potnt &°(V') is always < 1/p. This fact can be proved by takiag @ of the form §(zo),le- a polnt mass
conceatrated at 35.

Stahel (1981) and Donoho (1082) defined estimators with bigh breakdown point for all p, but Litle is
known aboat them and their numerical calculstion seems unfeasible up to now.

A recemt attempt to overcome this lack of robastaess of ¥ is due to Rousseenw (1686) who proposed to
choose the estimators p aad V so that dllipsold (3 : P(z, 5, V) < 1}, where &(3,4,V) = (s —p)'V ~1(z—p),
bas minimum volume amoag all those covering ball of the data. This Is eonivalent to minimize the median
of (@ (s,,V), = 1,..,n} rubject to det{V') = L. He proved that this estimator has breakdown polnt
- 0.5 for all p .This proposal can be generalised by consideciug the a- quantile of & instead of the medias,
axd » similar calcnlation shows that in that case the breakdown point Is min(a,1 - a). We dencte these
estimators by Vg , for short.

Davies (1987) proposes a mare geseral class of estimators based oo minimizing a robust M-estimato of
scale of the & (s, s, V}'s, subject to det(V) = L. This class containy the Q-estamators.

We have computed the maximnm ssymptotic biases of Pr and Vg, when P, Is the normal distribution,
nndertheconumhathnolpobnmanu,udbudonthqu,.qubeluphemMuﬂalb
smaller than §*, while the bias of P ls generally smaller, exeept for ¢ very clos to Iis breakdown point 1/p.

In Soction 2 we exhibit and comment the numerical results. Section S coutaing the detalled results and
thzl proafs.



2.THE MAXTMUM BIAS

honmonn&nﬂde&lonhvhhtbeuthnsﬂond&e‘mutx}’,vhidisthemnlndiﬁaky.
and hence we suppose pi kmows and equal to 0. We shall take Jor Py the mormal disiribation. We shall
study the arymptotic bebavior of the estimators Vr and Vg o 'When the distribution of 3 i P = P(¢,30) =
(1 — )Py + &5(s0). Put K = |20*, where |3| stands for the Buclidean noem of 3. Because of ths imvaziance
of the estimators, we may assume without Joma of geaerality that P, = N(0,I), the it spherical nocmal
distribution, and that zo = K1/3¢; (where ¢, .., ¢, s the canonical basis of R?).

Fuudnna,ktq(x]nndhtkeo-qmﬂledthemdomndablexudu?.Thcnthealym.ptotk
value of Vg, b the symmetric poaitive definite matrix Vg o minimiciag g{='V~!3) udc'dct(V) =1 The
asymptotic vatue of Py is the solution Vy of the equation

phr g =Y, (1)

also wnder the restriction det(V) = 1, which is needad to easare uniqueness of the sotution.
Fixe> 0. LetV = V{¢, K) stand for efther Vg , or Vr under P(e, K1/3¢;). Then a symmetry argument
. shows_ that V = (w;).1a diagonal, with elementa ), = (K (say).and vj; = o(K) fox /> L Sincea snd b .
satialy )
det(V)=ba*! =1, (33)

all the information about the bias is contained n X), or equivalently in the "condition sumber” of V :
(X) = Y{K)fa(K) = b(K)/-1). We are interested in studying b* = supy,oH(K). Its calculation fs
described i Theorems 1 asd 2 of Section 3.

The numerical values of §* were computed for several combiastions of p and ¢ for Vr and Vg, with
differext a's. We report only the valnes corresponding to a = 0.5 and a = 0.75, aince it was observed that
for ¢ < 0.5 the bins i lazger, Acimally i was considered that the maximam condition namber o* = b*#/(1-?)
would be more represeatative. The values of ¢® for the three estimates appear in the table respectively under
or, czo and o3

To have another measurs of “how large” b* (or o) is, we consider the maximam bias of correlation
coefiicients. A "robest cosvelation coeflicient” between the coordimates i and ; of 2, is obtalned from the
msﬁthyuj=ﬂj/('“','j)‘p. Assume now that the contamination is located at 29 = t{e; + &),
aad let X = 26 = |'. Thea the distribution of s is obtained fram the former case by ax orthogomal
transformstioa, and the equivariance of V' implies that now V' has the form vy; = vxy = r (say) and
B3 = vy =4, a0d v5; = o and wy; =9 for § > 2 and { # j, where r and s depend on K and g = o(K)
defined above. Since the transformation preserves the trace and the determinant, it follows that tr(V) =
r+(p-2a=b+(p-1a, where b = ¥K) and det(V) = (* —#')a*? = L. Hncz 6 + b = 2r and
P — & = gb. Thus the carrclation p(K) = pyy = s/r satieles p(K) = (r* —ab)fr* = 1-45(K) /(1 +(K)P,
50 that maximising p is equivalent to maximiting 6. The maximum valee of p for the three estimators,
correspondiag to putting ¢ = ¢* above, are also shown in the table respectively ander pr, 3o andpy;
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Tabie about here

An aaalysis of the table shows that ¥y , may have s very lazge blas for ¢ much smaller than its breakdown
point of 0.50 o 0.25, and Vr behaves Better for low ¢ snd no¥ vezry lazge p  (p < 5).

Tyler hat given an algorithm for the calculation of ¥r whichk converges Independently of the startiag
matrhc By the contrary the computation of Vg o requires the absolute minimam of a na coovex fanctiom,
and therefore requires a good starting polat to yield reliable resuits. Thos the aciual behavior of the latter
will depead on the starting matrix, and thus their advantages with respect to the former muy be smaller
than the resaits of Table 1 rugyest.

The choice of the Tyier estimator within the class of M-estimators and of the Q-estimaiors among the
chss of S-estimators was mgyosted by te results of Martis, Yobal snd Zamar (1987) who sliow that foe
regression, the estimators malogous to them minimize the maximem asympiotic bias for & givea ¢ among
the clames of M- and of S-ostimators. We suspect that similar resalts should hold for the robast covariance -
problem.

3.MAIN RESULTS AND PROOTS

In this section we stase and prove the resuits which lod to the numerical valnes of Table L.

We consider Arst the biss of Vg 5. By the resscning above (2-3) we mxy from the start resirict oursetves
to mairices V of the form tivea there,

Let ¢ < 0.5 and € < @ < 1 — ¢ {the dependency of all yalues o ¢ and a will in general not be showa
explicitly). Let Py be a distribation with a density f(a) which is a decreasing function of |s}. Foe b > ©
define the random vartable 5(b) = x]/b+):;== 3}/ where a = p/0-1), Define g(K,b} as the a-quantile
of 2(5) when 3 has the diszibution Py = (1 — ¢)Py + e5(K/3¢;), 5(K) aa the value of b which minimizes
4(K,b) and Fi = the disizibation fanction of 5(3) vader Py.

THEORIM 1. Deflae X1, Ko aad ¥ by (K1) =af(1-¢), Fe(K1)=(a —¢)/(1~¢), and Ko =V Ky
Then & = supy, o HX), 2d farthermare b{K) i1 conttinous and noudecreaviag for K < Ko and H{K) =1
for K > X, (30d heace Vg bebave Like o redsscending eatizaaios).

To prove this thecewma. ax arxiiary resu's is wesded:

LadNA. Let the randam restor 3 have a demsity f(a) which ks a decresaing function of jz|. Lt l<m <p
aad defse the razdom nsbles w = wiz) = Y0, 5} and v =vfz) = Y0 ], Forh >0 ket Fi e the
distribusion fraction of 54 = u/¥+ vfa wherm b™aP™ = 1. Then for escht §, Fi(f) 11 a decreasiag fuaciica
ofbfrs > 1and s incesmmg for b< 1,

PROOF: Weshal prur> asi H 1 < b < ¥ thea forall $ > 0: P(4{b) < £) > Psl¥) L i). Int A= (s €
B ulz)fb+eiz)fo <1} 824 D = (2 € B2« als) /¥ +v{s)/o’ <1}, whese

Hor—t =11 =1, (21)
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We waat to prove thas [, / > [ /. This is equivalent to proving [, _5 /> [5_, /. Now (3-1) inplies that
{since A and B are cliipacids) m(4) = m(B), where m s the Lebesgue measure. Heace m(B—4) = m{A-B).
Thas # will sufBce to show that #3 € A — B and y € B — A thea f(x) > /(3).

Let (o, 00) be the solution of the Hnear system

T =

sod pat we = g + 0o THea it will be shown that s € A— B and y € B — A tmplies 3 < wp < |if2. To
prove the fizst inequality, recall thai {s}® = u{x) + v(s). Thus it will be showa that for sny v, v € 2

;-+-:-’5¢ and ;+5>t mply u+v<wm. (33)

Recall @ < 6 < b < V. Note that v, and 5y can be calculated epliciily from (3.2). Multiplying the et
fnequality in (3-3) by a and the second by —o’ and adding both, yidds ¥ < t{a - a’)/(afb ~ o' /V) = 0.
The first inequality in (3-3) together with the first equation ta (3-3) yleld ¢ < o + (3/8)(w — ¥). Heneo
s+o=0+ (¥ — %)+ ¥ < v+ % + (¥ — u){{a/5) ~ 1) < wo. This proves |3 < wy, and the remaining
inequality follows likzwise. Now since [ is decreasing, |3} < |5 Implies /(2) > /(y) as stated. Thecased<1
follows easily from this one.
PROOF OF THwOREM 1: We shall apply the Lemma o the case m = L Thus the famction FA(f) b
continuoes and lncreasing in #, sad is continuous and decreasing (incressing) in Sfor b 2 1 (5 < 1). Dednes
B(d) = Fy " (af(1 — ¢)) and j(B) = Fy'({a — €)/(1 - ¢)). Thus k(b) and j(b) are continnous and ncreasing
(decreasing) for b > 1 {3 < 1), and j(B) < k(B) for all 5. Let K; = k(1) and J) = j{1).

We shall first calcalate ¢{K,b). H 7 has the disizibution Py (recall the definitions above the Theorem
1) then 5(3) has distribation fancticn P(s{(d) < 1) = (1 — )F\(f) + {t > K/b) where [ s the hndiestor
tunction. The a-quantile ¢ = ¢(K,5) of this distzibution verifles:

o=k fr BB <K {3-4)
.= % fr  t{b)> K 2 bi(3) (33)
g=j8) fr biBj>K. {34)

Now We inimice ¢ o & fanision of b Put q@(!{) = miny, o (K, 8) and lat H{X) be the valme of & hick
yields the mintmam. Let bo(K) and by () be respectively the sclusions of 65{b} = X £ad o bk{b) = K with
b2 L Thusdy > b; and both are Increasin~ tunctions. We consider thres cases to sindy g 84 a fancilon 4 &;

{8) X > Ki. It tollows from (34} that ¢ decreases for b < 1 and ineresses for 1 < b < by{K); by {35)
it decreases foe by (K) < ¥ < bo(K), and by (3-8 it ineresses for b > 5{K). Thus ¢ bas tec Jocaul mimbax
e b =1 sad b= by(K), 2ud hence H j{8o{K)) > K then go(K) = K and BE) = I; H j(&{K]) < K| then
solK} = J{5o(X) a8d oK) = ol 12 i (bo(K) = K then qul&) = Ky aud HK) € [1,u{iC}] e
the minbmom i ettained as these two points).

(b} K1 > X > Ji. Note thai b = 1 belongs to (3-5). An analyxis similar to (2), but simpler, shovws taat
YK) = bo(X) and ¢o{K) = j{b(K)).



{c} Ji 2 K. A similar analysis ylelds %K) = 1 and ¢o(K) = J1.

Let K, satisty j{bo(Ko)) = Ki. Then trom (a), (b) and (c) # follows that B{K) = 1 lor K < J,
K} = bo(K) for J < K < Ko, {K) = 1 for K > Ko; for K = K, it takes on the valnes 1 20d by(Ko).
Since by is increasing, it follows that the supremmm of b{K) s bo{Ko) = b*. The defnition of the functions
j and by imply that Kp = V*X).

The calculation of the bias of the Tyler estimato is casier. We have the following Theorem

THEOREM 2. Let Py be any spherical distribution suck that Py(s = 0) = 0. Let € < 1fp, and ket 0= oK)
be the condition aumber of Vr under Py as dedned above. Thex for all K > 0, 0 is the solution of

1/p)~¢ [J
({rlc -Et+o(1-t]' 7

<wkape LhappReta distribution witk-degrees of freedom 1 aad p— 1.

PROOF: Put in (31) P = P, take V of the form described sbove (2-2), sad pre- and post- maliiply
resnaciively by €] and ¢;. It follows that

3 K b
(l—()Er.m‘f(mf;,
where u and v are defined in the statement of the Lemma above , with m = L Putting 0 = b/a sad
t = uf(s +v) yields {3-7). The distribution of { s the same for any distribution of |s| which gives aull mass
to the origiz, and hesce is Beta.

Numeries] computations. The distribation function F} was evaluated as

1

Al = [ Byt
where H is the distribation function of the chi-squared distribation with p degrees of freedom, and g is the
density of the Beta distribution with degrees of freedom 1 aad p—1. Thehuﬂolﬂmcnwbym
~f the subroatine CDTR of the IBM Scleatific Subrowitne Package. The change of variable ¢ = (1~ #)* vas
wsed to avold the singularities of the integrand at the end points; and the integral was evalusted by means
of $2-point Gazss quadrature implemested in the double precision subroutine DQGS2 of the IBM Paciage.
The equations needed to compute b were solved using the subroutine RTMI in the same pacimge. The same
methods were used for solving (3-7). An IBM 4831 computer was used.



BEFERENCRS

Doacho,DL. (1883), "Breakdown properties of multivariate location estimators’, PhD. qualify’ g pa-
per, Harvard Usivensity.

Davies, PL. (1986), "Asymptotic bebavior of S-estimates of multivariate location parameters and dis-
persion matrices”, unpublished manuscript.

Huber,P.J. (1081), Rokust Statirtior, New York: Wiley

Maronna B (1676), "Robust M-estimators of mubtivariate location and scatter”, Annely of Stetishice, 4,
51-87.

Martin R D, Yobai ¥.J. and ZamarR. (1637), *Minimax bias robust estimation of regression”, aapab-
Bshed nismmscript.

Bousseeuw P.J., (156) *Meltivariate estimation with hight breakdown polnt?, in: Meibemeticsd Staide
Hee ead Applications, edited by W.Grossmann, G.PRug, LYincre sud W.Werty, Reidel Peblishing Corzpeny,
83297,

StzhelL W. (1081}, *Breakdown of covarlance cstimators®, Research Report No. 31, Fachgruppe fir
Statistik, ETH, Zurich.

Tyler,D.E. (1987)," A distribution free M-estimator of maltivariate seatter, Annals of Statistics,15.



15

TABLE
MAXDMUM BIAS OF Vr AND Vg0

€ °r OCs»

005 12 63
010 1.6 142
020 28 833
025 40 1200

005 13 46
010 18 96
020 43 320
025 8.7 605

008 14 41

01021 ..a..s’l-.u

020 90 258
024 506 43
035 o 489

005 15 _39.

010 25 1.5
0156 60 132
020 o 281

005 22 3¢
010 o 67
020 o 193

004 27 32
005 45 8.7
010 o 67
020 oo 189

008 27 28
006 w 37
010 oo 68

0207 @ "19.0

o1

38
7.1
215
)

33
85
15.9
oo

3.0

51~

136
29
oo

$.0.

5.0
1.8
128

31
5.0
125

28
33
53
1.8

26
34
8.8
133

pPr M0 P

0.10
0.2
0.47
0.60

0.13
0.28

0.63

07
016

035

0.80
0.97
L0

019
0.4
07
100

0.38
100

100

0.48
a6
L00
1.00

0.4
100
100

Lo

0.73
0.87
0.97
0.98

0.6
081
0.94
0.97

0.81
0.78
0.92
0.95
0.98

0.59-
.76
0.88
092

0.57
0.74
0.90

0.53
0.57
0.74
0.90

0.47
0.58
0.74

090

0.58
0.78
0.93
1.00

0.52
0.69
0.88
1.00

0.51
0.67
088
093
1.00

0.50
0.67
0.7
0.88

0.51
0.67
0.85

0.48
0.52
0.68
0.86

0.4
0.54
0.70
0.87
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