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Abstract. A new Stata command, qcte, is proposed to implement sev­
eral methods for estimation and inference for quantile treatment effects 
models with a continuous treatment. An easy semiparametric two-step 
estimator, where the first step is based on a flexible Box-Cox model is 
proposed as the default model of the command. Practical statistical in­
ference procedures are developed using bootstrap. We implement some 
simulations exercises to show that the proposed methods have good per­
formance. Finally, the command is applied to a survey of Massachusetts 
lottery winners to estimate the unconditional quantile effects of the prize 
amount, as a proxy of non-labor income changes, on subsequent labor 
earnings from U.S. Social Security records. The empirical results reveal 
strong heterogeneity across unconditional quantiles.

Keywords: stOOOl, qcte, continuous treatment, quantile treatment effects, 
quantile regression

1 Introduction
The effect of policy variables on distributional outcomes are of fundamental 
interest in empirical economics and they are of importance for policymakers. 
The treatment effects (TE) literature has been extensively used in economics 
to analyze how treatments or social programs affect selected outcomes of in­
terest. Recently, there has been a growing interest on continuous TE (CTE). 
Continuous treatments (such as those indexed by dose, exposure, duration, or 
frequency) arise very often in practice, especially in observational studies. Im­
portantly, such treatments lead to effects that are naturally described by curves 
(e.g., dose-response curves as functionals of the treatment dose) rather than 
scalars (e.g., point estimators) as in discrete treatments. Many papers in the 
literature on unconditional TE concentrate on discrete treatments, i.e. binary 
or multi-valued treatment assignments. On the binary TE models, Hahn (1998), 
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Heckman et al. (1998), Hirano et al. (2003), Abadie and Imbens (2006) and Li 
et al. (2009) study efficient estimation of the average treatment effect (ATE). 
There is also literature on estimation of quantile treatment effect (QTE) for 
multi-valued TE, see e.g., Imbens (2000), Lechner (2001), Cattaneo (2010) and 
Cattaneo et al. (2013). It is known that categorizing or discretizing continuous 
treatments generally leads to a number of serious problems as loss of power in 
testing, misclassification (which is associated with potential bias), problems for 
prediction, and even interpretation of the results and coefficients of interest. 
See, e.g., Cox (1957), Cohen (1983), van Belle (2008), and Fedorov et al. (2009) 
for more comprehensive discussions on problems associated with discretizing 
continuous variables. Among others, Hirano and Imbens (2004) and Imai and 
van Dyk (2004) develop a generalized propensity score (GPS) for continuous 
average treatment models.

Bia and Mattei (2008) and Bia et al. (2014) propose two Stata commands, 
gpscore and drf, to compute the average dose-response functions (ADRF) 
using parametric and semiparametric techniques. This paper develop a new 
Stata command, qcte, for a practical estimation and inference for QTE with 
a continuous treatment. A parameter of interest in the presence of continuous 
treatment is the entire curve of quantile potential outcomes or quantile dose­
response function (QDRF). The QDRF summarizes the potential responses of 
each dose of magnitude t e T on a specified outcome of interest at the un­
conditional quantile t e (0,1). Another parameter of interest is the quantile 
continuous treatment effect (QCTE), which corresponds, for any fixed quantile, 
to the difference between two QDRF’s at given levels of treatment.

Identification of the parameters of interest is based on the ignorability or 
weak unconfoundedness assumption applying the methodology of Galvao and 
Wang (2015). The ignorability assumption states that given a set of observed 
covariates, the treatment is randomly assigned. This condition has been largely 
employed in the literature, see, e.g., Rubin (1977), Heckman et al. (1998), 
Dehejia and Wahba (1999), Firpo (2007), and Flores (2007). The empirical es­
timators are implemented as two-step estimators. In the first step, one estimates 
a ratio of conditional densities. In the second step of the two-step estimator, a 
simple weighted quantile regression estimation is performed where the weights 
are given by the ratio of conditional density functions. Alejo et al. (2018) de­
rive the asymptotic properties of the two-step estimator and develop statistical 
inference procedures for uniform inference and for fixed treatment values of in­
terest. Galvao and Wang (2015) suggest a nonparametric estimation for the first 
step. However, there are issues with its practical implementation. First, non­
parametric density estimators are computationally difficult for high-dimensional 
settings, and are thus problematic to implement in practice. Second, the re­
quired rates of convergence of the nonparametric estimator might be difficult 
to achieve. Alejo et al. (2018) propose a flexible Box-Cox density estimation 
procedure. This approach has important advantages. First, the Box-Cox first 
step is simple to implement in practice. Second, the Box-Cox procedure allows 
for many covariates and satisfies the required converge rates for the first step. 
The Box-Cox is thus very flexible to accommodate empirical settings where the 
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ignorability assumption is only valid after conditioning on a rich (possibly large) 
set of covariates. The numerical simulations show that the Box-Cox procedure 
is a flexible procedure to correctly estimate QDRF and QCTE functions for 
alternative data generating processes.

To illustrate the methods we estimate the effects of non-labor income changes 
on labor earnings. We use the survey of Massachusetts lottery winners and es­
timate the effect of the prize amount, as a proxy of exogenous non-labor income 
changes, on subsequent labor earnings (from U.S. Social Security records). This 
database was originally used by Imbens et al. (2001) and then by Hirano and 
Imbens (2004). The lottery prize, being unrelated with labor market perfor­
mance, conditional on a rich set of observables, serves as an income shock that 
may be used to measure the income effect on labor market decisions. In this 
example we have interest in identifying the effect of the lottery prize, which is 
a continuous variable, on labor earnings, and as such in estimating the QDRF 
and QCTE curves. That is, rather than studying the effect on a treatment 
group (i.e. with income shock) with respect to a comparable control group, we 
are interested in the curve linking labor market variables with the size of the 
shock. We focus on yearly income size years after the prize was received. The 
quantile process shows important heterogeneity in the marginal effects of the 
lottery prize. In particular, higher quantiles of future labor market earnings 
are less responsive to an increment in the lottery prize than lower quantiles. 
These results are important for analyzing the effect of general income transfers, 
as conditional cash transfer programs in developing countries, as the quantile 
heterogeneity reveals that those that are more likely to opt out of the labor 
market are the ones in the lower part of the income distribution.

The remainder of the paper is organized as follows. Section 2 reviews the 
results of Alejo et al. (2018) the two-step estimator and develop statistical in­
ference procedures. Section 3 describes the qcte syntax. Next we illustrate the 
procedure by applying the command to the the survey of Massachusetts lottery 
winners used by Hirano and Imbens (2004). Last, we conclude with practical 
suggestions on the proper use of the command.

2 Continuous Treatment Effects
The target is to learn how an outcome variable changes as the dose of some 
treatment variable varies. The dose is denoted by t, where t e T. an interval in 
R, and the outcome is denoted by K(t). More specifically, for each t e T. K(t) 
is the outcome when the dose of treatment is t. Thus define the random process 
y(t) as t varies in T- In the binary treatment case T = {0,1}. Here we allow 
T to be an interval [to, ti]-

An important parameter of interest when the treatment is continuous is the 
quantile dose response function (QDRF), which is defined as

qT(t) e inf{</ : FY(ej(q) > r}, t e (0, 1), (1)

the unconditional r-th QDRF, where fy(t) is the distribution function of U(t). 
Thus, the QDRF summarizes the potential responses of each dose of magnitude 
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ttT on a specified outcome of interest, Y(t), at its unconditional quantile t.
From the QDRF, one can learn about another interesting parameter, the 

quantile continuous treatment effect (QCTE), which is defined as

AT(t,t') := gT(t) - gT(t'). (2)

The QCTE, as defined in (2), captures the difference of the r-th quantile at two 
given different levels of treatment, t and t'. This QCTE function is the same as 
defined in Lee (2015) and describes the difference between the two potential re­
sponses of Y(t) at doses of magnitude t and t', at a given unconditional quantile 
t. Note that, in this paper, the QCTE is defined as the difference of the r-th 
quantile at different levels of treatment. This definition does not require the 
assumption of rank preservation, and it is regarded as a convenient way to sum­
marize interesting aspects of marginal distributions of the potential outcomes. 
However, if rank preservation holds, then QCTE defined above has a causal 
interpretation, that is, the effect of changing the level of the treatment for any 
particular subpopulation. We refer the reader to Firpo (2007) and Cattaneo 
(2010) for a detailed discussion on rank preservation in quantile treatment ef­
fects and definitions of concepts. Of particular interest is to analyze the QCTE 
for a fixed change in the dose, say 6, over the doses t e T as

DT(t, J) := AT(t + 5,t) = qT(t + J) - qT(t). (Y)

Unfortunately, as usual in the treatment effects literature, one cannot ob­
serve y(t) for all t e T. Rather, only a single U(to) can be observed, where 
to is the realization of a random variable T. Hence, if assignment to treatment 
status depends on potential outcomes, as it is usual in economic and other non- 
experimental problems, then selection biases arises as the observed outcomes 
might not be the result of the dose itself but of a self-assignment into treat­
ment. To solve this problem, it is common in the TE literature to assume the 
existence of a set of random variables X conditional on which Y(t) is indepen­
dent from T for all t e T. Thus conditional on observable variables, observed 
outcomes can be given a causal interpretation. This is the ignorability condi­
tion or weak unconfoundedness assumption in the literature. Finally, we need to 
combine the results for X to obtain an unconditional TE. By the law of iterated 
expectations, unconditional expectations can be recovered.

Define m(y(t); </T(t)) = r — l{y(t) < qT(t)} for each t and let

E[m(y(t); </T(t))] = 0. (4)

thus, </T(t) is defined as the solution to the moment condition given by the 
equation (2). If this problem has a unique solution, the identification result 
relies on the following equality:

E[m(y(t); 7t(Q)] = E RE; R))w0R Q] (5)

for each t e T, where wo(w;t) := an<^ 'ol notational convenience
we denote u := (a:T,y)T and U := ÍX . IQ . Consequently,
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(6)E[m(y;<?T(t))w0(l7;í)] =0

if and only if qT(t) = </To(Q-
This result is a direct application of the Theorem 1 in Galvao and Wang 

(2015) who extended the propensity score method to general dose response 
functions in a setting with continuous treatment. The intuition behind the result 
is that Y(t) being unobserved is replaced with observables (X. Y, T) equipped 
with a proper estimation of the density function of the treatment conditional 
on (x,y).

As in the TE literature, the identification induces an estimating equation 
with two pieces, the function m(-) together with a weighting function wo(-). 
In our case, the weights are given by • The intuition of this result
is similar to the discrete case where the propensity score is replaced by the 
corresponding density function. Also note that the weights could be written as 
fvix.TfaA.b, J either case, we need to work with a ratio of two conditional 

fv\x(ym '
densities. Note that this approach seems different from Hirano and Imbens 
(2004) and other papers that followed, where they only estimate J'yx(>/\x)- the 
so called generalized propensity score. However, Hirano and Imbens approach 
also requires to estimate E[Y|X, T], or in fact, E[Y|/T|x(i|^), T], As such, ours 
and Hirano and Imbens’ procedures involve two different functional estimates 
to compute the parameter of interest.

Finally, since the QCTE is the difference between the QDRF at two different 
treatment doses, identification of QCTE, AT(t,t'), is a straightforward of the 
previus result.

2.1 Two step estimator
Using the identification expression (6), Alejo et al. (2018) propose a two-step 
estimators for both QDRF and QCTE, in equations (2) and (3) respectively, 
as in Firpo (2007), Cattaneo (2010) and Galvao and Wang (2015). In the 
first step one estimates the weights, that is, the ratio of densities, w(-u;t) :=

• The second step is given by a reweighed version of the standard 
quantile estimation procedure (Koenker and Bassett (1978)). Below we describe 
the details of estimation.

We have a random sample of units (JQ, F), T¿), indexed by i = For
each unit i, Xi is a vector of covariates, and the level of the treatment received 
is Ti e [to,ii]- We observe the vector Xi, the treatment received 7), and the 
observed outcome corresponding to the level of the treatment received, F¿.

First step: Estimation of w0
To implement the estimator we need an estimator for wq. In practice, one esti­
mates fT\x,y(t\x, y) and J't x(¡\xj separately, and then computes the ratio to 
estimate wq. Galvao and Wang (2015) suggest a potential nonparametric esti­
mation for the first-step. However, there are important issues with its practical 
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implementation. The most important is that in several empirical applications 
the number of variables in X is relatively large, and as it is well known in 
the literature, it has an adverse effect on nonparametric methods due to the 
curse of dimensionality. Therefore, there are compelling reasons to use flexible 
parametric models to estimate the ratio of the conditional density functions. 
Following the results of Carroll and Ruppert (1984), Alejo et al. (2018) suggest 
a flexible Box-Cox estimation. This approach has important advantages. First, 
the Box-Cox first step is quick and simple to implement in practice. Second, 
the Box-Cox procedure allows for many covariates and satisfies the required 
convergence rates for the first step.

To estimate the conditional density fr\x,Y(t\x, y), we use the following 
model

A(T, AQ = A((X), A2)/3x + A(F, A2)/3K + e, (7)

where e\X,Y ~ N(0, a|), and A(-,A) is the Box-Cox transformation function, 
which is defined as A(Z, A) = logZ if A = 0 and = Z A otherwise. Us­
ing maximum likelihood estimation, we obtain the unknown set of parameters 
p := (Ai, A2,/3x,/3y, c|), and finally the conditional densities fy x.y y) and 
fT\x(t\x)-

The Box-Cox transformation only applies to variables in a positive domain 
(excluding zero). Nevertheless, this could be implemented if we define, for a 
given variable x, x* = ex, where we could thus have negative, zero and positive 
values of x, and we allow the Box-Cox parameters to transform x*. In this case, 
if the estimated parameter A is indeed zero, then the variable would require 
no transformation. It is important to highlight that the normality assumption 
is a simplifying condition. The Monte Carlo simulations in Alejo et al. (2018) 
show that the Box-Cox Gaussian model performs well for a large family of 
distributions.

Second step: Estimation of qr0 and At0
Following equation (4), identification condition for qTo(t) is: E[(r — 1{K < 
</To(t)})wo(l7;t)] = 0. Thus, an estimator for the QDRF qTo(t) is 

qT(t) = arg min
9 (8)

where pT(-) := -(r — 1{- < 0}) is the check function as in Koenker and Bassett 
(1978). Practical implementation of the estimator is simple. In practice, given 
the random sample, (X, T, U), one first computes w in the first step as described 
previously. Then, in the second step, one computes a simple weighted quantile 
regression of Y on a constant term using w as weights as given in equation (8), 
for each given t taken over a discretized subset (i.e., grid) of T-

Estimation of the QCTE parameter, ATo(i, t'\ is also easy. Given the QDRF 
</T(t), the estimator AT(t,t') can be computed as

AT(t,t') = i/T(t) - 7T(t'), (9) 
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for any (t, t') e T2.

2.2 Inference procedures
Alejo et al. (2018) show uniform consistency and weak convergence of this two- 
step estimator. In this section, we turn our attention to inference on both the 
QDRF and QCTE. First, we consider inference procedures for the QDRF for a 
fixed t, where we test simple linear hypothesis as

Ho : </To(i) = Qo,

for a fixed treatment t, where qo is a scalar value of interest, e.g., qo = 0. 
Inference for these simple hypotheses can be based on the results of Galvao and 
Wang (2015) and, in particular, on the asymptotic normality of yfnfqT(t) — q0).

Consider now asymptotic inference on QCTE. Since the QCTE involves eval­
uating two different treatment values, say t and t' = t + 6, simple hypothesis 
testing can be stated as

Ho : AT(t, t + J) = Ao,

which is based on the procedures for the QDRF estimator. This, inference can 
be based on normality of y/n(AT(t,t + d) — Ao). The formal justification for 
this procedure is based on the application of the continuous mapping theorem 
on the results from QDRF.

The practical implementation of the procedures will be based on the boot­
strap to compute standard errors and confidence intervals based on the asymp­
totic normality. Also, simple hypotheses testing for fixed t can be based on 
Wald statistics. Consistency of this bootstrap procedure is given in Alejo et al. 
(2018).

3 The qcte syntax
3.1 Sintaxis
The command syntax is:

qcte depvar treatvar [if] [m] [, Xvar(varlist) Zvar(varlist)
Quantile(70) YNOTRans RepsC#) NOGRaph ]

3.2 Options
qcte supports the following options:

xvar(varlist) transformed control variables (Box-Cox model) 
zvar (varlist) do not transform specified control variables 
ynotrans do not transform dependent variable 
quantile (70) estimate 70quantile; default is quantile(50) 
reps (70) perform 70bootstrap replications; default is reps(50) 
nograph suppress QDRF-plot display
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3.3 Saved results
qcte stores the following results in r():
Matrices

r(QDRFplot) a matrix with numerical co­
ordinates of the QDRF-plot 
and their confidence inter­
vals.

r(QCTEplot) a matrix with numerical co­
ordinates of the QCTE-plot 
and their confidence inter­
vals.

Matrices r(QDRFplot) and r(QCTEplot) are useful to replicate the output 
plot with other graph formats provided by Stata.

4 Examples
In this section we present the syntax of the qcte command that implements the 
methodology suggested byAlejo et al. (2018) using two examples. First, we show 
some exercises with simulated data to show the basic output of the command 
on the screen. Second, we use the command with real data using the base of 
winners of the lottery of Massachusetts.

4.1 Example 1: Simulations
For comparison purposes, we develop some examples in Alejo et al. (2018) by 
drawing random samples from data generating proces: X = 20+vi, T = X + v2 
and Y = T + X + (1 + a(20 — t)2with tq, V2 and independent random 
variables. The parameter a determines if the treatment effect is a pure location 
shift (a = 0) or scale-location shift a 0.

First, we evaluate the performance for a location shift treatment effect with 
standard normal distributions for tq, V2 and i'-;:

. * Location effect

. set seed 010101

. set obs 500
number of observations (_N) was 0, now 500

. gen control = rnormal(20,1)

. gen treat = control + rnormal(0,1)

. gen result = treat + control + rnormal(0,1)

. qcte result treat, x(control) q(25) reps(200) nograph
(running qcte_est on estimation sample)

Bootstrap replications (200)
------ +------[-------+-----2------ +-----3------ +-----4------ +---- 5 
------------------------------------------------------------------------------------- 50 
------------------------------------------------------------------------------------- 100 
------------------------------------------------------------------------------------- 150 
------------------------------------------------------------------------------------- 200
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I Observed Bootstrap Normal-based
1 Coef. Std. Err. z P>|z| [957, Conf. Interval]

QDRF_tl I 36.1886 .6171065 58.64 0.000 34.97909 37.39811
QDRF_t2 I 37.13925 .6304118 58.91 0.000 35.90366 38.37483
QDRF_t3 I 37.92384 .3221879 117.71 0.000 37.29237 38.55532
QDRF_t4 I 38.37877 .1707403 224.78 0.000 38.04412 38.71341
QDRF_t5 I 38.9121 .2089761 186.20 0.000 38.50251 39.32168
QDRF_t6 I 39.43871 .2837984 138.97 0.000 38.88247 39.99494
QDRF_t7 I 40.41355 .2497981 161.78 0.000 39.92396 40.90315
QDRF_t8 I 41.02411 .3440634 119.23 0.000 40.34976 41.69846
QDRF_t9 I 41.78104 .4998593 83.59 0.000 40.80134 42.76075

QDRF_tlO I 43.47282 .716724 60.65 0.000 42.06806 44.87757
QCTE_t2 I .9506493 .3984341 2.39 0.017 .1697329 1.731566
QCTE_t3 I .7845955 .3883105 2.02 0.043 .023521 1.54567
QCTE_t4 I .4549255 .2128516 2.14 0.033 .037744 .8721071
QCTE_t5 | .533329 .1242914 4.29 0.000 .2897224 .7769356
QCTE_t6 I .5266075 .1549067 3.40 0.001 .222996 .8302191
QCTE_t7 I .9748459 .1760595 5.54 0.000 .6297757 1.319916
QCTE_t8 I .6105614 .2296943 2.66 0.008 .1603689 1.060754
QCTE_t9 I .7569313 .3528742 2.15 0.032 .0653107 1.448552

QCTE_tlO I 1.691772 .5723425 2.96 0.003 .5700018 2.813543

Second, we consider a random sample from a scale-location shift (a = 1/5) 
of the treatment with standard normal distributions for v-y, vq_ and V3:

. * Scale-Location effect

. * Scale-Location effect

. set seed 010101

. set obs 500
number of observations (_N) was 0, now 500

. gen control = rnormal(20,1)

. gen treat = control + rnormal(0,l)

. gen result = treat + control + (l+0.2*(treat-20)~2)*rnormal(0,l)

. qcte result treat, x(control) q(25) reps(200) nograph
(running qcte_est on estimation sample)

Bootstrap replications (200)
------ +------[-------+-----2------ +-----3------ +-----4------ +---- 5
................................................................................................................ 50
................................................................................................................ 100
................................................................................................................ 150
................................................................................................................ 200

1
1

Observed
Coef.

Bootstrap 
Std. Err. z P>|z|

Normal-based
[95% Conf. Interval]

QDRF_tl I 41.22234 1.926301 21.40 0.000 37.44686 44.99782
QDRF_t2 I 41.22234 1.509859 27.30 0.000 38.26307 44.18161
QDRF_t3 I 40.07779 1.315877 30.46 0.000 37.49871 42.65686
QDRF_t4 I 39.71772 1.138952 34.87 0.000 37.48542 41.95002
QDRF_t5 I 39.49474 .7732594 51.08 0.000 37.97918 41.0103
QDRF_t6 I 39.5336 .4105374 96.30 0.000 38.72896 40.33823
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QDRF_t7 I 39.8911 .2090922 190.78 0.000 39.48129 40.30092
QDRF_t8 I 40.1626 .2554196 157.24 0.000 39.66199 40.66321
QDRF_t9 I 40.70082 .5027129 80.96 0.000 39.71552 41.68612

QDRF_tlO I 41.77318 1.115791 37.44 0.000 39.58627 43.96009
QCTE_t2 I 0 .7206832 0.00 1.000 -1.412513 1.412513
QCTE_t3 I -1.144554 .43511 -2.63 0.009 -1.997354 -.2917541
QCTE_t4 I -.3600655 .3713161 -0.97 0.332 -1.087832 .3677007
QCTE_t5 I -.2229843 .50677 -0.44 0.660 -1.216235 .7702666
QCTE_t6 I .0388603 .4343697 0.09 0.929 -.8124887 .8902093
QCTE_t7 I .3575058 .2952852 1.21 0.226 -.2212426 .9362542
QCTE_t8 I .2714996 .158695 1.71 0.087 -.0395369 .5825361
QCTE_t9 I .5382195 .3001478 1.79 0.073 -.0500594 1.126498

QCTE_tlO I 1.072361 .7372899 1.45 0.146 -.3727007 2.517423

Third, we consider a scale-location shift model (a = 1/5) with a standardized 
%3 for V3. This case is characterized by the asymmetry due to a large mass of 
probability on the right tail of the distribution.

. * Scale-Location effect (chi2)

. set seed 010101

. set obs 500
number of observations (_N) was 0, now 500

. gen control = rnormal(20,1)

. gen treat = control + rnormal(0,l)

. gen result = treat + control + (l+0.2*(treat-20)'"‘2)*(rchi2(3)-3)/sqrt(6)

. qcte result treat, x(control) q(25) reps(200) nograph
(running qcte_est on estimation sample)

Bootstrap replications (200)
------ +------[-------+-----2------ +-----3------ +-----4------ +---- 5
................................................................................................................ 50
................................................................................................................ 100
................................................................................................................ 150
................................................................................................................ 200

1
1

Observed
Coef.

Bootstrap 
Std. Err. z P>|z|

Normal-based
[957, Conf. Interval]

QDRF_tl I 36.65478 2.857324 12.83 0.000 31.05453 42.25503
QDRF_t2 I 37.08971 2.53774 14.62 0.000 32.11583 42.06359
QDRF_t3 I 38.75969 2.181234 17.77 0.000 34.48455 43.03483
QDRF_t4 I 39.18689 1.568589 24.98 0.000 36.11252 42.26127
QDRF_t5 I 39.43279 1.122366 35.13 0.000 37.23299 41.63259
QDRF_t6 I 39.5944 .5356846 73.91 0.000 38.54448 40.64432
QDRF_t7 I 39.94733 .2839267 140.70 0.000 39.39084 40.50381
QDRF_t8 I 40.58221 .4651866 87.24 0.000 39.67047 41.49396
QDRF_t9 I 41.74943 1.020816 40.90 0.000 39.74867 43.75019

QDRF_tlO I 43.51014 .8832923 49.26 0.000 41.77891 45.24136
QCTE_t2 I .4349327 1.250984 0.35 0.728 -2.016952 2.886817
QCTE_t3 I 1.669979 1.022556 1.63 0.102 -.3341948 3.674153
QCTE_t4 I .4272003 .8875402 0.48 0.630 -1.312346 2.166747
QCTE_t5 | .2458954 .6638088 0.37 0.711 -1.055146 1.546937
QCTE_t6 I .1616096 .694188 0.23 0.816 -1.198974 1.522193
QCTE_t7 I .3529282 .4415251 0.80 0.424 -.512445 1.218301
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QCTE_t8 I .6348877 .2854299 2.22 0.026 .0754554 1.19432
QCTE_t9 I 1.167217 .6761012 1.73 0.084 -.1579167 2.492351

QCTE_tlO I 1.760704 .8215607 2.14 0.032 .1504747 3.370933

The output table shows the estimated QDRF and QCTE for each treatment 
value along with its standard errors and the 95 % confidence intervals computed 
via bootstrap. By default, the QDRF in the output table is evaluated at ten 
equidistant points between the first and last percentile of T. The estimated 
QCTE is the difference between each of the QDRF points.

4.2 Example 2: Real Data
We illustrate the qcte command using the survey of Massachusetts lottery win­
ners to estimate the effect of the prize amount (as a proxy of non-labor income) 
on subsequent labor earnings from U.S. Social Security records. The prize 
amount is a continuous variable, and hence we apply the command to mea­
sure its effect on the quantiles of the distribution of earnings. This database is 
described in Imbens et al. (2001) and is also used as an empirical application in 
Hirano and Imbens (2004), Bia and Mattei (2008) and Bia et al. (2014) for esti­
mating average dose-response functions because the lottery prize is a continuous 
treatment variable.

Although the lottery prize is obviously randomly assigned, there is substan­
tial correlation between some of the background variables and the lottery prize 
in our sample. The main source of potential bias is the unit and item nonre­
sponse. In the survey unit nonresponse was about 50%. In order to remove 
such biases we make the weak unconfoundedness assumption, that conditional 
on covariates the lottery prize is independent of the potential outcomes.

The sample we use in this analysis is the “winners” sample of 237 individuals 
who won a major prize in the lottery. For each individual we observe social 
security earnings for six years before the lottery and six years after. The outcome 
of interest is year6 (earnings six years after winning the lottery), denoted Y, 
and the treatment is prize, the prize amount, denoted T. Control variables X 
are age, gender, years of high school, years of college, winning year, number of 
tickets bought, work status after winning, and earnings s years before winning 
the lottery (with s = 1, 2,..., 6). Of these 237 individuals we keep a sample of 
202 for whom we have income information on income Y. Detailed descriptive 
statistics can be found in Imbens et al. (2001) and Hirano and Imbens (2004).

A feature of the data to be considered is that almost half the sample has 
Y = 0 (52% which corresponds to 47% for male and 59% for female). That is, 
half the sample is not working and receive no income 6 years after winning the 
lottery. We follow Hirano and Imbens (2004); Bia and Mattei (2008) approach 
who considers that a zero value correspond to an observed level of income and 
it requires no truncation analysis. We find that for low quantiles, i.e. t < 0.5, 
QDRFT(t) = 0, Vi e T. Thus, we only report the QRDF for r = 0.75, 0.95:

. use lotterydataset 12.dta
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. drop if year6==.
(35 observations deleted)

. qcte year6 prize, q(75) ynotrans x(agew yearw) z(male ownhs owncoll ///
> tixbot workthen yearml yearm2 yearm3 yearm4 yearm5 yearm6) ///
> reps(200)
(running qcte_est on estimation sample)

Bootstrap replications (200) 
------ +___ !-----+-----2------ +-----3
. x

. X

•+---- 4 5

XX

X.X...X..-XX
X. . -X

XX

X..-X.X..-X XX.-X..
X.X.X..-X X. . -X

50
100
150
200

X
X X . X X .

(183 missing values generated)
(20 real changes made, 1 to missing) 
(file qdfr.gph saved)
(file qcte.gph saved)

. graph save qdrf75.gph, replace
(file qdrf75.gph saved)

. qcte year6 prize, q(95) ynotrans x(agew yearw) z(male ownhs owncoll ///
> tixbot workthen yearml yearm2 yearm3 yearm4 yearm5 yearm6) ///
> reps(200)
(running qcte_est on estimation sample)

Bootstrap replications (200) 
------ +___ !-----+-----2------ +-----3

. X

. X

x
•+---- 4 5

X..X...XX.-X.X X.X.-X.X X.X
xxxx XX

XX X. -X
X.X XX

50
100
150
200

X X
X X X

X X
(183 missing values generated)
(20 real changes made, 1 to missing) 
(file qdfr.gph saved)
(file qcte.gph saved)

. graph save qdrf95.gph, replace
(file qdrf95.gph saved)

. graph combine qdrf75.gph qdrf95.gph, xsize(20) ysize(17) row(2)

. graph export QDRFrealdata.png, replace width(lOOO)
(file QDRFrealdata.png written in PNG format)

Note that in this example we don’t use the option nograph to suppress the 
graphic output of the command. Figure 1 reports the ADRF together with 
the QDRF for selected quantiles. The first plot on the left correspond to the 
t = 0.75 QDRF estimates, and the one on the right to t = 0.95. The graph 
shows an ordered cascade, where K(t) looks as a decreasing function of t. The 
results suggests a particular pattern in which there is a prize threshold value for 
which the income becomes zero.

This nonlinearity in the ADRF is explored in Imbens et al. (2001) using a 
quadratic specification and non-parametrically in Hirano and Imbens (2004).
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Figure 1: Empirical application: the Imbens-Rubin-Sacerdote lottery sample
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Both estimates shows a convex relationship suggesting a marginally decreasing 
effect of the lottery price on labor earnings. Our estimates replicate the results of 
Alejo et al. (2018) and contribute showing that this convexity is homogeneous 
in the rest of the labor earnings distribution and then the threshold value is 
monotonic in the quantiles. The application illustrates that this method is an 
important tool to study continuous TE. The quantile analysis also reveals that 
larger prizes produce lower labor earnings, but a larger prize is required for 
individuals in the upper part of the distribution of unobservables.

5 Coments and suggestions
This paper proposes a new Stata command qcte to estimate the quantile treat­
ment effects models with a continuous treatment by using a semiparametric 
two-step estimator suggested by Galvao and Wang (2015). Following Alejo 
et al. (2018), we use a simple Box-Cox model to compute the propensity score 
and a bootstrap approach to implement these methods for a wide range of test­
ing procedures. The new command qcte also provide a graphical alternative to 
explore heterogeneities of a continuous treatment variable.
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