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Abstract

This paper develops a random effects error components structure 
for network data regression models. In particular, it allows for edge 
and triangle specific components, which serve as a basal model for 
modeling network effects. It then evaluates the potential effects of 
ignoring network effects in the estimation of the variance-covariance 
matrix. Network effects will typically imply heteroskedasticity, and 
as with the Moulton factor, the key role is given by the joint consid
eration of the intra-network correlation of the error term(s) and the 
covariates. Then it proposes consistent estimator of the variance com
ponents and Lagrange Multiplier tests for evaluating the appropriate 
model of random components in networks. Monte Carlo simulations 
show the tests have very good performance in finite samples.
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1 Introduction

Statistical inference when data are grouped into clusters is an important 
issue in empirical work, and failure to control for within-cluster correlation 
can lead to misleadingly small standard errors (see the discussion in Cameron 
and Miller [18]). This is especially important when using aggregate variables 
on micro units in which ordinary least-squares (OLS) standard errors are 
seriously underestimated. The seminal work of Moulton ([40, 41, 42]) allows 
for a quantification of this potential pitfail, a fact that has been emphasized 
in the Angrist and Pischke ([1], ch.8) textbook among many others (see 
Montes-Rojas [38]).

A particular data structure related to cluster effects is that of networks. 
Matched data, where the interaction among agents is observed, are one type 
of such network data, where the information on who is in direct or indirect 
contact with whom matters. This has attracted a considerable attention 
with regards to spillover effects in education, production, financial markets, 
trade and many others. See de Paula [19] for a recent selective review of the 
literature.

Within a given network observations are not independent and the depen
dence structure is related to the network position of the observation. There 
is no obvious pattern to construct clusters or groups. Network models differ 
from cluster ones in the heterogeneity of the groups which need to be defined 
ad-hoc within the network as there are no obvious way to group observations. 
The most obvious type of intra-network correlation arises when we consider 
observations given by vertices or nodes that have a common edge or link. If 
we consider a link-specific effect, this would result in a specific factor that 
arises for linked nodes and not for others. Nodes that share a link might be 
correlated with each other.

We are mostly concerned with a linear regression model where obser
vations are the nodes and specifically with the correct estimation of the 
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variance-covariance structure. Thus we explore error components structure 
where the components depend on local network features of the observations. 
In particular, for a given graph we construct the error components model 
when considering link and triangle specific effects.

The main purpose of this exercise is that the empirical researcher starts 
from a standard variance-covariance structure (i.e., independent error com
ponents), and then tests sequentially for potential components’ patterns (i.e., 
edges, triangles, diamonds, cycles, etc.).

First, contrary to the standard error components models, network effects 
will typically imply heteroskedastiticy. Take for instance the vertice&edge- 
only error components model where each vertice will have a vertice specific 
random component and an edge specific random component. Vertices that 
have one link are different from those that have two or more. The edge 
specific component will in fact generate a higher variance for vertices with 
more links.

Second, as with the Moulton factor, the key role is given by the joint 
consideration of the intra-network correlation of the error term(s) and the 
covariates. More formally, given an intra-network covariance structure of the 
error term and one of the covariates, the potential effect of misspecifying 
the variance-covariance of the estimators will depend comparison of the dif
ferent correlation model will depend on the sample intra-network covariance 
between the covariance factors of the error term and the covariates.

In most empirical settings, both covariance factors are positively corre
lated (i.e., a high correlation between two unobservables usually corresponds 
to a high correlation between the covariates), and thus this determines that 
the OLS estimator variance that do not consider the potential network ef
fects will underestimate the true variance. In particular, in the special case 
of covariates with no intra-network correlation, the standard OLS variance 
is correct.

This paper differs from the literature in several ways. First, many net
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work related contributions focus on dyadic data structures where the unit of 
observation is the pair, i.e. the link, rather than the node. Among these, 
Hoff et al. [25, 24] develop likelihood models. Second, most of the linear re
gression network models using nodes as the unit of observations build upon 
spatial regression models. The seminal contribution is Manski [36]. Spa
tial models have the advantage of estimating fewer parameters (the spatial 
autoregressive parameter) than our proposed network random effects com
ponents. Moreover, they will not face the restrictions determined by the 
nonnegativity contraints, but they face problems of their own. Many net
work features that can be modeled from imposing additional parameters on 
the powers of the adjacency matrix.

2 Network error components model

2.1 Network definitions and notation

Consider an undirected graph G = (V, L) as a mathematical structure con
sisting of a set V of vertices (also commonly called nodes) and a set L of 
edges (also commonly called links). Unless otherwise specified the graph is 
undirected where elements of L are unordered pairs (z, s) of distinct vertices 
(z,s) G V x V. If the graph were directed where the elements of L are 
ordered pairs (z, s) G V x V. The number of vertices is N = |U| and the 
number of edges is M = \L\. Without loss of generality, we will label the ver
tices simply with the integers 1,..., N, and the edges, 1,..., M. Note that 
M < N(N — l)/2 for undirected graphs (and M < N(N — 1) for directed 
ones).

For our purposes consider a set of triangles in undirected graphs as 
Triangles = {(i,s,r) G U3,z < s < r, (z, s'), (s,r), (i,r) G L3}, the num
ber of triangles is T < N(N — 1)(7V — 2)/6. The set of triangles could be 
defined differently for directed graphs.



2 NETWORK ERROR COMPONENTS MODEL 5

The fundamental connectivity of a graph G may be captured in an N x N 
binary matrix A with entries

1 if vertices {i, s} E L
0 otherwise

the edge-incidence matrix B, an N x M binary matrix with entries

if vertex i is incident to edge j 
otherwise

and the triangle incidence matrix C, an N x T binary matrix with entries

if vertex i is incident to triad k 
otherwise

For an undirected network A is symmetric and we can define the vertices’ 
degree which can be obtained by diagtBB1^, and vertices’ triangles
{b}£i which can be obtained by diag(CCT).

The definitions above correspond to unweighted networks. We could ex
tend this to weighted networks by defining an N x N binary matrix w with 
entries

if vertices {i, s} E L 
otherwise

The matrices B and C need to be constructed accordingly.

2.2 Random effects in the undirected graph model

Consider the following assumption on the probability space.

Assumption 1:

Let G E Qn be a space of graphs of size N and x E XN the domain of 
covariates, <7(^77,^) a a-algebra in the sample space {GNyXN\ and a



2 NETWORK ERROR COMPONENTS MODEL 6

probability space on the measurable space on (Gn, Then
[(Gn,Xn)w(.Gn,Xn),'Pn] form a probability space.

Assumption 2:

Let Z7, y and 5 be mutually independent random vectors of size N, M and 
T, respectively.

Correct mean specification: E(zzj | x, G) = E(//y | x,G) = E(Jijt |
x, G) = 0.

Variance: Var(/y | x, G) = a?, Naxijiij | x, G) = cC, Var(Jijt | x,G) =
«I

Consider the error components regression model for an unweighted undi
rected graph network structure,

//? Xi(3 V £ijk i (1)
M T

£i . E[z/j E(z/j | x, G)] Vi V V Ck^ki

j=i k=i

z = l,2,...,2V.

The error components can also be written as

N N N N N

(isr)

i=l s>i Í=1 s>i T>S

where and 5ysr) correspond to the common edge and triangle effects, 
respectively.

In matrix notation the model above can be written as y = x(3 + £, where 
y and £ are N x 1 vectors, x is N x K matrix, and ¡3 is a K x 1 vector. Then 
consider

£ — v + By -|- GJ,
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and

Q := E[££T I x, G] = E[^+ ByyTBT+ CÓÓTCT \x,G] (2)

= o^In + + (7¿CC^,

where v is a N x 1 random vector, y is a M x 1 random vector, 5 is a T x 1 
random vector.

Note that this model allows for the covariates x to be dependent on 
the network structure. Thus for instance, vertice-specific features such as 
network centrality (degree, betweeness, clustering, etc.) may be covariates 
of the model.

Consider the OLS estimator ¡3 = (xTx')~1xTy, and consider the goal of 
estimating V ar [(3 | x, G]. Given the assumptions of the model, then consider 
Then

Var[j3 | x, G] = (xTx)_1(xTQx)(xTx)_1.

Note that Q acts as a selector and weighting matrix, which selects which 
row and columns of x should be considered and weights them accordingly.

In the case with no network effects, defined as the vertex-only model,

1-/■ aL, I x j

and thus only the xs that correspond to the same vertices i are considered. 
Thus

N

X^VX = crl XixJ.
i=l

The random-effects vertice&edge-only incidence model would have

0ve = (j2vIN + cCBBt.
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Thus

xTQt,ex
N N—l N

+ di(j2̂XiX^ + 2o-2 ^2 ^2 TsXixl-
i=l i=l s>i

N N—l N M

= + diV^XiN + 2<t£ 12 52 E bijCNiN•
i=l i=l s>i j=l

Two things are important to notice from this variance-covariance. First, 
note that the model implies an heteroskedastic structure, where the diagonal 
elements are proportional to the degree di of each vertex. Second, the off- 
diagonal elements that have a role are those of vertices that have a common 
link, which in this case have a maximum of one.

The random-effects vertice&triangle-only incidence model would have

= a]iN + a]CC\

Thus
N JV-2N-1 N

+ tia^XiX^ + 2a] 52
i=l i=l s>i r>s=l

N N—l N T

52^ + tia^XiX^ + 2a] E52 cikcsk)xix1 ■
i=l i=l s>i k=l

In the same way as the vertice&edge-only model the model has an het
eroskedastic structure that depends on the number of triangles each vertice 
belongs to. Moreover the off diagonal elements are proportional to the num
ber of triangles each edge belongs to (maximum N — 2).

Joining both models gives

N N—l N

52 + 2 52 52
i=l i=l s>i

M T

C-ikC-sk

j=l k=l
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2.3 Extension to weighted networks

The results above can be easily extended to weighted networks where A 
is replaced by W, and the B and C matrices are also constructed using 
the weighted components. Note that for weighted networks the potential 
misspecification problems in estimating the variance-covariance components 
are likely to be more severe if wis oc Xíx's.

3 Consistent variance components estimators

Here we consider simple consistent estimators of the variance components 
using ANOVA-type decompositions.

Consider the following statistics:

N—l

N

i=l

N

s‘4
S2 m disUiUs,

i=l s>i

N—2N—1 N1 ¿ t ¿ t A
5*3  — CLisCLsrCLirUiU,’S ♦

i=l s>i r>s

Si contains the usual sum of squared errors. Note that for each vertex 
there will be at most N — 1 edges to which it belongs and N — 2 triangles. 
Moreover, each edge will be repeated twice for undirected graphs, one for 
each vertex, and each triangle will be repeated three times, one for each 
vertex. Then,

E[Si I x,G] — al + + a6~Ñ~•

EfS*!  I x, G] is the (conditional) variance of a vertex.
S*2  contains the cross products of the error terms, which corresponds to 

the number of edges M. This corresponds to the existing active links (i.e., 
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aiS = 1, s > i). For each active link, there could be at most N — 2 triangles 
that can be formed from it. Now, each triangle will be repeated three times 
for each link. That is, for S2 if we have an edge, say (z, s), that belongs to a 
triangle, say (z,s,r), such that r > s > i, then the triangle effect S(i,s,r) will 
appear in the edges (z, s), (s,r), and (z, s). Thus, each triangle will be found 
3 times for every edge. Thus,

■>r
E[S2 I x,G] = 0-2 + cr]—.

E[S2 I x, G] is the (conditional) covariance of two vertices that have a com
mon edge.

Finally, S3 computes the cross products for active triangles (i.e., ais = 
asr = air = 1, r > s > i). Note that for S3 if we have a triangle, say (z, s, r), 
then two nodes, say z and s, must share both and 5(i;s>r)- Then,

| x, G] = <7^ + <7¿.

E[S3 I x, G] is the (conditional) covariance of two vertices that have common 
edge and triangle(s).

In the absence of triangle effects, i.e., a2 = 0, the model simplifies to

a2 = E[S1\x,G]-E[S2\x,G]^~,

a2 = E[S2 I x, G],

such that the nonnegativity restrictions are E[S2 | x, G] >0 and >
such that the ratio of the variance of a vertex to the covariance of 

two random vertices needs to be bigger than the average number of edges 
per vertex. First, take for instance a cycle graph, a 2-regular graph with 
all vertices of degree 2 such that M = N. For this case the variance of the 
vertices need to be at least twice the covariance. Second, consider a complete 
graph with M = N(N — l)/2. In this case, the ratio of variance to covariance 
needs to grow faster than the number of vertices.



3 CONSISTENT VARIANCE COMPONENTS ESTIMATORS 11

In the absence of edge effects, <0 0. the model simplifies to

3T
a2 = E[Si \ x,G] — E[S3 \ x,G] — ,

u2 = E[5*3  | x, G],

such that the nonnegativity restrictions are E[S3 | x, G] >0 and >
such that the ratio of the variance of a vertex to the covariance of two 

random vertices needs to be bigger than the average number of triangles per 
vertex.

For the edge and triangle effects model, solving for (ct2,<j2,<j2') gets

= E[Sr -
E[S2 I x, G] — E[S3 I x,G]jf 2M E[S3] - E[S2] 3T

xi_
M

3T
M

N N ’

E[S2\x,G]-E[S3\x,G]^
1 _ 3T1 M

_2 _ E[S3 I x,G]-E[S2 I x,G]
1 _ 3T
1 M

For this
E[S2\x,G]
E[S'3h,G]

case the nonnegativity restrictions imply: (i) > 1, (ii)
> ID (i11) — DD and (M fBj > 7TÑ- Restriction (i) 

implies that the covariance among vertices that belong to a triangle must
be larger than the covariance of vertices that share a link. Restriction (ii) 
states that the ratio cannot exceed the average number of trian
gles per edge. Restriction (iii) correspond to the number average number of 
links per vertex. Restriction (iv) is a combination of the above with no clear 
interpretation.

The consistent estimators are then constructed by defining Si, S2, and 
S3, where the OLS residuals ü are used, and the nonnegativity constraints 
are imposed.
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4 Specification tests for undirected unweighted 

graphs

The log likelihood function for this problem is given by

L(/3,4) oc —-In |Q| —-£TQ_1£,

with 0 = £ = y — and Q is given by equation (2). In this
model we have that the Fisher information matrix is block diagonal in terms 
of /3 and 0. This feature also applies to non-Gaussian error components, 
where in fact OLS estimators for /3 are consistent. In turn, this simplifies the 
subsequent algebra where we only consider 0 for constructing our LM tests.

Let 0 G 0 C Rp, where p is the dimension of 0. Using the formulas in 
Harville ([23], p.326) (see also [3]) the score functions can be expressed as

sr(0) = dL/d()r = -|tr(Q-xaQ/M) + |{uTQ-1 (dO/de^O^u},

for 1 < r < p. The information matrix can be obtained for for 1 < r, k < p. 
as

d2L/ddrddk |tr (fT1 a2u
dOrdOk dOr 99k J /

80
80r80k

do do\
d0r d0r) Q \

and

Jrk(0) = -E{d2L/derdek) = ^tr 80\
d0~k)

Note that

80/da2 = IN, (3)
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dO/da*  = BB\ (4)

dO/da] = CCT. (5)

In order to construct LM tests, first note that the block diagonality be
tween (3 and 0 allow us to focus on the scores corresponding to 0 only. Second, 
consistent estimators of 0 under the null can be obtained using an ANOVA- 
type analysis as in Section 3. Hence our tests will be based on Neyman’s 
C(a) principle, which produces tests that are asymptotically equivalent to 
likelihood based LM tests under y/~Ñ-consistent non-maximum likelihood es
timation of the nuisance parameters. See Bera and Bilias [10] for a dicussion.

Consider a partition of 0 = (6*] 1", 6l]~)T, where 02 contains the parameters 
under the corresponding null hypothesis Hq : 02 = 0, and 0± the nuisance 
parameters that need to be estimated. In our particular case, 0 will be 
partitioned into either fo = cq], 02 = cC when we want to test for the presence 
of edge network effects assuming a] = 0, 0i = cq], 02 = a¿ when we want to 
test for the presence of edge and triangle network effects assuming cC = 0, 
6*i  = <7^, 02 = (<j2, when we want to test for the presence jointly of edge 
and triangle network effects, 0X = (cq], c^), 02 = when we want to test for 
the presence pf triangle effects assuming edge effects or 6* x = (c^, a¿), 02 = cC 
when we want to test for the presence pf triangle effects assuming edge effects.

and the information matrix as ¿T(0) =

Correspondingly, the score will be partitioned as s(ff) = (si(6*) T, s2(6*) T)T, 
Jn(0) A

¿72! (0) <722 (0) J
Conditional LM statistics for Hq under maximum likelihood estimation 

are defined as

W) = s2(0)t{¿T22(0) - ¿T21(0)¿71I1(0)¿712(0)}-1s2(0).

Neyman’s C(qí) adjusted scores are defined as

s2.x(0) = s2(0) - ¿r21(0)¿TA1(0)<712(0)s1(0).
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Then, the Neyman’s C(qí) LM statistic is

= s2.1(0)T{¿r22(0) - ¿r21(0)¿r1h1W¿r12(0)}-1s2.1(0).

A well known result is that LM2.i(0) -4 Xdim^)’ where $ is a v^V-consistent 
estimator under the corresponding null hypothesis. Note that when we esti
mate the parameters under the joint null anu2 = a2 = 0, the ML estimators 
of (3 and a2 coincide with the least-squares estimators.

Consider now Bera and Yoon [15] locally size-robust type statistics. For 
this, consider a new partition of 0 = (<9i,(92, 6* 3)' = (<9i, *9^)'  where we want 
to test for the null hypothesis Hq, we consider (9X as nuisance parameters 
to be estimated, but the validity of the test is affected by the validity of 
Hq : 6*3  = 0. Global valid tests for Hq would require consistent estimators of 
6*3  as in the construction of the conditional LM statistics above. In practice, 
however, estimators of 6* 3 may be cumbersome or it might suffer identification 
conditions under the null. Thus, Bera and Yoon [15] has been successfully 
implemented to test one particular null without estimating the other nuisance 
parameter 6*3.  This procedure is valid under y/Ñ-local deviations of Hq, but 
different empirical studies confirmed its validity for non-local deviations too. 
In our particular case, the parameter will be partitioned as 6* x = <j2,Q2 = 
^,6*3  = This procedure thus allows us to test for triangle effects but 
without estimating edge effects variance, even when we are estimating under 
the joint null hypothesis Hq&lHq : = °’ which is just least-squares
estimation. The statistic is constructed as in Bera, Montes-Rojas and Sosa- 
Escudero [12, 13] for non-maximum likelihood estimation as

LM2(3).1(6*)  = s2(3).i(6*) /[¿T2(3).i(6*)]  xs2(3).i(6*),

where

-32(3)1(6*) — S2-l(<9) — J/23-l (6*) jZgg1! (6*)s3.i (6*)
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¿72(3)-!(0) = ~

J22M = ~ J21^J1-11^J12^,

J33M = J33{0) ~ J31(6)J^)J13(6),

M = J23(0) ~ J23,1(.^J1~11^J1,23(.0).

Then LM^yify Xdim^2) for 0 being a consistent estimator under the 
joint null hypothesis HqXHq : = a¿ = 0 and for 03 = a¿ = o(l/y/Ñ).

In sum, the LM tests considered are:

• LM^: LM test for Ho : = 0 when is estimated as MSE after OLS
estimation and a] = 0 is assumed.

• LM¡: LM test for Ho : a¿ = 0 when is estimated as MSE after OLS 
estimation and <7^ = 0 is assumed.

• LM^s' LM test for Ho : <7^ = a¿ = 0 when <7^ is estimated as MSE 
after OLS estimation.

• LM^sy. BY test for Ho : <7^ = 0 when <7^ is estimated as MSE after 
OLS estimation and a] = 0 is allowed to have local deviations.

• LMg^y. BY test for Ho : <7¿0 when cC is estimated as MSE after OLS 
estimation and cC = 0 is allowed to have local deviations.

• LM test for Ho : a] = 0 when (cr^c^) is estimated as in 
Section 3 after OLS estimation.

5 Monte Carlo experiments

This section explores the small sample performance of the proposed tests 
through a Monte Carlo experiment. We will consider the following simple 
regression model:
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i=l s>i

//, Xi/3 T

i=l s>i r>s

(isr)

N N N N N

where A = is an adjacent contiguity matrix. We assume Xí ~ iid N(0, 1), 
¡5 = 1, Vi ~ iid N(0, 10), //(is) ~ iid N(0, crfy and ~ iid N(0, a¿).

We simulate two types of networks. First, we consider an Erdós-Rényi 
random graph where links are randomly generated with a given probability 
pN, i.e., Prob(air = 1) = pN, i,r = l,...,N,i r. For the Erdós-Rényi 
graphs we have on average a constant proportion of vertices and edges, N/M, 
using pioo = 0.05, P225 = 0.05 x 100/225, jpoo = 0.05 x 100/400. In this case, 
the number of triangles per node is also constant on average. Second, a 
queen-type spatial structure where edges are generated according to queen 
contiguity, i.e., for a squared board with number of rows and columns n = 
y/Ñ, for i = 1,..., TV, air = 1 if r G {i — 1,2 + 1,2 — n — 1,2 — n,i — n + 
l,z + n — 1,2 + n,i + n + 1} with 1 < r < TV, and air = 0 otherwise. Note 
that the considered spatial-type model has a similar number of triangles and 
edges for each node, i.e. 8 edges and triangles for a node that is not on the 
border of the board. We consider N G {100, 225, 400}.

First, we consider the empirical size results where u/ u2 0 in Table 
6. In all cases, marginal, joint and robust tests have the appropriate size, for 
all levels of significance.

Second, we consider the empirical power and robustness for (a2, a2) G 

{0,1,..., 10}2 in figures 1 and 2.
The former figure report the tests for detecting edge heterogeneity, cy, > 

0. Note that the marginal tests LM^ has the largest power performance 
for changes in cy, (figures l-(a) and l-(c)), followed by the joint tests LM^. 
However the marginal test also rejects in the direction of > 0, as Figures 1- 
(b) and l-(d) show, that is, it is not robust to the presence of triangle effects.
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The BY robust test have good power performance in figure l-(a), close to the 
joint test, but it has low power in the Queen spatial more complex network 
model, as shown in figure l-(c). In fact, the BY is robust to deviations in

> 0, as seen in figures l-(b) and l-(d).
Tests for triangle effects have a similar performance to those of edge 

effects. As in the previous paragraph, the tests have the expected rejection 
rates in the direction of > 0, and the BY robust test have correct size 
for > 0. Note that the conditional test CUP estimates and as such 
it should be robust to misspecification in edge effects. For this case the BY 
robust tests outperforms it in terms of size and power in the Erdós-Rényi 
random graph model, and it is very close to the conditional tests in the 
Queen spatial structure.

6 Conclusion

This paper develops a simple model of network random effects that can be 
used to estimate the variance-covariance matrix in a linear OLS set up. It 
focuses on evaluating the appropriate level of effects, using the example of 
links and triangles effects as random components.
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Table 1: Empirical size
N LM, LMS LM,^

Erdós-Rényi random graph
Size 1%

100 0.009 0.016 0.0145 0.009 0.0165 0.0115
225 0.012 0.0115 0.015 0.013 0.012 0.009
400 0.013 0.012 0.0085 0.0095 0.0075 0.007

Size 5%
100 0.043 0.05 0.0465 0.042 0.052 0.041
225 0.052 0.0485 0.0495 0.052 0.0495 0.041
400 0.047 0.0475 0.049 0.046 0.046 0.0435

Size 10%
100 0.082 0.0885 0.0855 0.089 0.092 0.0765
225 0.1045 0.092 0.102 0.098 0.0995 0.0875
400 0.089 0.087 0.093 0.0965 0.099 0.0915

Spatial queen structure
Size 1%

100 0.0115 0.0105 0.0105 0.01 0.011 0.0115
225 0.0075 0.0065 0.012 0.0145 0.0135 0.014
400 0.0085 0.0085 0.0095 0.012 0.011 0.011

Size 5%
100 0.0475 0.0515 0.047 0.048 0.044 0.046
225 0.045 0.039 0.0565 0.0595 0.052 0.0525
400 0.046 0.0465 0.049 0.0535 0.049 0.0505

Size 10%
100 0.0965 0.0975 0.0955 0.094 0.09 0.097
225 0.0965 0.09 0.1 0.1085 0.1115 0.1125
400 0.0935 0.0965 0.098 0.096 0.0995 0.1015
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Figure 1: LM tests for
Erdós-Rényi random graph
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Notes: Monte carlo experiments based on 2000 replications. Solid black 
line: LMp. Dashed red line: LM^¡. Dotted green line: LM^.
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Figure 2: LM tests for a¿ 
Erdós-Rényi random graph
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Notes: Monte carlo experiments based on 2000 replications. Solid black 
line: LM¿. Dashed red line: LM^. Dotted green line: LM¡^. Dash-dot 

blue line:


