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51. Introduction.

Uie aim of this paper is to collect some remarks about the conver

gence in distribution of sums of some random variables associated to the 

continued fraction e-j^awion of a random number ω in (0.1) .

As discussed in Section 2, the results in [25],[27] apply, directly

to the sequence {a^} of partial quotients when ω is chosen under 

Gauss's measure. If it is replaced by any probability measure absolutely

continuous with respect to Lebesgue measure, similar results hold (by [21, 

Lenina 1]; in the case of Lebesgue measure [12, Leinna 19.4.2] works). Then 

some theorems of Levy [19],[2O] and Doeblin [7] are obtained as corolla

ries and some information is added (see Examples 2.6, 2.14 and Remarks 

2.7, 2.15 for references). In particular, we get necessary and sufficient 

conditions on a function f for the validity of a functional limit theo

rem (invariance principle) for sums Σ^η fia^) under Lebesgue measure 

on (0,1); then a certain class of positive functions f of real argument 

is examined and we obtain (Corollaries 2.12 and 2.13) functional limit 

theorems for f regularly varying (and bounded on finite intervals).

In Section 4 we consider sums involving x ^, the complete quotients, 

and u^, defined in (4.1), which measure the approximation of ω by its 

convergents. We extend some results of Section 2 (see Examples 4.1) in

cluding functional limit theorems for Σ . f(x.) and Σ. f(u.) for3 ]<n j
some regularly varying f; in the case of {x^} , Corollary 4.2 generali

zes [19, Theorem 4] and Corollary 4.6 contains for a certain class of 

regularly varying functions a result suggested in [19, pages 200-201].

Example 4.7.2 gives the functional form of a limit theorem indicated by
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Doeblin. Lemma 4.5, whidh is used to deal with u^, essentially contains 

the theorem in [15]; tiw proof given here is based on a relation due to

Levy (Proposition 2.1).

In order to achieve these extensions of the results of Section 2, we 

isolate from [5] (and [11]) some facts which lead to Corollary 3.4 (see 

Remark 4.4(a)).

Iheorem 5.1 gives the asymptotic normality and even a functional lie 

it theorem for the number of solutions of a certain diophantine inequal

ity which is not covered by [18],[22].
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ί 2. Sums of functions of the partial quotients.

Given an irrational number a , let

be its (infinite) simple continued fraction expansion, defined by the con 

tinued fraction algorithm

(2.1)

where a (a) = [a] (throughout the paper, [ . ] denotes the integer part o

of a real number), a (a) = [ x (a)] (we refer to [4,54] and [1O] or η n

[17] for the elementary facts about continued fractions). Bie a 's are n

the partial quotients' and the x^'i the .complete quotients of a.

We denote by W* the set of non-zero natural numbers and

N = N*U(0}. Given an integer k and k ,...,k EW*, NEW*, the finita o

continued fraction ik ,...,k„] is defined to be k if N = 0 (the two

senses of [ .] coincide) and if N> 1 it is the ratioñll number defined

recursively by the fonnh [k ------,k 1 = k + ([k,,...,k I)’1 . If 
O----------N O 1 W

[k ,... ,k J = [k',.v. ,kl] Ml th k. > 1 and k! > 1 for i « 1,... ,U then o N o » i i

k. = k! for i « L... ,N.

For rational a the algorithm (2.1) terminates at a certain value

N€N of η (N = 0 and aQ(a) = a if a is an integer; N > 1 and

^‘^ ~ ^i^’ otherwise) and defines βθ(α) ,... ,β^ίβ) . Dien

(2.2)
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and we define a (α) “ ® if n>N. n

We are interested in a. and x. as functions defined on the set 

of irrational numbers in (0,1). Denote it by Ω and let B be the 

class of its Borel subsets. On (0,5) we will consider the Lebesgue 

measure λ and Gauss's measure

If p is a probability measure on (Ω,Β) we shall write Ep (sim

ilarly Varp , CoVp ) for the corresponding expectation operator and 

ίρ(ζ) for the law of a random element ξ defined on (Ω,Β,ρ); often we 

will write E = E^ , 5 = Ip. If moreover p is absolutely continuous 

with respect to λ we shall write p « λ.

Also we will deal with the functions p^,^ defined for ω€ Ω by

For each ω € Ω and η > 0, p (ω) /σ (ω) = [ 0, a, (ω) ,. .., a (ω) ] is the η tn 1 η

η th convergent to ω.

Following Levy [20, Chapitre IX ] we write, for n>1 and ω€Ω

It is well known that endowing (0,5) with Gauss's measure P,
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{a^ : j >1} is a (strictly) stationary and f-mixing sequence of r.v.’s 

with an exponential mixing rate and satisfies the condition |*<® ([4, 

page 50] or [12]; the last fact follows front the right inequality in 

(4.15) of [4]).

Throughout the paper, we use freely notation and concepts quoted in 

(25]. The dependence coefficients $(k) ,ip(k) ,ψ* refer to {a^} defined 

on (fl,B,P). !

The following relation, due to Levy [20, equality (8) in §74] and 

called the Borel-Levy formula by Doeblin [7], shall be useful later (the 

indicated dependence properties of {^} can be proved starting from it 

[20]) .

2.1. Proposition. If n>2, y = [^^...(kj with k1,... ,k ^€ JN* 

and 1< a < b then

(Apart from being stated here in fl, this is (4.12) of [4] since Tn ^

= x-1 if Τω = ω 1 -[ ω 1 ] and {ω€Ω: y . (ω) =[ k ,... ,k, ] } ■ 
η η— i η-1 1

■{β€Ω : a.(M)« k.,..,a . (ω) = k }) . 1 1 n—1. n— 1

In order to apply some of the results in [25], [27] it appears to be 

necessary to verify that ψ(Π< 1 and this, can be done using Proposition 

2.1. But, under the properties of { a ^ } indicated above, no further ar

gument is needed. The following property was overlooked by us in [25], 

[27] and is stated by Bradley in [6, page 184]: given a probability
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spac* (X,A,Q) end two sub-o-algebras M, S of Λ we have φ :* φ(Μ,5) 

< 1 if ψ * :« f*(M,N)< · (see for example [27] for the definitions) . 

Fer the sake of completeness, we show that φ < (ψ*) (ψ*-Ό if ψ*< 00

(ψ* > 1 always). Assume φ > 0; observe that for each cG (Ο,φ) there 

exist AGM , B€l such that Q(A)> 0 and

which implies Q(B)> 0 and

Bie inequality follows from this. We remark that in a recent preprint 

Philipp [24] proves the stronger fact that ψ(1)< 0.Θ for [a^] , thus 

obtaining φ(1)< 0.4.

We fix some notation. In this section, H denotes a real separable 

Hilbert space with norm l.l. D([O,1],H) is the Skorohod space (see 

[5]) of H-valued functions on [0,1] and we shall write D * D([O,1],R). 

If v is an infinitely divisible (i.d.) probability measure on H, Qv 

denotes the law on D([O,1],H) of a stochastic process ( * ίζ(Ο : 

tE [O,1]} with stationary independent increments, trajectories in 

D([0,l],H), ζ(0) ■ 0 and ((1) having law v.

If (Xnjl “ fxnj : j “ 1,... ,n,n > 1} is a double array of H-valued 

measurable functions on (0,5) we shall consider the property
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in measure.

In our first statements we refer directly to some assertions in [25], 

taking there B ■ H, jn “ n, ¿ "^ » E * Ep and replacing the letter 

f by h to denote functionals.

2.2. Proposition. Let {f: n > 1} be a sequence of functions from K*

into H and define X . “f (a.) if j ■ 1,...,n,n>1. Suppose that the η] n j

following conditions of [25, Corollary 6.5] are satisfied: (1), (2) mod

ified by assuming the existence of the limits only for h in a se

quentially w*-dense subset W of H', (3). Then (a) and (b) of that 

result hold and

(c) for any p« λ and for every τ 6 C(p),

Proof. Use [25, Corollary 6.5], [27, Corollary 3.3(iii)] and Lemma 2.3 

below, noting that { X^ “ ΕΧη1τ^ satisfies (*) (see the proof of [25, 

Corollary 6.5].·

2.3. Lemina. Let p« λ . Assume {H , (XnJ are as in Proposition 2.2, 

ÍX . } satisfying (*).
nj

out tJÜ.J^^jX^MtO.tl). Xf <W) «Up«nn con-
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verges weakly (In D([O,1] ,H)) . then both sequences have the same limit.

(b) Part (a) holds with i” , X , in place of £ . 
]»1 nj * 'n

Proof, (a) Take {r } as in the definition of (*) with r + · ; write —~ η n

ζ (t) > Σ . r .iX . (t€[0,l]). First we observe that n rn<]<[ntj nj

in measure

(this follows from (*) and a well-known maximal inequality quoted, for 

example, in [25, Proposition 2.2]).

On the other hand, if g is any bounded continuous real function on

D([O,1],H), Lemma 1 of [21] shows that lim (Ε_ς(ξ )-E g(£ )) = 0 since η P n p n

ζ is σ (a.? j> r )-measurable. ■ n j n

2.4. Proposition. Let {fn} and {X^} be as in Proposition 2.2. Sup

pose that for some p« λ , {L (Σ? X .)} converges weakly to a probabil-
P 3·’ nj

ity measure v on H.

(I) If (X . } satisfies (*) then v is i.d. and if

v - δ * Ύ * ^Pois μ , τ G C(u), is its Lévy-Khintchine representation, 
*τ

assertions (a)-(c) of [25, Theorem 6.2] hold and also we have (b1) of

[25, Corollary 6.3] if the second part of (ii) of that result is satis

fied.

(II) Let ( be the randan function ζ (t) ■ Σ. . r .X . (tG[0,l])■ η n 1<j<[nt] n]

and suppose that {L. K )} is relatively compact in D([O,1],H). Then λ n
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Proof. (I) Lemma 2.3 and [25].

(II) The argument in [27, Theorem 3.2, proof of (III) ■♦(II)] shows that 

{x .} satisfies (*) . Then use (I), Lemma 2.3 and [27, Theorem 3.2].·

2.5. Remark. In the real valued case, the convergence in law of ζ^Μ) 
—— n

in Proposition 2.2 also follows from the main theorem in [16], which 

improves [3]; it gives necessary and sufficient conditions (under certain 

preliminary assumptions) even in the non-stationary case. See [27 , Re

mark 3.4.2] for another reference (convergence to stable laws).

Next we give examples which are related to some results in [7].

2.6. Examples.

2.6.1. Let ¿2 be the Hilbert space of square summable real sequences 

and let { e^ : p >1 } be its canonical orthonormal basis. Define 

Γ(η) : Ω - £ 2 by

and

(2.3)

Then, if ζ is the random function n



-11-

for any p« λ we have L (ξ ) * 0 where v is the centered Gaus-p n w v
2

sian measure on £ whose covariance operator S satisfies

(2.4)

p >1, q > 1; here δ ■ 1 if p ■ q, ■ 0 if p # q, and ( .,.) denotes 
2 the inner product of £ .

-1/2Proof. Let f(p) = e and take f (p) = η (f(p)-y). Since --------- p n
EPB ^^al)12*· " ' ^ the same arguments which led from [25, Corollary 4.5] 

to [ 25, Corollary 4.7] we can verify that (H satisfies the hypothe

ses of Proposition 2.2 with μ = 0 and Φ (h) »-Var h(ap + 

+ 2 ^ j=1 CoVpthfap ,h(a^+p) (see also [25, Remark on page 405]). Con

cerning (2.4), we remark that P(a, ■ p, a. ■ q) » P(a. = q, a. = p) 1 j+1 1 ’ j+1 r
(see [19, page 182]).·

2.6.2. Let Θ > 0 and a G R. For each n> 1 define E by - n 1

Then for any p« λ , L (ζ ) * O where p n w

a) if a > 0, v ■ c a Pois μ with
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c) if a = 0, then ζ (t) « card{j<[nt] : a.> θη} (t£[0,lJ) and 
n 3

v = Pois ((0 log 2) ^J.

Proof. Take f (p) = (p/n)aim . (p) in Proposition 2.2. Condition 
—— n (Bn,™)

(1) there, is satisfied with the corresponding μ because, for posi

tive x.

(2.5)

On the other hand, observe that if α > 0, X = 0 for δ€ (0, θσ]. nio
2 2 2For b) , note that sup nEX , < i sup nP (a, > 0n) = O(¿ ) and that n nio n 1

lim nEX = z. If a = 0 then X = 0 for 06(0,1).· η η1θ“ nio

2.6.3. Fix a sequence (0r) such that 0< θρ θρ ... and limr 0 =

= « . Def me . L : Ω -► 1 by

and ζn by ζ^ (t) = L^n^ \ tG to,1]. Then for any p« λ , £p ^n)*wQy 

where
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Moreover, fPoisμ )(F) = 1 where

F = { (x^.i.-je £ : xr€K and only a finite number of x^s 

is non-zero}

and

Proof. Take fn(p) 1 (θ η © n]^er “ ProP°sition 2·2· Note

that for every j€(0,1)(X, «0 and that for any subset A of H ηιδ
we have

which goes to zero as n + » because each term tends to zero and

The expression for Poisp follows by direct calculation of v D, n> 1.·
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2.7. Remarks. Example 2.6.1 gives a natural extension of the result in 

[7, 52, n°5 I. The limit laws of Cn<D given in a) and c) of 2.6.2 ig 

pear in [7, $4, §3] where a), case a ■ 1, is used for deriving the 

limit law of ?n(l) in Example 2.14.2 below. The proofs presented in 

[7] of both results have been objected and the last one established in 

[13] by using [8].

Now we are interested in sums of the form Σ · f (a.) .

2.8. Proposition. Let f be a function from N* into R and let 

{x(n) }CR and {b(n)}C (0,®) with b(n) *» . Assume that for some 

p « λ , L (b(n) 1 ( Σ ”f (a.) - nx (n)))-► v, a non degenerate probability 
P w

measure. Then v is stable.

Proof. Since b(n) ■+■ we can find {r }CN* , r < n, r + ® such that --------  η η n
-1 Γη

b(n)~ Σ^ f (aj)-> 0 in measure. Arguing as in the proof of Lemma 2.3 

we can replace p by P in our hypothesis and then [ 27, Remark 3.4.3.1 ]

or [23, Theorem 2] concludes the proof. ■

A function R :[ r,®) ■» (0,·) (r>0) is regularly varying (at η)

with exponent a € R ([28j, [2]) if it is Borel measurable and

lim R(tx) (R(x)) 1 ■ t° for every t >0. If a · 0, R is slowly 
x-»· “

varying.

2.9. Proposition. Let f : N* +B. .
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a) Let {x(n)}CB and{b(n)}C (0,®) with b(n) + <». The following as

sertions are equivalence

(I) The random functions ξ^ defined by

(2.6)

satisfy

(2. 7) £ )+ W, the Wiener measure on D.λ n w

(II) L,(b(n) 1 2"(f(a.)-x(n))) + N(0,1), the standard normal distribu- 
A 1 j w

tion, and {X . }:={b(n) 1 (f (a.)-x (n)) : 1<j<n, n>1}· satisfies (*) .

b) The assertion

(A) there exist a bounded sequence {x(n)} CIR and {b(n)}C (0,®) with

b(n) -> ® such that (I) is satisfied, holds if and only if

(2.8)

or, equivalently, if

(2.9)

is slowly varying. If this is the case and U(x) -► ® as x-»·® , we can 

take x(n) = E_f(a,) and any {b(n)} such that lim nb(n) ^U(b(n))=1. 
n



c) If (I) holds for some [x(n)}, {b(n)}, then (2.7) holds with λ re

placed by any ρ«λ.

Proof, a) and c) : [27, Corollary 3.3(iii)] and Lennna 2.3.

2b) First we observe that U'(x) := Ep(f (a.)) ; | f (a ) | < x) is slowly va

rying if and only if U is (Ü and U’ both have a finite limit as 

x+· or both tend to »; in the later case, U~U* by (2.3)); moreover 

this holds if and only if (2.8) is satisfied.

Then, that (2.8) inplies (I) (with {x(n)} and {b(n)} as indicated 

in the case U(x) *ω) follows from [27, Corollary 3.7] and its proof 

r -1 (0) (0)(sec [26]) noting that, with the notation there, Φ^ = 1 and Φ^ =0 

if j>2 (use that ψ< « and [25, Proposition 2.7]).

For the converse, suppose that (II) holds and that U' (x) -> ® as

x+«. Fix ¿6(0,1) and write Y , “ X .. - EX ... By (a) and (b) njó η]δ P njó
of Proposition 2.4 (I) (or [25, Theorem 4.2]), limn E( Σ" Ynj^) = '; mor£ 

over, E( i" Y )^ < (1+4 Σ φ^^ (j)) nE (X2 ; | X |< δ ) by an inequality 
1 η]δ 1 n1 1 nr i i

of Ibragimov. Then, using that {;.(n)} is bounded and b(n)+« we obtain

if n>1 for some M>0 and n.G N*. Since lim nP(|f(a,)|> b(n)) = 0 i n i

(use (a) of Proposition 2.4 (I) and that x(n)/b(n) ■+ 0) and b(n+1)/b(n)

+ 0 we can conclude that x P(| f (a ) | > x) (E(f (ap ; | f (ap | <x))' ■+ 0

as x+«, which says that U' is slowly varying. ■
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2.10. Proposition. Let f : M*+ 31 and κ^,κ^,Β be such that k^> 0 

x,> 0, k^+Kj >0, 8 €(0,2). Denote by νίκ^κ^,β) the stable law 

c1 Pois (Ρί^,^,ί)) with Lévy measure

a) Let {x(n)}C® and {b(n)}C (0,®) with b(n)·*» . The following 

assertions are equivalent:

(I) ξη defined as in (2.6) satisfy

(2.10)

(ID

satisfies (*) .

b) The assertion

(A) there exist {x(n)}CR and {b(n)} C(0,«) with b(n)*a such that

(I) of a) is satisfied,

hols if and only if

(2.11) is regularly varying with exponent -0,
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and

If this is the case we can take x(n) ■ E (f (ap ; | f (a^ | < bin)) and any 

{b(n)J such that lim nb(n) U(b(n)) = (*, + *_) (1-0) (with U defined 

in (2.9)).

c) If (I) holds for some ix(n)},{b(n)}, then (2.10) holds with λ 

replaced by any p « λ.

Proof, b) Assume that (II) holds. Proposition 2.4 implies that 

nl(b(n) 'ffa.))! BC u (k . ,< _ ,6) I B^ for every T> 0. To conclude
p 1 τ w 1 2 T

the proof of the "only if" part see [ 2, pages 81 and 84-851 and use 

(2.3). For the converse, apply Proposition 2.2 and argue as in [2, 

pages 87-88].·

We point out that if x(n) = nx for some xgR then the condition 

that {Xnj } satisfies (*) can be omitted in II of Propositions 2.9 and 

2.10 ([23 , Theorem 2] and [27, Remark 3.4.3.1 ]) .

Next we make some remarks about the validity of (2.8) or (2.11) for 

certain positive functions f of real argument.

Suppose f : [1,«) + (0,“) is'bounded on finite intervals and 

lim· f(x) = “ ; then the following functions are well defined for 

y€ [ f (1) ,")
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We have 1 <f <f, <f, ; each f. is non-decreasing and lira f. (x) o 1 2 i 3 x+· i

■ +· for such an f. We will say that fGF if f is Borel measura

ble, satisfies the preceding conditions and f^(y)~ fjiy) as y*·.

2.11. Lemma, i) if f : [ 1,«) *' (0,®) is non-decreasing and

lim f(x) »« then fGF. x-»· ®

ii) If f : [1,®) * (0,®) is bounded on finite intervals and regularly

varying with exponent a > 0 then fG F. Moreover f (y)~ f_(y) as O z

y ->- a. and 1 is regularly varying with exponent 1/a(i = 0,1,2) .

iii) If fGF and f^ is regularly varying with exponent 1/a for 

some a > 0 then f is regularly varying with exponent a .

Proof, i) f^ = f^ if f is non-decreasing.

ii) First we prove that f - f^ . We will show that for every t >1 we

have fj(y)< t f (y) for all sufficiently large y by using the Karama 
Ix -1

s e(s)ds), c and ε being
1

measurable functions with lim c(x) = c >0, lim ε(s) =0 (see x -► ® s-> ®
[28]). Fix t>1 and take r€(0,1) such that rtB^> 1. There exists

y„ such that for every y> y we have f (y) + 1 <tf (y) , ° Ο o o
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r(tf (y) (f (y)+1)'1)a/2>1> |e(s)|<a/2 if s > f (y) and c(x)/c(x') 
o o ®

>r if x,x’>f (y) · Then if' y>y and x>tf (y) , taking x' such o o o
a/2 

that f (y) < x' < f (y) + 1 and f(x*)> y, we have f (x)/y > r(x/x’) > 1;o o

this iaplies that f2(y) < tfQ(y) if y>yQ. 

Now fix t>0. Given r> 1, by hypothesis we have 

lim f (r-1t”1//af, (ty) )/f (f, (ty)-1) = r \ 1 which implies that, for 
y+ «ο 1 1

all sufficiently large y, f(r t ' “^ (ty)) < t" ‘f (f 1 (ty)-i j < y Dy 

the definition of f. and r t f,(ty)< f_(y) by the definition

- — — 1/a
of f2· ®“η ^·™ “Py*·^/^^^^ <t . By a similar argument we 

can deduce from the fact that lim^^^ffrt' f^lyll/flf^yl-D - r t 

1/afor each r€(0,1) that lim inf^ f^ftyj/f^y)» t . Ulis implies 

that Γ varies regularly with exponent 1/a because f ,ί^ϊ^ are 

asymptotically equivalent.

iii) Take t>0. For any r>1, the hypotheses give that

lim^^^f 1 (rtaf (x))/f2 (f (x)) ■ r1/,at which implies that, for all suf

ficiently large x, f^(rtaf(x)) >tf2(f(x)) > tx by the definition of f^ 

and f(tx)< rt°f(x) by the definition of fp Then 

lim sup f(tx)/f(x)< ta. On the other hand, 
x+»

lim f.(r \ af (tx))/f_ (f (tx)) = r 1//at 1 for each rG(0,1) and an 
x+® 1 2

analogous argument shows that lim inf f(tx)/f(x) >t°.· 
X

2.12. Corollary, a) Let fGF. Then assertion (Ά) of Proposition 2.9 

holds if and only if
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(2. 1»

Moreover, in this case U (defined in (2.9)) is asymptotically equi

valent to

here f^ can be replaced by f^.

b) If f : [ 1,®) ·* (0,®) is regularly varying.with exponent a « 1/2 

and bounded on finite intervals then (A) of Proposition 2.9 holds.

Proof, a) Assume that f satisfies (2.12). We claim

(2.13)

Write Let

2eG (0,1/2). There exists yQ such that if y> y then f (z)z

-12-2 - - -
< ez Xh<z f (h)h for z> f^y) and log( (f2(y)+1)/(f 1 (y)-1)) <2.

Therefore if y> yQ
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which implies 1 < g(y) < 1+2eg(y) , that is 1 < g(y) < (1—2e) \ This 

proves (2.13).

By the definitions of f^ and f^ we have

2 —2 2 —and Σ f (k)k > Σ - . f (k)k . Then using that f ~ f_,k:f(kky kif^y) 1 2

(2.13) and (2.12) we obtain (2.Θ). That U~ Ü follows front (2.13) and 

the inequalities

Now stippose that f satisfies (2.8). Write u(x) for the quotient

in (2.12). First observe that

(x>1) and that for some constant C

for all sufficiently large x (by the .definitions of f1 and f^ we

have
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-2 - -Σ, « < k ; moreover, f,- f_ and fix)·*·» as x->·). Therek:f(k)>f(x)-1 '12 —

fore we have for such x's

Since f (x) -► <» as x* <■ , (2.8) implies that for any ε€ (0, (2C) ) we

have u(x) < C(l+2u(x)) ε and hence u(x)< ε C( 1-2εΟ for all suf

ficiently large x. This implies (2.12).

b) Use a), Lemma 2.11(ii) and [2, Chapter 2, Lemma 6.15].·

2.13. Corollary, a) Let κ^κ^'Β be 33 in Proposition 2.10 with 

β = 1/α, α >1/2. Let f^F. Then (A) of Proposition 2.10 holds if 

and only if f is regularly varying with exponent a .

b) Assume f : [1,®) ·* (0,®) is regularly varying with exponent a>1/2, 

bounded on finite intervals. Let

(2.14)
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(υ(.,.,.) defined as in Proposition 2.10) and define ζ by n

(2.15)

(2.16)

(2.17)

Then for any

Proof. a) Since f € F , by Lemma 2.11 it is sufficient to show

(2.18)

By the definitions of f^ and f^

moreover and

Then and (2.18) holds

since
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b) From l2, Chapter 2, Lew* 6.15] we obtain

(2.19)

On the other hand

which by (2.19) goes to one as x*· because f^~ fj and f is regular 

ly varying. Then by (2.9) and (2.19)

because f is regularly varying and f^(f(n))~ n as n+· (observe that 

f,(f(n)) (f2(f(n)))'1< f^fin))!'.'1* f, (f (n) )f1 (f (n) -1) and f] is regular 

ly varying). Therefore we can take b(n) - f(n), k^ ■ (a log 2) ,

K2 - 0 in (2.10).·

This result iaplies that if f satisfies the assumptions in b) with 

a€( 1/2,1) then

converges to the law given in [1, Theorem 5.2] (observe that for such an

a, v is strictly stable and satisfies 0< v ((0,·))< 1 - use [9, Chapter a a
IV, Sb Theorem 7]).
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2.14. Examples.

2.14.1. Let f(x) = χ1^ and take b (n7 *= (n log n/log 2)'^,, x(n) = 

1/2= Epta^ ) in (2.6). Then (2.7) holds with λ replaced by any p« λ 

(observe that Ü(x) ~ (log 2) 2 log x).

2.14.2. If £n is defined by

(2.20)

then for any , where

(2.21)

with

As a consequence, if

(say). We do not know an explicit expression for σ (observe that V

is not strictly stable; on the other hand, [9, Chapter IV, §1, Theorem 7] 

shows that σ ί ,σ/δ.). o 1

2 1/22.14.3. Let α > 1/2 and c>0 with ca > (a +1) ; then fix) ■

xQ(c + sen (log x)) belongs to F and is not regularly varying. Hence
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íf α>1/2, f does not verify (A) of Proposition 2.10 (this is related 

to [19, footnote cn page 199]). If a » 1/2, f satisfies (2.12) and 

(A) of Proposition (2.9) holds with x(n) - E^ftap, b(n) ■ 

((c2-j)(log 2)~1 n log n)1/<2 (we have U(x)~ (c2-j) (log 2)“1log(f“1(x)); 

writing h(x) ■ log (f 1(x)) we obtain h(x) + 2 log(c+sen h(x)) * 

2 log x which iaplies h(x)~ 2 log x. Then U(x) -(2c2-1)(log2)"'log x).

2.15. Reaarks. Livy [19] proves the convergence of L (ζ (1)) of Corol ——p n —

lary 2.13 for non-decreasing regularly varying functions (see also [20,

Chapitre IX]); the case f(x) « x (which inproves a result of Khintchine 

Í14, page 377]) was also given by Doeblin [7] (for p»)) and by Philipp 

[24] (using [25]). The assertion that L,(C (1)) of Exanple 2.14.1 con- λ n

verges to the normal law is stated in [20, Chapitre IX] without indi

cating the norming constants.
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53. Comparison with other sums.

Throughout this section, {η . : 1 < j < n, n> 1} denotes a double 

array of measurable real functions on (β,δ) .

Define

(3.1)

For the proof of the following inequality see [5, pages 1B8-190].

3.1. Lemma. Assume If

(3.2)

where and

then for any ε >0, n > 1, 1<p <n/2 we have



3.2. Loma. Auum

(1)

(2) defined in (3.2)).

(3)

(4)

Then in measure.

Proof. Let c > 0. By Lerna 3.1 it suffices to find p+« , p < n/2 --------  π π 

such that lim ηβ (p ,c) = 0. This can be obtained from (3), noting η η n
that ηβ (ρ',ε)< 2pn max. P(|n . Ι>ε/(2ρ)) for each p (this is an ar n nj —

gument in [ 5, page 175]). ■

3.3. Proposition. Assume

(1)

(2)

(3) (y defined in (3.2)). n

Then in measure.

Proof. In order to verify that (4) of Lemma 3.2 holds it is sufficient 

to show that
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(3.3)

Write Μ = max. E η2, and v . (1) = Ε„(η . - Π ,,)2. Let Kj<k<n 
n ]<n P nj nj P n] njl J

with k-j >3. If £ - [(k—j)/3] arguing as in [11, page 369] (or (5, 

page 185]) by conditioning with respect to M^ and M^^ we obtain

Therefore, writing K = Knl = Kn2 » M^ and

for h >3, we get | E_ η . η , |< K . if 1 < j <k<n. Then if 1 < 

i< n
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Front this one can obtain (3.3).·

We will use only the following.

3.4. Corollary■ Let {η^ : j >1) be a sequence of measurable real fun* 

tions on (b,£) and (b(n) : n >l}C(O,“h Assume

(1)

(2)

(3)

Then in measure.

Proof. Write and observe that
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Í4. Ccplf quotients and the sequence (u^).

Following Doeblin [7, page 365] we writs for »E0« j> 1

(4.1)

Then u1 Cm) - x^ («) and u^ (ω) ■ x^ (m) + (yj_1 (io)) 1 if j > 2.

We will try to extend some results of S2 to { x^ } and {u^} . In 

our first statements, if ζ is a random element defined in terms .of the 

a^'s, ζ denotes that one obtained by replacing the a/s by the x^'s; 

€ is similarly defined when considering the u/s. For instance, if 

£ is as in Example 2.6.2(c), ζ (t) * card{j < [nt] : u. > θη).

4.1. Examples.

4.1.1. Let 6,a and ζ be as in Example 2.6.2. Then the conclu- n

sion there, remains valid for ζ and ζ . η n

Proof. We have where

Write
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Note that P(X > 0)< nP(8n-2<a, <6n)*0 (observe that a.<u.<a+2) 
n 1 .333

and, since Y < c η ^n ^ ^ ^ X . a° a , with c_ ~ 2a3° ' if
n a j<n j {a>6n} a

a >1, = 2|al if a < 1, 2.6.2 shows that Y * 0 in measure. The 
n

proof for ζ is similar. ■

4.1.2. The statement of Example 2.6.3 is true if we put everywhere *

(or ) over the random elements there.

Proof. (Case ζ ) Let η . = f (u.) - f (a.) , f being defined as in --------- n n] n j n j n

Example 2.6.3; it is sufficient to show that We

have

where

Then

Writing we have Note that

Moreover, given
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which tends to (8 log 2) as n *· . Then for every rQ > 1, 
r°

lijn sup α < (Θ log 2) ; hence list a · 0. Analogously lim β * 0.·n nr η η η no
Now we turn to sums of the form X^f(x^), X^f(u^)- From Corollary

2.13 we obtain

4.2. Corollary. Assume f is as in Corollary 2.13(b) with a > 1. If

5 is defined by (2.15) then ζ and ζ satisfy the conclusion there, η η n

Proof. (Case ζ ) We will show that —π

Write f(x) »jFl(x), L being slowly varying. We have

Since then will follow if we show that

Observe that if K> 1

(write in each term). Then given ε > 0 we

conclude by Corollary 2.13 that for every K> 1
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which goes to zero as K ♦ ■. Hence M^ + ^ 0.

On the other hand, -for each X» 1

where C = sup , f(x) (finite by hypothesis). Let ε > 0. Given

η>0 take K>1 such that SUPO<S<2 lL^ ^L(x+s)-1 | < η if x> K 

(possible by the Karamata representation of L); then

which tends to zero as η -► 0. Then X^ +p 0.·

4.3. Lemma. Assume f : [l,a)+(0,“) is Borel measurable and satisfies

(4.2) there exist r > 0 and M : W*-* [ 0,·) with EpM (a^) < · such 

that for every kEW*, I f(x)-f(y)| < M(k)| x-y|r if x,yG [k,k+2].

Let {b(nJ.}C (0,·) such that lim nb(n) —0. Then if η. = f(u.)-f(a.)- 
n 3 3 3

E (f(u.)-f(a.)) (j>1) we have max . |b{n) 1 Σ* η,| *0 in
p 3 3 l<Kn J

measure. The same result holds if we replace. everywhere u.. by x_. in 

the definition of η^.
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Proof. (Case {u^}) Since | f (u^)-f (a J | < 2rH(a^), (1) and (2) of Corel 

lary 3.4 are satisfied; it remains to verify (3). First, fix j> 1, 1>1 

and k. .,... ,k. .€»* and take ω,ωΈ Δ :■ ή (k. . ,...,k. e) where ]-l 3 + 1 31 3-1 3+1

(4.3)

we claim that

(4.4)

We have

te“” ‘j»1·1'1 ■ Io'kj*1..........νΐ'*).!*!1·1'-1 “4 ^l1·’1''

■ [ 0,k...... ,k.. _,a. .,, (ω*), — 1 both are in the fundamental inver- j+1 j+i ]+l+1 J

val of rank £,{αε[0,1) : a, (a) ■ k. ,a. (a) = k.ltl whose length 1 j+1 * ’

is less than 2 . This proven (4.4) when j « 1. Now suppose j>2

and recall that u. = x. + (y. .) \ If j-£< 1 we have y. . (ω) ■
J J 3-1 3-1

[0,k^_1,... ,k1 ] = yj.^w')*1 and (4.4)holds. Suppose j-£>2. If j»3 

merely observe that £ = 1 and | y ^e)'1 - y ^ (w')-11 < 1 <4 2^ .

If j >4 then, writing
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and

we conclude that

(we have used the following fact, whose proof involves (2.2): if a =

[ k , ...,kl with k E Z, k,,...,k G W* and N > 2 then a. (d) = k. 
on ο Ί N ii

if 0 < i < N-2) . Thus ω and ω' both belong to iaG[0,1) : a1 (a) = 
- (£ “2)

L_^, — ,a^_1 (a) = kj_(£_ij} whose length is < 2 . Therefore

Ι^·ΐ'ω) 1 “ ^-ι'ωΙ> ^^ 2 * and (4.4) holds. By (4.2) we obtain

thj s implies

Bence

for every £ > 1, j > 1 and (3) of Corollary 3.4 is verified.·
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4.4. Remarks, (a) la the proof of the preceding 1 enana. { Xj} case, Corol

lary 3.4 can be replaced by the (functional version of the) theorem in

[5, page 192] (consider the function fCu») = f(w ^)—f([ω '])).

(b) Let a >1/2 and c> 0. The function f(x) ·

° “1/2 χ·[χ]x (c-(log x) cos((v/3) J)) is regularly varying with exponent a

but does not satisfy (4.2) (for some b> 0, f'(x)> bxa(log x) ^^ if

2x€(k,k+1) and k>1; then E_ (f (x,)-f (a,)) ■ ■). Hence (K ) belowP 1 1 o
is not satisfied; we do not know whether the law of í"f(xj, suitable

normalized, converges.

For x. we have L_(x.)(dt) » I,. . (t) (t(t+1)log 2) ^dt for 
3 · P 3 ('»“/

every j. For u^ the next result is useful. (4.6) is proved in [7, 

page 365] and (4.7) is (apart from the specification of r) a reformu

lation of the theorem in [15]; by (a) both are consequences of a result 

of Levy. Our proof follows an indication in [7]:. We use (a) in the

proof of Theorem 5.1.

4.5. Lemma. Denote G (t) = λ (y >t) for real t and n > 1. ——— η n

(a) If n > 2 then

and
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is a density function for ^<un>< moreover

if t> 2 and if t> 2.

(b) Let H be the distribution function with density

(4.5)

Then there exists rG(0,1) such that

(4.6)

(4.7)

Proof, (a) Let n> 2. By Proposition 2.1 we have if 1 < t< 2

and if t > 2
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But an integration by parta shows that

if t> 1, which implies (since y^ ^ >1)

From the preceding relations we can easily obtain the indicated ex

pressions for H^. The property of hn follows from the equality

where u>1. On the other hand, note that h (t) =
-2 Í -1

t (2 - Ky^^ s >ds) if t»^-
J 0

(b) It is proved in [20, Chapitre IXj that the function Fix) := 

(log 2) 1log (2x/(x-i-1)) if x > 1 „ =*- 0 if x «1 satisfies

(4.8)
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for some C >0 and r€(0,1). Now (4.6) and (4.7) follow from (a)

since H and h are related to 1-F just as H and h are to η n

G ■

4.6. Corollary. Assume f : [1,®)-»· (0,®) is regularly varying with

exponent aG[l/2,l], Epf (^1·+· and satisfies

whew

ε í [ I,") *R measurable, bounded· and lint ε(t) =0. t -► ®

Let v be defined by (2.14) if a€(1/2,l] and write v =

N(0,1). Let

if (h being the density in (4.5)) if

aG[ 1/2,1) and define ξη by

(4.9)

if a = 1,

(4.10)

(4.11)
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where (b(n)} is any sequence satisfying lira nb(n) O(b(n)) - 1 (with n

U defined as in Corollary 2.12) . Then for any p« λ , Λ (ζ )-> ο . P n w v a
The sane result holds if ξη is defined by replacing in (4.9)-(4.11) 

u. by x. and m(f) by m* (f) where m'(f) - Bp(f (x^-f (a^ ) if 

e-b-yfxp if a €[1/2,1).

Proof. By (K ) f is bounded on finite intervals and, as we will show, — o

it satisfies (4.2). Writing M ■ max{1, sup^^ |e(t)|}, by (Κθ) we 

have if k€U*( k<x<y<k+2,

where ; then, since a< 1,

1/4On the other hand, there exists C such that L(x) <Cx for every

x>1. Thus if k£H* and x,yG[k,k+2j

(4.12) (sag)

which proves (4.2). Corollaries 2.12 and 2.13 and Lemma 4.3 now imply 

the assertion about { x^ }. For { u ̂  } we conclude that
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ξ^ being defined by (4.9) with m(f) replaced by Ep(f(uJ-f(aJ) 

(which depends on j) in the case a = 1 and by (4.10)-(4.11) with 

m(f) replaced by Epf(Uj) if a G [1/2,1).

Suppose a €:[ 1/2,1). By Lemma 4.5 we have

and hence, for some constant C^,

(4.13)

Write g , = E if(u ) M „). As in the proof of Lemma 4.3, using (4.4) ’ni P n 1 n£

and (4.12), we obtain that for some C2

(4.14)

On the other hand, since there exist constants K and r'G (0,1) such 

that | P(A) -λ (A) | < K(r') ^P (A) for any AG σ (a^, a^+1,__ ), k> 1 (argue

as in the proof of [12, Lemma 19.4.2] using (7) of [21]), we have for

some Cj

(4.15)
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Taking *n * ^ n^ we

get from (4.13)-(4. 15)

Thus |e f(u )-m(f)| » O(sn) for some sE(0,1) which implies that 

sup^l ?n (t)-ζ^ (t) | ·* 0 pointwise and so the proof in the case a < 1 

is couplete.

Now assume a = 1. First observe that Proposition 2.1 implies 

that for any Borel measurable function h

provided one of the two members exists, y being a possible value of 

y^ p Thus, writing

(4.16)

we have (by (4.12) K is bounded aid the following integrals exist)
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On the other hand, m(f) = K dF where F is the distribution
[ 1, ·>)

function appearing in (4.6).

Denote g(x,y) the integrand in (4.16) and v(x,y) =

y(y+1)(xy+1) . If x >1 and y,y'> 1 we get by (4.12)

Hence if y,y’ > 1 we have

(say)

and K is absolutely continuous. Then

and (4.6) gives that |E.(f(u )-f(a ))-m(f)| = 0(rn). In order to com- 
λ η n

píete the proof, observe that analogous relations to (4.14) and (4.15)

are valid and argue as above. ■

4.7. Exawples.

4.7.1. If f(x) = xa where a € [1/2,1) then m(f) ■



-46-

(a(1-a)log 2) 1(2a-1) and we can take b(n) » (n log n/log 2) 1/<2 in

(4.11).

4.7.2. Let f(x) = x. Then m'(f) » (log 2) ^l and m(f) =

i·'(f) + (log 2) 1 [ y 2(y+1) 'dy » 2((log 2) 1 —1) . If ζ is de-

1 . =
fined by (2.20) then for any p «λ, L (ζ )+ Q . and L (ζ )* Q». , P n w p n w

where ν' ■ ó * v'r ν' ■ δ . * v'( v1 being
((log 2)" -1) 2((log 2)” -1)

defined by (2.21) (we use the notation at the beginning of this sec

tion) . Similar remarks to those made in 2.14.2 apply. We point out

that the convergence of £^((n(1)) was indicated by Doeblin [7, page

365].
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5 5. An application to Diophantine approximation.

5.1. Theorem. Let cG (0,1/2]. Given n>1 and ω€Π define

where (a) is the distance between a and the nearest integer, and

Consider the random functions

t€[o,l], n >3. Then for any ρ«λ, Γ. (E )-► W and L (ξ+)-»· W in 
p n w p n w

D, W being Wiener measure.

Define A^ ^ as above by replacing the constant c by a function f 

such that Sf(q)q ^ diverges. For fairly general f, the theorems of 

Le Veque, Erdtts and Schmidt show that Λ, ~ 2 Σ f(q)q ^ =: b(n) a.e. 
f,n c<n
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(see [17]). Philipp [22] proved, in accordance with a conjecture 

_ 1 /2of Le Veque [18 b], the asymptotic normality of b(n) (A^ n~b(n)) for 

f satisfying, besides other conditions, lim f(q) ■■ 0; here .different 

norming constants are needed. We remark that [IB] and [221, which 

contain several related results, use centf# liMt’,ti»orwe fpr weakly 

dependent variables having finite variances. Relation (5.4) Mas suggest 

ed by an estimation made in [17, page 35].

Proof. Fix cG (0,1/2]. We will write Λ (Λ ) for Λ (Λ ) . --------  η n c, η c, η

(I) Convergence of ζ^. Step 1. Let n‘> 1 and ω€ Ω . It is well known 

that

(5.1)

Then

for the proof of the second equality, use that Iq^iw) ω-ρ^(ω) | « 

(x^ (“^^(ω) +<lji_1(“)) 1 i£ Jc > 1 and

(5.2)
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2 2(observe that if k >1 and r < c u^f then (rq^) <

2 2 2
cl\»1 \*% Vl1 “Vl % * 'V21^ Vi * 'S.1 5k + W ■

Now consider the denumerable set Ω of those u for which o
(c υ^+1(ω))^ is an integer for some k>0. Then if ω€ Ω\ Ωθ

Define the r.v. τη : Ω ■* IN* by

(5.3)

Therefore we have for ω€Ω\Ω o

(5.4)

where

(5.5)

(we write q (ω) = q (ω), etc.). In order to prove the inequality 
η τη'

in (5.5), note that if (p,q) belongs to the set defining Sn then, by

(5.1) and (5.2), p = r p ^ω), q = r q ^(ω) with a positive integer 
1/2 n’ Π

r <(c u (ω)) ' .
τη

Step 2. From now on fix ρ«λ. By Example 2.14.1 we know that, writing
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We will deduce that if

(2)we have L (ζ )-► W; for this purpose, it is sufficient to show that p n w

if

(observe that |l| < 1) then inJ verifies (3) of Corollary 3.4.

In order to prove this, fix j>1, Λ > 1 and write f^ = 

r. = [(cu )1/2] and 
r J J J

Given positive integers k. .,...,k. . and Δ := Δ (k. „ ,...,k. .) ]-£ ]+£ ]-£ ]+£
defined by (4.3) we have that if ω€Α. Π Δ and ω'ΕΔ then f.(w) =

f.(w') (since idG A.., using (4.4) we get c \2 (ω) < u . (ω· )< 

-1 2c (r.(ω)+1). which says that Γ,(ω') = r.(u)); hence ί,(ω) = 
J 3 3 3

Ρ(Δ) V f. dP if ω£Α.ΠΔ. This implies that f. = f almost 
□ J* 3 3*·

surely on A. . 
3£ 

On the other hand
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If j >2 and £ satisfi.es 62*'< 1 we obtain, usinf that Hjb) -

H Ja) < 2b '(b-a) if 1<a<b (this follows fro· Lea·» 4.5(a)),

and a similar bound is valid for j ■ 1. Hence there exists a constant 

cC such that p(A·^ < for every j and £ .

Now we can write

(5.6)

for every j >1 and £ >1. Thus Corollary 3.4 implies that

L (ζ(2))* w.
p n w

Step 3. If j >2, by Leona 4.5(a)

satisfi.es
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Md this series is Σ^^ r 2 · <2/6j then Leona 4.5(b) giwo, for scon 

constant C^,

Í5J)

Writing r^· *p^rj^ji’’ rj ^*^9 defined as above, and arguing as 

in the proof of the inequality in (5.6) we get for some C?

(5.6)

(note that |r^-r^^|<2 almost surely. It is enough to verify that 

jr,W-r.((ü') I <2 if «,«· 6 A(k. , ,...,k.^) - defined by (4.3) - 

with positive integers k^_^ ,...,k^+^ ; but in this case we have 

|r^(n) - r^(u')| < (ciL+Z))1^ - (ck^)^2 + 1 < 2). Moreover, the argu 

■ent which led to (4.15) shows that for some C^

(5.9)

with r’€(0,1).

By (5.7)-(5.9) we have now |Ep( [(cu^1/2 ]) - (6 log 2)‘1 c e^- 

O(s^) with s6(0,1), which uglies that: if
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then L (ζ'^) + W (see proof of Corollary' 4.6). h* 
p n w

Step 4. By a well known theorem of Khintchine lum^ k q^ = B =■ 

t2/(12 log 2) a.e. Ulis and (5.3) give

(5.10)

Now we claim

(5.11) in measure.

For every ε > 0, since τ, <τ if ken, J k n

and the second term on the right is bounded by 

-1 2(1+e)B (logn)P(a^>e log n log(logn)); then (5.10) and (2.5) imply 

(5.11).

We also need

(5.12) in measure.

First observe that, since q^ < k< a , 0< log ^ - log k
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<log(y ) <log(a +1) < a1^2, and we get J BT — log k| < ]bt —log q | + 
Tk k ^ k

a ' . Moreover, if Y (t) = τ {log qr Ί - [tx ]B) (tG[0,l])rk η n Ltx J nK n
we have

and (5.12) follows from (5.10), (5.11) and a theorem of Billingsley [5, 

page 194 and Theorem 17.1].

We claim that if

(4) rthen L {ζ )-»- W. Here we will use the notation and results of [5, p n w

§17], Define

and g(t) = tB ^ (t G[0,1 ], ωΕΩ). We have Φ (. ,ω) G D for each ω, 
η o

gGD^ and φ^ converges in p-measure to g in ϋθ ; this follows

from (5.12) since
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Starting from the weak convergence of £ ^[log n] ' *n’ (use [ 5, Theo

rem 4.4]) , noting that if ω satisfies [ log n] 1 τη(ω) < 1 and 

t e[o,i]

and using (5.10), we can argue as in [5, proof of Theorem 17.1] to con-

elude that L (ξ J-»· W. p n w

In order to confíete the proof, observe that by (5.4) and (5.5)

and use (5.11) and (5.12) .

(II) Convergence of ζ^. Slight modifications in (I) are needed. We

only make two remarks. Since a convergent p^ (ω)/q^ (ω) is less than· 

ω if and only if k is even, (5.4) is true for A+ if in the sum 
n

of the right member j runs through odd values and 0^ is suitable

defined; then the inequality in (5.5) also holds. On the other hand, we 

have for t £ [ 0,1 ]
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From (the C[O,1] version of ) the preceding result one can deduce

(see [5]) the following. Given eg (0,1/2] let T (ω.) be the first c,n

i, 1< i< n, such that

or

if Λ (ω) / 2 c log n; otherwise define T (ω) = n. Then for any c,n c(n

p« λ , L ((log T )/log n) converges weakly to the arc sine law; P c,n

.this says that if 0<a<b<1 then
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