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ABSTRACT

This paper deals with the maximum asymptotic bias of tiro classes of robust estimates of the dispersion 

matrix V of a p-dimensional random vector z, under a contamination model of the form P = (1—ε)Po+δ(x0), 

where P is the distribution of z, Po is a spherical distribution, and δ(x0) is a point mass at z0. Estimators 

VQ,α of the first class minimise the α quantile of x´V-1z among all symmetric positive-definite matrices V 

for some α ϵ (0,1). The "maximum volume ellipsoid" estimator proposed by Rouseauw belongs to this 

class with α = 0.5. These estimators have breakdown point min(α, 1 - α) for all p. The second class of 

estimators constat of the M-estimaton, from which the seemingly most robust member was choses; namely 

the Tyler estimate defined as the solution VT of Ez´VT-1z/z´z = VT. This estimator has breakdown point 

1/p. The numerical results show that except for ε very close to 1/p, VT has in general a smaller máximum 

bias than VQ,α; and that the maximum bias of the latter may be extremely large even for a much smaller 

than its breakdown point.
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l.lNIWWOnON

Let # be a p-dimenstoaai vector with aa eHipeoidal distribution, lx,» ■ Ay+p, where Aba noosiiigular 

pep matrix, μ b a p-dimesrionai vector and the nadan vector y b ipheritnBjr dbtribated. Several methode 

have been proposed to estimate the ’ dispersion matrix* V 3 AA' (where' stands for the transpose) and the 

location vector μ when the data may contain orillen Among them, M-estimaters are defined aa eolations 

of the equations

(1-1)

(1-3)

where cf? - (s< - ^“‘(rj - P) and a, p. and v are positive functions. Under writable Mjajuptiow on 

these inactions (see Maronna (1STÍ) and Huber (W81)) these estimators ere consistent and asymptotically 

normal. They are afiino-tovariaxt and they can be competed nnmcrieally by as iterative algorithm. A atit 

case is the estimator ^r studied by Tyler (U4T), which has 9 = 1 and «(I) ·« pjl.

One measureci the robustness of an estimator b its asymptotic bias when the distribution P dx b 

’ contaminated’ by a fraction of outliers, La., the difference between the asymptotic valse of the estimator at 

the ’central model” lor a, here an elipsoidal distribution POl and the asymptotic vahe for the distribution 

P k (1 - e)P0 + eQ,where Q b aa arbitrary distribution. Ft» M-estimatora, it has been proved (Maroma 

(1976), Haber (19SI)) that the maximam bias of V when μ b known b infinite if < > 1/p, Le., the breakdown 

point ί·(^) b always < 1/p. lib fact can be proved by taking Q of the term í(xo)rle. a point mass 

cnectatrated at *0.

Stahel (1061) and Donoho (1082) defined estimators with high breakdown point for all p, bnt little fa 

known about them and their numerical calculation seems unfeasible up to now.

A recent attempt to overcome thb tock of robustness of f b due to Rousseeuw (1988) who proposed to 

choose the estimators jt and ^ so that ellipsoid (a: f(r,A^) < 1), where <P(s^,V) = (χ-μγΥ~ι(χ-μ), 

has minimum volume among all those covering half of the data. Thb b eouhwlent to minimice the median 

of {/(ίί,μ,ν), i ■ l,~,n} subject to det(V) ™ 1. He proved that thb estimator has breakdown point 

0.5 for all p .Thb proposal can be generalised by coasidering the a- quantile of d* instead of the median, 

aad a similar calculation shows that in that case the breakdown point b mh(a,l - a). We denote these 

estimators by Vq^ for short

Davies (1987) proposes a more general class of estimators based co minimizing a robust M-estimato of 

scale of the d*(s<, p, Vpa, subject to det(Vj ■ 1. Thb class contains the Q-estimatora.

We hare computed the maximum asymptotic biases of Vy and Vq^ when Po b the normal distribution, 

under the contamination of point masses, and found out that for ^q^ it may be large for c substantially 

smaller than J”, while the bias offj· b generally smaller, except for c very close to its breakdown point 1/p.

In Section 2 we «Mbit and comment the numerical results. Section 3 contains the detailed resalts aad 

inri» μτοοίι.
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2 .The maximum bias

From now on we tall deal only with the estimation of the matrix V, which is the main difficulty, 

and hence we suppose μ known and equal to 0. We shall take for Po the normal distribution. We taB 

study the asymptotic behavior of the estimators Vr ud VQia when the distribution of s b P = P(c, so) ” 

(1 -e)p# +ri(io). Pnt K = l^p, where |i| stands foe the Euclidean norm of i. Because of the invariance 

of the estimators, we may assume without loa of generality that Pj = NIO, I), the unit spherical normal 

distribution, and that xq = Ji’V’ej (where ei, -,e, is the canonical basis of Jf).

For a given o, let f (x) stand for the α-quantQe of the random variable i under P. Then the asymptotic 

value of ^ is the symmetric positive dehaite matrix Vq^, minimiring ^xT"1») under det(V) “ L The 

asymptotic value of Py is the solution Y^ of the equation

(M)

also under the restriction det(V) α 1, which b needed to ensure uniqueness of the solution.

Fix e>0. Let V = V(e,JC) stand for either Vq^ or Vy under PfejK^ej). Then a symmetry argument 

. shows that K=.(uj)A diagonal^with elementst>ju = &(K). (say) aa(Luyp= o(K)_fct/_>_LSl»cea.in(LL 

satisfy

(«)

all the information about the bias is contained in ^K), or equivalently fa the ’condition number* of V : 

c(K) = b(K)/a(K) = bfK)'/^1). We are interested in studying fa* = npi>«W Ih calculation fa 

described in Theorems 1 aad 3 of Section S.

The numerical urina of b" were computed for several combiBaticns of p and c for Vy and Yq^ with 

different a'a We report only the vaha corresponding to a = 0.5 and a = 0.75, since it was obtened that 

for a < 0.5 the Maa is luga. Actually it was considered that the máximum condition number e* ■ i^/lH) 

would be more representative. The vabsa of c* for the three estimula appear in the table respectively under 

ey, eM aad on.

Tb have another measure of "how large* b* (or o) it, we consider the maximum fates of correlation 

coefflciaia. A "robust coodattan coefficient” betwem the cocrdinata i and j of s, is obtained from the 

matrix Y by py = ^iK^jjY^· Amume now that the contairinatioa b located at χ<> = t(«i + ej), 

aad let IT = W* = |*oP- Thea the distribution of s b obtained from the forma case by an orthogonal 

transformation, and the eqrirariaaee «f V impHts that now V has the form »u = «η “ r (say) aad 

»n = fu = i, aad if, » a and v<y = 0 for ; > 3 and ϊ / j, where r aad a depend on Í and a « a(2Q 

deAaed above. Since the transformation presara the trace and the determinant, it follows that tr(V) ■ 

Jr + (p - 3)a = b + (p - l|s, where b = ^i) aad det(V) = (r1 - i1^’ ■ L Hence a + b = 2r and 

P-P = A Thu# the correlation f(K} ^Pu^t/r satbfla ρ{Κ)* = (r*-ab)/^ = l-4c(X)/(l+f(X')),1 

so that maxhniiing p b equivalent to maxfaririag e. The maximum value of p for the three estimators, 

corresponding to putting c = c* above, are abo shown in the table respectively uda py, p^ and^»
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Table «boot hart

As analysis oí the table shows that Vq^ may have a very large bias for e much multa than Its breakdown 

point of 0.50 or 0J5, aad Yr behaves better far low c and not very large p (p < 5).

Tyler has given aa algorithm for the calculation of íy which converges Independently of the starting 

matrix. By the contrary tie computation of $q,a requires the absolute miulmnm of a noir convex fucila·, 

and therefore requires a good starting point to yield reiiahlr resulta. Thus the actual behavior of the latter 

will depead oe the starting matrix, aad thus their advantages with respect to the farmer may be smaller 

than the results of Tibie 1 suggest.

The choice of the Tyie estimator within the eiaas of Μ-estimators aad of the Q-estimaiom among the 

class of S-estfanators was mggested by te results of Martin, Yohai and Zamar (M8T) who show that far 

regression, the estimates analogous to them mknimite the naxbmn asymptotic bias for a given t among 

the classes of M- and of S-estimators. We suspect that similar results should hold for the robust covariance' 

problem.

3 .Main RESULTS and proofs

In this section we state aad prove the results which led to the numerical valsea of Table L

We consider first the Has of ^q^. By the remoning above (2-2) we may from the start restrict ourselves 

to matrices V of the form given there.

Let c < 0.5 aad e < a < 1 — e (the dependency of all values on e and a will in general not be shown 

explicitly). Let Po be a distribution with a density /(a) which Is a decreasing function of |s|. Ft* 5 > 0 

define the random variable i(B) « g[/b + y^^ ^ ja where o = ^/b-*). Define }(K,B) as the or-quantSe 

of ¿(5) when a has the distribution Pg a (1- e)P0 + eiflC^ei), ^Κ) aa the value of 5 which minimizes 

j(lf,i) aad A as the distribution fucticu of r(b) under Pq.

THXORJEM 1. Define Kt, Ko aid 5· by Pi (KJ = o/(l-e), FV(Ki) = (a -e)/(l - e), and Ko = b*Ki. 

Theo IP = supjoo MK), id fanhenncre bfK) fa «otiauous sad noudeerencij for K < Kq and b(K) c 1 

í'or K > Ko (zad hace Vq behaves lia a redaecendlng estimator).

To prove this ttorn. aa wrihry resuh is ueoded;

LSMMA. Let the random rotor : hare a density /(s) which fa a decreasing function of |r|. Let 1 < m <p 

sod define the randcce rasbta « = φ) « £’(j? and v « φ) » J^,+1 rf- ^’^>0 ^> Ji be the 

dwiributiou fraction of rill = w/ó-j- v/a where Ιτ*αΡ~* = 1. Tien for each t, ft(t) fa a deere&riag Auction 

of b te * > 1 ixd fa iscseaf for b < 1.

PROOF: We thaU pw- aas if ’ < 5 < y then for all t > 0 : Ρ(φ) < i) > Ρ(Φ) < *)· Let A » {* € 

^’ : φ)/δ -r φ)/α < f} al £ [i e .^ · φ)/^ + φξ/α' < l], when

Μ
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We vast to prove ^ jAf> jB^· 1,1,8 fa «<l«i™l«* *« PM^f Ía-b / > ¡β-a /· ^ (w) ^ ^ 
(since A and 5 are ellipsoids) m(A) = m(.0), where mb the Lebesgue measure. Hencem(B-A) = m(A-S). 

Thus it will suffice to show that if x € A - B and y^B-A then /(x) > /(y).

Lei ®o) be the solution of the linear system

(M)

sad put cq s Mo + co. Ha it wffl be shown that t^.A-B aad y€ B - A impía jij1 < r» < M*- To 

prore the flat inequality, recall that |*|8 = ψ) + ·(*)- Thus & will be show* that hr any u, u € 5

(W)

Recall ¿ < a <b < V. Note that «o aad t^ can be calculated explicitly from (8.2). Multiplying the flat 

inequality in (3-3) by a aad the second by -o' aad adding both, yields a < /(a - a')/(ajb - ¿¡V] 3 «o. 

The first inequality in (3-3) together with the first equation fa (3-2) yield s < ^ + (a/l)(«o - v). Hence 

s + » «» + (s - «,) + «, < i% + #( + (1^ - s)((a/l) -1) < v#. This prora |»P < «ο. «nd the remaining 

inequality follows likewise. Now since / is decreasing, |a| < |y| implies /(a) > /(}) as stated. The case b < 1 

follows easily from this one.

PROOr or THkORXM 1: We ahaQ apply the Lemma to the case m = L Thus the function 5(l) h 

continuous and increasing in t, and fa continuous aad decreasing (increasing) in 6 for b > 1 (b < 1). Dedae 

4(b) = /¡"‘(«/(I - e)) aad y(b) = ^((o ~ ‘)/(l ~<))· Th™ 4(b) “^ iW 816 «ootinuous aad increasing 

(decreasing) for b > 1 (b < 1), and j(b) < 4(b) for all b. Let K¡ = 4(1) and Λ = )(1).

We shall first calculate ffK^b). If a has the distribution Ρχ (recall the definitions above the Theorem 

1) then s(b) has distribution function P(r(b) < l) “ (1 - t)fl(l) + <1(1 > K/b) where / fa the indicator 

function. The α-quaatfle q = f (Jf, b) of this distribution "verifies:

M
(M 

;M)

Now we ¡afamóse j « a tunc tica of 6. Put ^(K) = mhj^fp^b) and let {(K) be the ruine of 6 which 

yields the minimum. Lei 6q(a) aad li(ff] be respectively the solutions ci Gj(b) - λ ud o’ 54(b) - K with 

b > L Thus bo > bi and both are increase- functions. We consider three cases to siudy $ as a function ^ I;

(a) K > Xj. It follows from (3-4) that q decreases for b < 1 and increase for 1 < 6 < bopOí ^ (^! 

it decreases foe i^K) < 5 < ^(K), aad by (tit) it increases for b > bo(X). Tins q has two local mthii 

at ó = 1 Mid 6= ^(K), and hence M ¿(bgíK)) > Κ· then ^(K) = Ki aad^X) a 1; if j(5j>(K)) < Ki then 

io«i = 1(M*)) “d HX) = bo(K); and if >(bo(K)) = Ki then io(K) = Kt and b(K) € 11,00^)1 (Le„ 

the minimum fa attained u these two points).

(b) Ki > K > Ji. Note that 6=1 belongs to (3-5). An analysis similar to (a), but simpler, shows that 

W^^and^)^^)).
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(c) Λ > X· A similar analysts yields t(K) = 1 and fo(X) = Ji.

Let Xo satisfy ;(6ο(Χο)) = ij. Then from (a), (b) and (c) It follows that b(X) = 1 (or X < ¿, 

HK) = MX) for J < K < Xo, HX) - 1 far X > Xo; for X = Xo it takes cm the vahes 1 and bo(Xo). 

Since bo is increasing, it follows that the rapremnm of b(X) is &o(Xo) — b*. The definition of the function 

; and bo imply that Xo 3 b*Xi.

The calculation of the bias of the Tyler estimate b easier. We have the fallowing Theorem.

TMOHIM 2. Let Po be any spherical distribution such that Po(s = 0) = 0. Let e < 1/p, and Jet o = o(X) 

be the condition number of Vy ssder Pg as defied above. Hen for all X > 0, o is the solution of

(3-7)

=w4wí?ErLΛi^^Bstaβ.distríbwtiQ^witXdep«es of freedosn 1 and p-1.

PROOF: Put in (2-1) P = Px, take V of the form described above (2-2), and pre- and post- multiply 

resoecirrely by ή and ej. It follows that

▼here a and v are defined in the statement of the Lemma above , with m = L Putting o = b/α and 

t = u/(u + r) yields (3-7). The distribution oí f b the same for any distribution ci |s| which fives null mass 

to the origin, and hence b Beta.

Numerical computations. The distribution function f) was evaluated as

▼here H b the distribution function of the chi-squred dbtributioa with p degrees of freedom, and g b the 

density of the Beta distribution with degrees of freedom 1 and p-1. The function S van evaluated by means 

4 the subroutine GDIS of the IBM Scientific Subroutine Package. The change of variable P ■ (1 - (*)* vat 

used to avoid the singularities of the integrand at the end points; and the integral was evaluated by mean# 

cd 32-pcist Oanas quadrature implemeated in the double precirios sabroutiae DQOS2 of the IBM Package. 

The equations needed to compute b were solved using the subroutine RTMI in the same paclmge. The same 

methods were used for solving (3-7). An IBM 4331 computer was used.
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TABLE

Maximum Bias or VT and Vq^

8

P ί er cm Οτι Pr pu> Pll

2 0.05 1J 6.3 3.8 0.10 0.73 0.58
0.10 1.5 14.2 7.1 0.22 047 0.75
OJO 24 58.3 274 0.47 0.97 0.93
0J5 4.0 129.0 oo 0.60 0.98 1.00

S 0.05 14 4.5 3J 0.13 0.65 0.52
0.10 14 94 5.5 a 28 041 0.69
OJO 44 310 15.9 0.62 0.94 0.88
0J5 8.7 604 00 aro 0.97 1.00

4 0.05 1.4 4.1 3.0 0.16 0.61 041
010'"21 Λ 81 51 0.35 0.78- 0.67
OJO 9.0 25.8 13.5 0.80 0.92 0.86
0J4 50.5 414 26.9 0.97 0.95 0.93
OJS co 45.9 oo LOO 0.96 LOO

5 0.05 14 34 3.0 0.19 0.59 0.50
0.10 24 7.5 5.0 0.43 176 0.57
015 5.0 13J 7.8 an 046 0.77
OJO 00 281 118 LOO 0.92 0.85

ID 0.05 2J 3.6 31 0.38 0.57 0.51
0.10 00 6.7 5.0 LOO 0.74 0.67
OJO 00 194 124 LOO. 0.90 0.85

15 0.04 2.7 3.2 24 0.46 042 0.48
0.05 44 8.7 3J 0.63 0.57 042
010 00 6.7 54 LOO 0.74 0.68
OJO 00 18.9 131 1.00 0.90 0.86

20 0.03 17 2.8 2.6 0.45 0.47 0.44
0.05 00 3.7 3.4 LOO 0.58 0.54
0.10 *®. 6.8 5.6 LCO 0.74 0.70
OJO 00 19.0 134 LOO 0.90 0.87
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