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'§1. Introduction.

The aim of ﬁis paper is to collect some remarks about the conver-
gence in distribution of sums of some random variables associated to the
continued fraction expangion of a random number w in (0.1).

As discussed in Sectiom 2, the results in [25],(27] apply directly
to the sequence (aj} of partial quotients when ® is chosen under
Gauss’'s measure. If it is replaced by any probability measure absolutely
continuous with respect to Lebesgue measure, similar results hold. (by [21,
Lemma 1]; in the case of Lebesgue measure [12, Lemma 19.4.2] works). Then
some theorems of Lévy [19],[20] and Doeblin (7] are obtained as corolla-
ries and some information is added (see Examples Z.6, 2.14 and Remarks
2.7, 2.15 for references). In particular, we get necessary and sufficient
conditions on a function £ for the validity of a functional limit theo-
rem (invariance principle) for sums zj<n f(aj) under Lebesgue measure
on (0,1); then a certain class of positive functions f of real argument
is examined and we obtain (Corollaries 2.12 and 2.13) functional limit
theorems for f reqularly varying (and bounded on finite intervals).

In Section 4 we consider sums involving xj, the complete quotients,
and “j' defined in (4.1), which measure the approximation of w by its
convergents. We extend some results of Section 2 (see Examples 4.1) in-
cluding functional limit theorems for 2j<n f(xj) and Ej<n f(uj) for
some reqularly varying f; in the case of (xj} . Corollary 4.2 generali-
zes [19, Theorem 4] and Corollary 4.6 contains for a certain class of
regularly varying functions a result suggested in [19, pages 200-201].

Example 4.7.2 gives the functional form of a limit theorem indicated by



-3~

Dosblin. Lemma 4.5, which is used to deal with “j' essentially contains
the theorem in [15); the proof given here is based on a relation due to
Lévy (Proposition 2.1).

In order to achieve these extensions of the results of Section 2, we
isolate from [5] (and [11]) some facts which lead to Corollary 3.4 (see
Remark 4.4(a)).

Theorem 5.1 gives the asymptotic normality and even a functional lim
it theorem for the number of solutions of a certain diophantine inequal-

ity which is not covered by [18],[22].



§2. Sums of functions of the partial quotients.

Given an irrational number a, let

a = [ao(a),a1(u),...]

be its (infinite) simple continued fraction expansion, defined by the con

tinued fracticn algorithm

1

(2.1) a=a (a) + —_— e
° xn_H(u)

1
_x1(u) roves xn(u) = an(u) +

4
vhere a_(a) = [a] (throughout the paper, [.] denotes the integer part
of a real number), an(u) = [ xn(u)] (we refer to [4,54] and [10] or
[17] for the elementary facts about continued fractions). The a 's are

the partial quotients’ and the xn's the complete quotients of a.

We denote by N* the set of non-zero natural numbers and

N = N*U {0}. Givem an integer k, and k,,..., K EN*, NEN*, the finite

1
continued fraction [k_s...sky] is defined to be k, if N =0 (the two
Q as
senses of [.] coincide) and if W> 1 it is the ratin2l number defined
. : . -1
recursively by the formala (kgeeeo k] ko + ([k1..--‘,kN]3 . If
(kgrooorkgd = [k2oove kl]  with k. >1 and k{>1 fer i=1,...,N then

ki = ki for i=17,...,N.
For Tational a the algorithm (2.1) terminates at a certain value

NEN of n (N=0 and ao(a) =a if a is an integer; N>1 and

xN(u) = aN(a) otherwise) and defines ao(a) ,...,aN(a) . Then

(2.2) u-[ao(u),...,aN(u)], with aN(a)>2 if N>1,
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‘and we define an(a) = o if n >N,

We are interested in aj .and x:j as functions defined on the set
of irrational numbers in (0,1}). Denote it by Q and let ‘B be the
class of its Borel subsets. cm (8,8) we will consider the Lebesgue

measure A and Gauss's measure

dw
P(B) = JB ., ses.

1
log 2
£ p is a probability measure on (Q,B) we shall write Ep fsim-

ilarly Varp ’ Covp )} for the corresponding expectation operator and
LD(F,) for the law éf a random element § defined on (Q,B,p);: often we

will write E = EP , L= Lp. If moreover p is absolutely continuous

with respect to A we shall write p<<\.

Also we will deal with the functions P9, defined for w€Q by

P @) =0, p,w) =1, p W) =a wp _,W +p W if n>2,
QW =1, q W =a W, qW =awgqg W+qg ,w if n>2.
For each WEQ and n »0, pn(w)/q_n(w) = [0,a1(m),...,an(w)] is the

n th convergent to w.

Following Lévy [20, Chapitre IX] we write, for n>1 and wEQ

v @ = qh(w)

n qQ, (w)

» = [an(m) ,an_1(w),...,a1(w)]-

It is well known that endowing (Q,B5) with Gauss's measure P,



-{aj : 3>1} is a (strictly) stationary and J-mixing sequence of r.v.'s
with an exponential mixing rate and satisfies the condition ¥*<= ([4,
page 50] or [12]_; the last fact follows from the right inequality in
(4.15) of [4]). |

Throughout the paper, we use freely notation and concepts quoted in
[25]. The dependence coefficients ¢(k),y(k) ,y* refer to {aj} defined
on (Q,5,P). !

The following relation, due to Lavy [20, equality (8) in §74] and
called the Borel-Lévy formula by Doeblin [7], shail be useful later (the

indicated dependence: properties:of {aj} can be proved starting from it

[20]).

s - ) : *
2.1. Proposition. If n>2, vy [kn-1""'k1] with k1,...,kn-1EIN

and 1<a<b then

(y+1)
(ya+1) (yb+1)

Ma<x< bl;(n_1 = y) = A{((a,b])

(Apart from being stated here in Q, this is (4.12) of [4] since !

-1 1

. - -1 . _ .
=x  if Tw=w -[lw '] and{weER: Y0 —[kn ,...,k1]}

-1
={wEQ - a, (w) = kl""an—1.(w) = kn_1}] .

In order to apply some of the results in [25],[27] it appears te be
necessary to verify that ¢ (1)< 1 and this can be done using Propesition
2.1. But, under the properties of { aj} indicated above, no further ar-

gument is needed. The following property was averlooked by us in [25],

[27] and is stated by Bradley in [6, page 184]: given a probability
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space (X,4,0) and two sub-g-algebras M, ¥ of A we have ¢:= ¢(M, M
<1 if y* 1= p* (M, N)< «» (see for example [‘27] for the definitions).
For the sake of completeness, we show that ¢ < (w')-1 (y*=1) if Pp*< =
y* > 1 always). Assume ¢> O; observe that for each €€ (0,¢) there

exist A€M , BEN such that Q(A)> 0 and
¢-¢ < (Q(AB) - Q(A)Q(B))/Q(R)< 1 -~ Q(B)

(if Q(AB) - Q(RIQ(B)< O, Q(AaBS) - QAIQ(B®) = -(Q(AB) - Q(A)IQ(B))> 0)

which implies Q(B)> 0 and
(1-(6-€)) " (4-€) < Q(B) "' (4=e)< ¥+ - 1.

The inequality follows from this. We remark that in a recent preprint
Philipp [24] proves the st:ronge::' fact that (1)< 0.8 for {aj} , thus
obtaining ¢(1)< 0.4.

We fix some notation. 1In this section, H denotes a real separable
Hilbert space with norm 1.8 . D({0,1],H) is the Skorchod space (see
[51) of H-valued functions on [0,1] and we shall write D = D([0,1],R).
If v is an infinitely divisible (i.d.) probability measure on H, Q

v
denotes the law on D([0,1],H) of a stochastic process § = {E(t) :
t€ {0,1]} with stationary independent increments, trajectories in
p({o,1],H), E(0) = 0 and €(1) having law v.

If {xnj} = {xnj :j=1,...,n,n>1} is a double array of H-valued

measurable functions on (Q,8) we shall consider the property
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r
n

*
(") {rn]CN , x <m, rn/n-» 0= 23_1

X + 0 in measure.
nj

In our first statements we refer directly to some asserticms in [25],
taking there B = H, jn =n, [ = EP , E= Ep and replacing the letter

f by h to denote functionals.

2.2. Proposition. Let {fn : n>1} be a sequence of functions from N~
into H and define xn:i -fn(aj) if j=1,...,n,n>1. Suppose that the
following conditions of [25, Corollary 6.5] are satisfied: (1), (2) mod-
ified by assuming the existence of the limits only for h in a se-
quentially w*-dense subset W of H', (3). Then (a) and (b) of that

result hold and
{(c) for any p<< X and for every 1 € C(y),

I (E(T)

(1) _
pton 1 vy gr*cT'Poisu ((0,1],H) where £ "(t) =

T -

Zicielnt] (x5 E X 1o (t€fo,1]).

Proof. Use [25, Corollary 6.5], [27, Corollary 3.3(iii)] and Lemma 2.3
belaw, noting that {xnj - EXMT}' satisfies (*) (see the proof of [25,

Corollary 6.5).®

2.3. lemma. Let p<< A, Assume {f,\} ' {xnj) are as in Proposition 2.2,

1 3 *
{xnj) satisfying (*).

(a) Let £ (t) =T (e€lod. 1 {160} or (L (&) con-

1<j<[nt] xrij
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irergws weakly (in D([0,1] ,H))  then both sequences have the same limit.

. n .
(b). Part (a) holds with t’j-1 xnj in place of L

Proof. (a) Take {rn} as in the definition of (*) with r +®; write

() =2 (t€(0,1]). First we observe that

X< j‘[nt]xnj

- «k .
suptE [O,l]nen(tj -En(t) I = m.ﬁ“rnll z jﬂxnjn-» 0 in measure

(this follows from (*) and a well-known maximal inequality quoted, for
example, in [25, Proposition 2.2]).

On the other hand, if g is any bounded continuocus real function on
p({0,1],K), Lemma 1 of [21] shows that limn(EPg(‘én)-Bpg(En)) = 0 since

£ is d(a.; j> r )-measurable. ®
n 3j n

2.4. Proposition. Let {fn} and {xnj} be as in Proposition 2.2. Sup-
pose that for some p<< A, {Lp (2;,‘.1 xnj)) converges weakly to a probabil-

ity measure vV on H.

(I) If {xnj} satisfies (*) then v is i.d. and if

v = 6z *y * c,Poisu , T € Clu), is its Lévy-Khintchine representation,
T

assertions (a)-(c) of [25, Theorem 6.2] hold and also we have (b') of

{25, Corollary 6.3] if the second part of (ii) of that result is satis-

fied.

(II) let §_ be the random function £ (t) = I (telo,1])

1<j<[nt]xnj
and suppose that {thtn)} is relatively compact in D([0,1],H). Then
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{xnj} satisfies (*), v is i.d. and L (€ )+ _ Q.

Proof. (I) Lemma 2.3 and [25].

(II) The argument in [27, Theorem 3.2, proof of (III)= (II)] shows that
{xnj} satisfies (*) . Then use (I), Lemma 2.3 and [27, Theorem 3.2].m

2.5. Remark. In the real valued case, the convergence in law of E;T)(l)
in Proposition 2.2 also follows from the main theorem in [16], which
improves 63]; it gives necessary and sufficient conditions (under certain
preliminary assumptions) even in the non-stationary case. See [27 , Re-

mark 3.4.2] for ancther reference (convergence to stable laws).

Next we give examples which are related to some results in [7].

2.6. Examples.

2.6.1. lLet 22 be the Hilbert space of square summable real sequences

and let {ep : p>1} be its canonical orthonormal basis. Define

rin) :Q+!2 by

r;")(u) = card{j<n : aj =p} ., p>1, wen ,

and Yy = (v ) by

o p>1

1
(2.3) Yp " Pla;, = p) = Tog 2 log(1 + , pat.

1
p(p+2)

Then, if En is the random function
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£ (0 = a2 (nth

- [ntlm) (celo,1),
for any p<< A we have LD (En) * v Qv where Vv is the centered Gaus-

. 2 : s e
sian measure on £~ whose covariance operator S satisfies

[ J
Yorq * 2?3 {P(a1=p,aj+1sq) -y Yq) '

(2.4)  (Se_,e ) =
P’ q 31 P

s -
PqYP
p>1, @>1; here 6pq=1 if p=gqg, =0 if p# q, and (.,.) denotes

2
the inner product of § .

Proof. Let £(p) = ep and take fn(p) = n—1/2(f(p)-Y). Since
Epnf(a1)lz< ® , by the same arquments which led from [25, Corollary 4.5]
to [ 25, Corollary 4.7] we can verify that (fn} satisfies the hypothe-
ses of Proposition 2.2 with M =0 and ¢&(h) ='VarPh(a1) +

+ ZE;=1 Covp(h(a.l).h(aj“)) (see also [25, Remark on page 405]). Con-

cerning (2.4), we remark that P(a1 =p,a,., = q) = P(a1 =q,a,,,= p)

J J
(see [19, page 182]).m

2.6.2. Let 6>0 and a€R. For each n> 1 define £ by

-a a
plt) = n z1<j<[nt] ajI{ajSen} (e€lo, 1.

Then for any p<< A , Lp(En) v Qv where

1

1
a) if a>0,v = Coa Pois ¥ with u(dx) =1 (@ log 2) 'x 8" ax;

(6%,=)
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b) if @< 0, v = 5 % Poisy with z = ((1-0)8 "®10g 2)7!
0

’

T .
(0,6%) {x) (-a log 2)-1x-5 -1 ax;

p(dx) =1
c) if a = 0, then En(t) = card{j<[nt] : 2> en} (tel0,1]) and

V = Pois ((8 log 2)-161).

Proof. Take f (p) = (p/n)ul (p) in Proposition 2.2. Condition
2IooL. n ©®n,=)
(1) there, is satisfied with the corresponding u because, for posi-
tive x,

1

(2.5) P(31> x) = m log(1+

1 1
~T——= . T as Xx+w™,

S
[ x]+1 og 2  x

On the other hand, observe that if a > O, xn = 0 for &€ (0,0%).

18
2 2 2
For b), note that sup_ nE)(n16< s sup_ nP(a1> 6n) = 0(§”) and that
l.unn nExnwa =2. If a =0 then xn18 =0 for §€(0,1).m

2.6.3. Fix a sequence (er} 'such that 0< 91< 62< ... and limr Gr =

(n)

=, Define L :ﬂ-’!z by

L(n)

- n} , r>1, wE€ N

(W) = card{j<n : 8 n< aj(u')<er+1

L([nt])

and En by En(t) = , t€lo,1]. Then for any p<< A, Lp(En)-»wQ\,

where

. . b 1 1 1
V = Pois¥ with u = zr=1 Tog 2 5 6—)6e .

r ¢l r
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Moreover, {Poisu ) (F) = 1 wheore

F={ (x.‘-,‘xz,;..)e 22 : x, €N and only a finite number of x;s

is non-zero}

1
(Poisu) {x)) = exp(- ——=) N1 — ( )
e1log 2 £>1 x ¢ log 2 Br er"_1

if x€EF.

Proof. Take fn(p) =2z (p)er in Proposition 2.2. Note

1
r=1 (°x"'°r.+1n]

that for every § €(0,1), xn = 0 and that for any subset A of H

18

we have

o
| lex )| Bg) () -u )] < rfi |nP(6 n<a <6, m

-1 -
- (log 2) (Br

which goes to zero as n+ » because each term tends to zero and

1

21__] faP(ern<.n1< ®_,qR) = nP(a,>8.n) + (8, log 2)
- Z=1 -1 -1
L. (log2) "8 " -0 ).

The expression for Poisy follows by direct calculation of u.n, n> 1.8
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2.7. Remarks. Example 2.6.1 gives a natural extension of the result in
{7, 52, n°5]. The limit laws of ¢ (1) given in a) and c) of 2.6.2 ap
pear in [7, §4, §3] where a), case a = 1, is used for deriving the
limit law of En(l) in Example 2.14.2 below. The proofs presented in
[7] of both results have been objected and the last one established in

[13] by using [8].
Now we are interested in sums of the form Zj <n f(aj) .

2.8. Proposition. Let f be a function from N* into R and let
{x(n)}JCR and {b(n)}C (0,») with b(n) + » . Assume that for some
p<<A, Lp (b{n) _1(2:5 (aj) - nx(n)))~+ gV anon degenerate probability

measure. Then v is stable.

Proof. Since b(n) + = we can find {rn}CN* » T €N, r +® such that
r

b(n)-1 2111 f(aj)-v 0 in measure. Arquing as in the proof of Lemma 2.3

we can replace p by P in our hypothesis and then [27, Remark 3.4.3.1]

or [23, Theorem 2] concludes the proof.®m

A function R :[ r,») + (0,®) (r>0) is regularly varying (at =)
with exponent a € R ([281,[2]) if it is Borel measurable and

1

limx—»ﬂ R(tx) (R(x)) " = & for every t>0. If a =0, R is slowly

varying.

2.9. Proposition. Let £ : N* + R.
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a) Let {x(n)}JCR and {b(n)}C (0,2) with b(n)+ = . The following as-

sertions are equivalenc:

(I) The random functions L, defined by

1

(2.6) g, (t) = b(n) 2:1<j< [nt](f(aj)-x(n)) (tefo,1])
satisfy
(2.7) L N (5n)-> w W, the Wiener measure on D.

(11) L l(b(n)-l E‘{(f(’aj)-x(n))) +, N(0,1), the standard normal distribu-

tion, and (X .} := {b(n)"(f(aj)-x(n)) : 1<j<n, n»1} satisfies (*).

b) The assertion

(A) there exist a bounded sequence {x(n)J CR and {b(n)}C (0=) with

b(n) + = such that (I) is satisfied, holds if and only if

24 - -2
X <& k
(2.8) lim k-lf(k)l > :1:2 — - 0
x=e zk:]f(k)l< x £k
or, equivalently, if
(2.9) U(x) := (log 207 £2 k2
k:| £(k)| < x

is slowly varying. If this is the case and U(x)+ @ as x-+ =, we can

take x(n) = Epf(ai) and any {b(n)} such that lmn nb(n)_zu(b(n))=1.



c) If (I) holds for some {x(n)}, {b(n)}, then (2.7) holds with X .re-

placed by any p<<A.

Proof. a) and q): [27, corollary 3.3(iii)] and Lemma 2.3.
b) First we observe that U'(x) := Ep(fz(a1);|f(a1)l< x) is slowly va-
rying if and only if U is (U and U' both have a finite 1limit as
x +w or both tend to «; in.the later case, U~U' by (2.3)); moreover
this holds if and only if (2.8) is satisfied.

Then, that (2.8) implies (I) (with {x(n)} and {b(n)} as indicated
in the case U(x) +=) follows from [27, Corollary 3.7] and its proof

(see [26]) noting that, with the notation there, ¢(0) = 1 and 0(.0)

1 3 =0
*
if 3»2 (use that ¢ < = and [25, Proposition 2.7]).
For the converse, suppose that (II) holds and that U'(x) + = as
x+«<, Fix ¢€(0,1) and write Ynjd = xnjé - EPanG' By (a) and (b)
of Proposition 2.4 (I) (or [25, Theorem 4.2]), lim l-:(}:r;A Ynjs) = 1; more

n 2 o 1/2 . 2 . :
over, E(Z‘l Ynjﬁ) <(1+4E.l ¢ (J))nE(Xn1,an1|< §) by an inequality
of Ibragimov. Then, using that {:.(n)} is bounded and b(n)+= we obtain

Temnbm™ (£ (a )| £(a) | < bn))
if n>1 for some M>0 and n,€N*. Since lim nP([f(a1)|> b(n)) =0
(use (a) of .Proposition 2.4 (I) and that x(n)/b(n) = 0) and b(n+1)/b(n)
2 -
+0 we can conclude that xzp(lf(a,l)l >x) (E(f (ai);‘f(a1)l <x)) LN 0

as x- =, which says that U' is slowly varying. ®
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.2,10. Proposition. Let f : N*+ R and K1,t2;ﬂ be such that K1> 0,

x> 0, k., +x_ >0, BE(0,2). Denote by v(n:1,1<2,8) the stable law
&

172

<, Pois (u(t1,l<z,6)) with Lévy measure

18

. -1-8 -1
MKy, B) (@) =0T ok (x| T 4+ (=K x " lax.

) (0,=)

a) Let {x(n)}CR and {b(n)}C (0,») with b(n)>= . The following

assertions are equivalent:

(1) &, defined as in (2.6) satisfy

(2.10) LyGaly QV(K1,K2,S)
(D Ly TT(E(a,) - xm))r, vl k) B and (x ) s

'{b(n)"(f(aj)-x(n)) : 1<i<n, n>1} satisfies (*).

b) The assertion

(A) there exist {x(n}}CR and {bk(n)} C(0,) with b(n)+ = such that
(I) of a) is satisfied,

hols if and only if

. -2 : . .
(2.11) R(x) := zk:|f(k)|>x k is reqularly varying with exponent -8,

-2

}:v k L3
lim k:£(k)>x -1

X>r=>

z
k:| £00) ] >x X 172
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z -2
. k:£(k)< -x * )
lim 3 - .
- =
e Alrwlsx X Kt

If this is the case we can take x(n) = Ep(f(a1);|f(a1)|< b(n)) and any

2

{b(n)} such that lim mnb(n) “U(bin)) = (k. +K) (1-B)"' (with U defined

in (2.9)).

c) If (I) holds for some {x(n)},{b(n)}, tien (2.10) holds with A

replaced by any p<<A.

Proof. b) Assume that (II) holds. Proposition 2.4 implies that

I.l (b(n‘-1f(a ))l BS Mk, X ﬂ)[Bc for every T> 0. To conclude
li’ ‘ 1 T W 172" T '

the proof of the "only if" part see [ 2, pages 81 and 84-85] and use
(2.3). For the converse, apply Proposition 2.2 and argue as in [ 2,

pages 87-88].m

We point out that if x(n) = nx for some x€&€R then the condition
that (xnj} satisfies (*) can be omitted in II of Propositions 2.9 and
2.10 ([23 , Theorem 2] and [27, Remark 3.4.3.1]).

Next we make some remarks about the validity of (2.8) or (2.11) for
certain positive functions f of real argument.

Suppose £ : [1,) + (0,) is'bounded on finite intervals and
lmh af(x) = o ; then the following functions are well defined for

yel£(1),=)
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£f(y) =inf{x>1: £(x)> y},
Ety) = inf{ x>1 : £(x)> ¥},

E(y) = sup{ x>1 : £(x)< y}.

We have 1<f <f, <f_; each £, is non-decreasing and 1lim £, (x)
o 1 2 i X+ i
= +» for such an £. We will say that £E€ F if £ is Borel measura-

ble, satisfies the preceding conditions and 31(y)~ Ez(y) as y -+ o.

2.11. Lemma. i) if £ :[1,») » (0,) is non-decreasing and

lim _f(x) = » then fE€F.

X

ii) I1£ £ : [1,=) + (0,») is bounded on finite intervals and regularly
varying with exponent a > 0 then f€ F. Moreover Eo(y)“ Ez(y) as

y += and fi is reqularly varying with exponent 1/a(i = 0,1,2).

iii) I1f £€ F and E1 is regularly varying with exponent 1/a for

some a > 0 then £ is regularly varying with exponent a .

Proof. i) El = ?2 if £ 1is non-decreasing.

ii) First we prove that fo- ?2 . We will show that for every t>1 we
have ?z(y)< t Eo(y) for all sufficiently large y by using the Karama

x
ta representation: f(x) = xnc(x)exp( 5-1 e(s)ds), ¢ and € being

measurable functions with 1lim c{x) = ¢>0, lim e(s) = 0 (see
X > @ S ®

[28]). Pix t>1 and take r &(0,1) such that rt°/2> 1. There exists

y.° such that for every y» Y, we have fo(y)ﬂ <ti°(y).
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r(&o(y)(Eo(y>+1>")“/2>1, lets) lcas2 if s>F (y) and clx/elx")

»>r if x,x'>E0(y). Then if'y>y° and x>tE°(y), taking x' such
l1/2>

that ?o(y)<x'<'f'°(y)+1 and f(x') >y, we have £(x)/y>r(x/x") 1;

this implies that Ezty)<&°(y) if yay..
Now fix t>0. Given r> 1, by hypothesis we have
-1 - - - -Q -
Lin _f(r VR (o)) /€(E (o)1) = £ %" whieh implies that, for
- @

. =1 =1/8~ -1 = B
all sufficiently large y, f£f(r 1t ’ f1(ty)) <t If(f1(ty)_i)<y oy

the definition of E‘h and r_1t-1/a§1(ty)< Ez (y) by the definition
- . - - 1/a s :
of fz. Then 1lim supy_”.f,I(ty)/fz(y) <t ‘. By a similar argument we

/a

can deduce from the fact that limy-» of(rt1 f.l(y))/f(f,l(y)-n = r%

for each r€(0,1) that lim infy+_-f-2('ty)/f1(y)> e mhis implies

“that fi varies regularly with exponent 1/a because fo,f,l,f2 are

dsymptotically equivalent.

iii) Take t>0. For any r> 1, the hypotheses give that

1/

li.mx_’af1(rt“f(x))/fz(f(x)) =r OLt which implies that, for all suf-

ficiently large x, ?1(rt°f(x)) >t§2(f(x)) > tx by the definition of fz

and f£(tx) < rt®f(x) by the definition of 21. Then

lim supx_)wf(tx) /E(x) < t®. on the other hand,

1/8 -1

limx £ (r-1t-°f(tx))/fz(f(tx)) =r Tt for each r€(0,1) and an

> ®© 1

analogous argument shows that 1lim i_nfx__cf(tx) 7E(x) > t%. m

2.12. Corollary. a) Let fE€F. Then assertion (A) of Proposition 2.9

holds if and only if
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x_'fj" )
(2.12y lim —x £ __ _,
z b2 -2
kekéx £ (KK

Moreover, in this case U (defined in (2.9)) is asymptotically equi-

valent to

G(x) = (log 2™ 'g’ . 2kt

k;k&z(x)

here f. can be replaced by f 1

2

b) If £ : [1,») + (0,) is reqularly varying.with exponent a = 1/2

and bounded on finite intervals then (&) of Proposition 2.9 holds.
Proof. a) Assume that f satisfies (2.12). We claim

(2.13) ¢ _ oK g 200K? as yow.
k<f1(y) k<f2(y)+1

Write q(y) = (I 2K /(2 200K7%).  Let

1<<E2 (y)+1 x«?l {y)

€€(0,1/2). There exists Y, such that if y»> Yo then fz(z) z~2
-1, 2 -2 = - -
< ez z‘h<z £°(h)h for z»> fl(y) and log((fz(y)+1)/(f1(y)—1)) <2.

Therafore if y> Yo

z_ ) K2 <2¢T £ nn?
f1 (y)‘k‘fz(y)+l lez(y)+1
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which implies 1< gly) < T+2eg(y), that is 1<g(y) < (1-2¢)"'. This
proves (2.13).

By the definitions of 21 and f_. we have

2
2 -2 2 2 EEmen
Y I, K%< ¥, = K¢ ———
k:£(k>y bfl (y) f1 (y)-1
and I 2K 2>3, - £200X" 2. Then using that E,~E.,
k:f(kky W<E, (y) 172

(2.13) and (2.12) we obtain (2.8). That U~U follows from (2.13) and

the inequalities

Pwx <z - . 2wk 2.

2 -2
2 )
Elkk < &y ro<y k<E, (y)

E)«E, (y)

Now suppose that £ satisfies (2.8). Write u(x) for the quotient

in (2.12). First cbserve that

2 -2 2 -2
zk:f(k)<f(x)—1 f (kk "< Ek<x £ (kk T+ 2 ——

(x >1) and that for some constant C

1 -2
PR L I I i

for all sufficiently large x (by the definitions of ?1 and f2 we

have x>E (£(x)-1) and (£ (£(x)-1)+1) <2k>;2mx)_,, k
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zk:‘f(k»f(x)-ﬂ k °; moreover, f1~ f2 and f(x)+= as Xx-+w). There

fore we: have for such x's
-2

2
£ T -1 K

u(x)< C
w2 -2
2k<x £k

-2

2
£ (x) z k
< C(1+2u{x)) k:£(k)>£(x) -1 )

20x2

z
k:f(k)<E(x)-1
Since £(x)» = as X+ =, (2.8) implies that for any €€ (0,(20)"") we
have u(x)< C(1+2u(x)) e and hence u(x)<e (:(1-2»:C)-1 for all suf-

ficiently large x. This implies (2.12).

b) Use a), Lemma 2.11(ii) and [2, Chapter 2, lemma 6.15].®

2.13. Corollary. a) Let :1,;<2,B be as in Proposition 2.10 with
8= 1/a, a>1/2. Let £E€F. Then (A) of Proposition 2.10 holds if
and only if £ is regularly varying with exponent a.

b) Assume £ : [1,®) + (0,») is regularly varying with exponent a>1/2,
bounded on finite intervals. Let

*u——— ,0, D) if a #1

5 -
(ta=1)1og 20! dlog 2 " " a

(2.14) \’u =

1 .
V(E—Z,O,” if a =1
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(v(.,.,.) defined as in Proposition 2.10) and define En by
(215 g0 = £ D o) if a> 1,
(2.16) £ = £ T (e -

- Ej(f(a,):£(a))< £(n))} if a =1,
(2.17) g (0 = £ 2 setnellE(8y) = Epflap) it g<ac< 1.

Then for any P<< A, Lp (En)-*w Q\,u.

Proof. a) Since fEF , by Lemma 2.11 it is sufficient to show

T -2 1

(2.18) . K~ =
k:£(k)>x f1 (x)

as Xx-+o,

By the definitions of ?1 and £

2
-2
-2 r - - k
k: . (x)<k<E, (x)
1< —K:E(K)>X <14 ! 2 =1+ v(x) (say);
- T . 42
k>£, (x) E, (x) x

2= -1 = -1
moreover Ek:f,(x)<k<f_,(x) kO <(f 0= - (£,(x) and

-2 - -1 .

Ek>22(x) k'® >(f,(x)+1)" . Then lim _ _wv(x) =0 and (2.18) holds
) -2 - -1 = -1

since Ek>§2(x) k °~ (fz(x)) ~ (f1(x)) as x-+e,
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b) From [2, Thapter 2, Lemma 6.15] we cbtain

2, . .-2
z F(k)k
(2.19) lim —XX -l

Xee X E2(0) -1

On the other hand

2, ..-2

2. .-2 I £2 (k) x
Iy riex £ KK

1< <

4 2, -2
zk<§,‘(x) £ kK z

k‘fz(x)

2 -2
k<§1 (x) £f (k) k
which by (2.19) goes to one as x + e because 31- ?2 and f is regular

ly varying. Then by (2.9) and (2.19)

n 1 n

U(£(n))~ - I -
£2(n) log 2 fz(n) k<f1(f(n))

1

ook 2. —1L
(20-1) log 2

because f is regularly varying and E.l(f(n))- n as n-+ o (observe that

E (£ (E(em N < E(£m)nT < E(EMDE (£(m) -1) and F, is regular

ly varying). Therefore we can take b(n) = £(n), K, = (@ log 2)-1

KZ =0 in (2.10).@

This result implies that if f satisfies the assumptions in b) with

«€(1/2,1) then

1

15k
L’«; card( k< = : I21f(aj)>£Pf(a1)})

converges to the law given in [1, Theorem 5.2] (observe that for such an

o v, is strictly stable and satisfies 0< Vv ((0,%))<1 - use [9, cChapter

IV, §1, Theorem 7)).
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2.14. Examples.
2.14.1. Let £(x) = x”/? and take b(m = (m log n/log Y2, xm =

= I-::P(a1 ) in (2.6). Then (2.7) holds with A replaced by any p<<A

(observe that U(x) ~ (log 2)_1 2 log x).
2.14.2, If En is defined by
(2.20) g (b =1 logny  (relo, 1,

n Ei<j<[nt]{aj " log 2

then for any p<< A, Lp(En)»w Qv , where

(2_.21) v'= Gx * v ,0,1)

log 2

1

; . n _
with x = lim (Ek_,l k log(1 + ) - log n).

log 2 ] k (k+2)

As a consequence, if [L(§) = Q\)' '

1 1¢k log n
Lt card{k<n : k21aj >_9_1°g 2})->wL(A{t€[0,1]. E(t)> 0}) =0
(say) . We do not know an expylicit expression for o (observe that V'

is not strictly stable; on the other hand, [9, Chapter IV, §1, Theorem 7]

shows that ¢ # 60 ., g 7461).

2.14.3. let a>1/2 and c¢c>0 with ca>(a2+1)1/2- then f£{(x) =

i

xa(c + sen(log x)) belongs to F and is not regularly varying. Hence
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if a>1/2, £ does not verify (A) of Proposition 2.10 (this is related
to [ 19, footnote on page 199]). If a = 1/2, £ satisfies (2.12) and
(A) of Proposition (2.9) holds with x(n) = Epf(al), b(n) =

((cz-%) (log 2)-1 n log n) /2 {we have U(x)~ (cz-%) (log 2)-‘109(.‘.'-1(:));
writing h(x) = log (£ '(x)) we obtain h(x) + 2 log(ctsen h(x)) =

2 log x which implies h(x)~ 2 log x. Then U(x) ~(2c%=1) (1og2) " '1og x) .

2.15. Remarks. Lévy [19]) proves the convergence of Lo (En(l)) of Corol
lary 2.13 for non-decreasing regularly warying functions (see also [20,
Chapitre IX]); the case f£(x) = x (which improves a result of Khintchine
[14, page 377]) was also given by Doeblin [7] (for p=X and by Philipp
[24) (using [25]). The assertion that L,(€ (1)) of Example 2.14.1 con-
verges to the normal law is stated in [20, Chapitre IX] withbut indi-

cating the norming constants.



§3. Comparison with other sums.

Throughout this section, {nnj : 1< j<n, n» 1} denotes a double
array of measurable real functions on (£,5).

Define

a(aj_z, .- .,aj+1) if j-22>1
(3.1 Mjg =
a(a1,...,aj+l) if j-£<.

For the proof of the following inequality see [5, pages 188-1901].

3.1. Lemma. Assume EP nij<-’ for all n,j. If

e 172 _ 2
(3.2) vn(P) ) El-p mkju’: EP (nnj nnjl)

where 1 re Ep(nn.l Mjl) , and

njt J

B( z}<+Zp

B,(p,€) = TAX) k<n-2p k41

Innj|> €)

then for any €>0, n>1, 1< p<n/2 we have

I i

P(max, . Ej_1 "nj|> 6g)

<é(2p) + 4(2/¢)° vl (p) + 4n8_(p,c/2)

" on.>en.

+ 2 max p(|Z" .
j=i 'nj

iki<n
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3.2, Lemma. Assume

2 .
< .
(1) EP nnj « for all n,j

(2) lim, sup_ nu:(p) =0 (u defined in (3.2)).

(3) lim n max p(lnnjln) = 0 for each € >0.

1<j<n
s En -
(4) 11nn mAX. . i<n p(] jmi nnjl> €) = 0 for each e> 0.
i .
Then max, i<n lzja] "njl +0  in measure.

Proof. Let ¢ » 0. 'By Lemma 3.1 it suffices to find pn-H- ¢ P, < n/2
such that limn an(pn,:) = 0. This can be obtained from (3), noting

that an(p~’e)< 2pn max nP([nnj[> €/(2p)) for each p (this is an ar

i<
gument in [5, page 175]). ®

3.3, Proposition. Assume

2 .
< = r])-
(@)) EP nnj @, BP nnj 0 for all n,j

2
1<ikn BP nnj

(2) limn n max

: 2 : :
(3) 11.mp sup_ nun(p) =0 (un defined in (3.2)).

|zt

Then max
=1

- :
1<i<n nnjl 0 in measure.

Proof. 1In order to verify that (4) of Lemma 3.2 holds it is sufficient

to show that
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v n 2
(3.3) lim max, . o zp(}:jsi nnj) 0.

2
and vnj(f-) = EP(nnj - "nj!.)

page 369] (or [5,

2
. Let 1<j<k<n

Write Hn = mjm EP nnj
1f ¢ = [(x~3)/3] arquing as in [11,
and Mk!. we obtain

with k-j >3.

page 185]) by conditioning with respect to "j!.

1/2 [k-j
l2p nys | < 2472 (552,

k=31.1/2
+ 2 max, Vni([_3l]»

k4],

+ max, v .([
i< ni 3

= K = K =M and

Therefore, writing Kno a1 n2 -

Knh = 21:1/2 [ ])M + 2(H max. . vnl(['}'l']))l/2

+ maX e vni([-;—])

if 1<j<k<n. Then if 1<

7 < .
for h>2, we get EP 'Inj nnkl Kn,k-)
i< n

2 =
5 Venlk +2Z Knh}

n
Ep(Z §ui My h=1

§mi
= Snig+ 4nM ZL $/2 ‘[%]’

/2 /2™ 1/2
+4(nun) n xh- n ni({ ]’



3.4. Corollary. Let

tions

(1) sup., E_ 1
pJ

(2)

Then

Zroof .

o

+ 2n Lh-"-.’. mAY. o Vniﬁ

Wiz
o= o

From this one can obtairn '(LJ).-

We will use only the fcllowing.

{
J

on (4,E)Y and {b(n) : n>1}C(0,»y. HAssumc

P

(WS

-2
lim_ nb(r) = C.
n

1

<% 1/2 . i
- aupj Fy (n‘_, - EP("“ lei), < ow
~1 i
x, . by T EX_ q.f + 0 in measure.
ici<n s=1 M

Write nr-j = b(n) n, and cbserve that

¢ o

ERY)

< (supnnb(n)mz) (Z‘; 12

“=p bl

<v oy E_n, =0 fcr every j>1.
J

surp .E .~ E_(n. .
EFp @y " Fpinsl My, )

%y

2

{n, : § =»1] be a2 sequence of meesurable real fun
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§4. Camplete quotients and the sequence (“j)'

Following Doeblin [7, pmgs 365] we write for e€0, j> 1,

1 Pjp® o
“a.1n ;j(T')-l - - L@ | q_y @3-

! -1 .
Then ul(n) -xi(") and nj(U) = xj(u) + (yj_,‘(h)) if ji> 2.

We will try to extend some results of §2 to ('xj] and {uj}. In

our first statements, if £ is a random element defined in terms .of the

's, §{ denotes that one obtained by replacing the aj's by the x j's:

is similarly defined when considering the uj's. For instance, if

-~y

€ is as in Example 2.6.2(c), E:n(t) = card{j < [nt] : ug > 6n).

4.1. Examples.

4.1.1. Let 0,a and En be as in Example 2.6.2. Then the conclu-

sion there, remains valid for En and En'

= n
Proof. We have supte [O,I]lzn(t) - En(t)l < Zj=1 lnnjl where

‘@

=n Yl I - a%1 )
nnj b] (u])On] j (aj>6n} :
Write
n -a n a
§=1 I“njl‘ T ujI{qu)Bn,aj‘Qn}

+ n—‘l }.‘,n [uq.-a

a X
jm=1 F957%y Il{aj;_en} =Xt Y, (sa).
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Note that P(Xn> 0)< nP(gn-2<a, < 6n) +0 (observe that aj< uj < aj+2)

1

1
-1 ~(a=1) P> a=-1

-

i i = 203 if
and, since Yn< Cuh N j<naj I{aj>9n} with Sy i
a >, = 2|ul if a<1, 2.6.2 shows that Yn + 0 in measure. The

proof for En is similar. ®

4.1.2. The statement of Example 2.6.3 is true if we put everywhere =~

=
(or ) over the random elements there.

Proof. (Case En) Let nnj = »fn (uj) - fn(aj), fn being defined as in

Example 2.6.3; it is sufficient to show that 2;31 Ilnnjll-rP 0. We

have

2
g < 22 (I, + I, ) where

I Mnj i .
nijr njr

A . ={0 n<u.<8
I J

njr n, ay< B:n} '

r+1

B. = {ern< aj<e n-2} .

nir n, aj> er

r+i +1

Then Z°_ . PUn_. noz° n
en ju1 (Ilnnjll>0)< 23-1 2N p(Anjr) + sz z P(an!_

=a + Bn (say) .

Writing a zn -
g a = =1 P(Anjr) we have o = zrﬂ a_ - Note that

o< nP(ern-2< a1< ern) +0 as n+ e~ for each r. Moreover, given

r,> 1,
n
< . . -
T a p 3 P(uJ >,°r n)< nP(a1> et n-2)

r>r_ nr j=
° ° o



which tends to (er log 2)-1 as n+e. Then for every r >1,
°
1

lim sup o < (e:o log 2)  '; hence’ lim ga = 0. Analogously lim g = 0.®

n

Now we turn to sums of the form Z?f(xj), E:f(uj). From Corollary

2.13 we obtain

4.2. Corollary. Assume £ is as in Corollary 2.13(b) with & > 1. 1If

En is defined by (2.15) then En and En satisfy the conclusion there.

1

Proof. (Case §) We will show that X := £m I It -£(a,)|+p0.

Write f(x) = »¥®L(x), L being slowly varying. We have

1 1

- n a - n a_a
e £ I ulng) - epl + e T 2] of-ditay)

= J(m + xnz (say) .

a-1a-
Since uf-af<a3 ’a“). ', then X ,+p 0 will follow if we show that

M = £(n) 1 ED a;1 £(a >, 0. Observe that if K> 1

n2 =1

£(i), n 1 1 zn

M2 <% ey, ,k} 1 Em P X Em L=t

2 f(aj)

(write 1 =1 in each term). Then given € >0 we

{l]‘ xr* I{aj>l<}

conclude by.cOrollary 2.13 that for every X»> 1

En P(M_,>¢)< mn P(E (1) > K(€/2))

<vu((x : x> K(e/2)})
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which goes to zero as K + =. Hence Mn2+P 0.

on €he other hand, ‘for ‘each X» 1

o L(u:)
Q n 3 n J -
K< O43)C, gt oo Ejﬂ f(aj) L(aﬁ) 1 I{aj>l<}

where C,

= ini thesis). Let € > 0. Given
K = SUPic i k2 £f(x) (finite by hypothesis) >

1

n>0 take K> 1 such that lL(x)- L(x+s) -1 |< n if x> K

BUPhcsc2

‘(possible by the Karamata representation of L); then

Tim P(X_.>e)<iim PE_(1D> 03 (e/2))
n ni n n

<Vu({x : X >(n3a)_1$€/2)})

which tends to zero as n =+ 0. Then )(m *p o.m

4.3. Lemma. Assume f : [1,=)+ (0») is Borel measurable and satisfies

(4.2) there exist r>0 aund M : N*+ [0,% with EPM2(a1)_< = such

that for every ke&NW*, | £(x)-£(y) < M(X)| x-y[F if x,y€ [k, k+2].

Let {b(n)}C (0,=) such that li.mnnb(-n)_zso. Then if ny = f(uj)-f(aj)-

Ep(f(uj)-fhj)) (3> 1) we have max, .

b ™ 2l )l + 0 in

measure. The same result holds if we replace everywhere uj by xj in

the definition of “j'



Proof. (Case {u;}) Since If(uj)-f(aj)|< 2‘n(aj), (1) and (2) of Corol
lary 3.4 are satisfied; it remains to verify (3). First, fix j> 1, £>1,

and k‘-l""'k' E€EN* and take w,w'EAH := A (k ,...,k

3 o2 3t } where

j+L

{aj_z - kj-l""'aj-ﬂ. - kjﬂ.} if j-2>1
""'kjﬂ,) =

{a1 -k‘l""'ajﬂ. ’kjﬂ.} if j-L<1;

(4.3) A 0k,

we claim that

(4.4) luy @ - u;@l<s 27k,

We have

, -1 . =1
g trx @] = Jaj@ + xg @7 - (agw) +xg, @)

=1 =1 -2
lxj-!-l(m) -xj”(m) l< 22

-1
because xj_'_1 (w) = [O,kj+1,...,k

-1
'
j”_.ajﬂﬂ(tnl,...] and "jﬂ(“’)
= [o'kj+1""’kj+9.'aj+£+1(m')"" ] both are in the fundamental inver-

val of rank £,{a€[0,1) : a, (@) = kj+1,...,a,.(u) = kj“-] whose length

is less than 2-“'-1). This proves (4.4) when j = 1. Now suppose j3> 2

-1 .
and recall that u, = x. + (y. . If j-R<i

5 3 (y3_1) 3j we have yJ 1
TR B ¥y | (o )" and (4.4)holds. Suppose j=L>2. If j=3

merely observe that £ = 1 and l Yj-1 (@)~

(™! -

[t'J,kj

31 |<1<42".

If j >4 then, writing
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[0,k. .,--svk,

= . reeey W
5-1 5-1 J_E,a]_l_1(tu) a (w)]

er
n

%]
3

and

W™ = [o,x,

w' =y, 3-1

5-1 @ ,eeeray @],

Peeon 'kj-l'aj-1-1

we conclude that

o) = = o o = = ~' i i -
a (w) =0=a (u'), a, (v kj_i a ;) if 1<i<e-l

(we have used the following fact, whose proof involves (2.2): if a =

. " oL
[ko,...,kN] with k €%, k.,..., K €N* and N>2 then a, la) =k;

1
if 0<i<N-2). Thus @ and @' both belong to {a €[0,1) : a_(a) =

1
} -(P.-Z)

k (a) = whose length is <2 . Therefore

kj-(2-1)
w") <4 27" and (4.4) holds. By (4.2) we obtain

3=17 T e
-1
by @7 -y,

: _ ' r.r.-% .
ln.j(w) nj(w )l <6 (27) M(aj(w)),
this implies

1 s 1
Ing - sy nyel = Iy Jy oy ronperl

< 6’(2’)"M(aj ).

172, _ 2_ ror-t.1/2 2
Ep “(nyEptns] M, 1% < 672 TESS Miay)

for every £5>1, j>1 and (3) of Corollary 3.4 is verified.®m



4.4. Remarks. (a) Im the proof of the ptegeding lemma, {xj} case, Corol
lary 3.4 can be replaced by the (functional versiom of the) theorem in
[S, page 192] (consider the function f(w) = f(m-l)-f([h’-‘]))-

(b) Let a@>1/2 and c> 0. The function £(x) =

xu(c-(loq x)-"/2 cos((ﬂ/3)x- [x])) is regularly varying with exponent a
but does not satisfy (4.2) (for some b> 0, £'(x)> bxa(log x)-v2 if
x€E€(k,k+1) and k >1; then ‘EP(f(x‘l)-f(a1”2 = ®»), Hence (Ko) below

is not satisfied; we do not know whether the law of E?f(xj) , suitable

normalized, converges.

For x; we have L (x,)(dt) = I,  (t)(t(ts)log 2)”'dt  for
every j. " For uj the next result is useful. (4.6) is proved in [7,
page 365] and (4.7) is (apart from the specification of r) a reformu-
lation of the theorem in [15]; by (a) both are consequences of a result
of Lévy. Our proof follows an indication in [7]. We use (a) in the

proof of Theorem 5.1.

4.5. Lemma. Denote Gn(t) = )\(yn>t) for real t and n>1.

(a) If n>2 then

2 (&1 1.
T G _,(gds  if wal
Hn(t) := )‘(un< e) =
0 if e<1,
and
t-1

-1 -1y, 2 -1
1,0) (&ME G ((E=1) )=t I G _,(s )ds}

hn(t) =1 o 'n

(
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. . . -1
is a density functiom for [,(u ); moreover H (t) = 1-t (1+EA(1/Yn—1')

-2 .
if t> 2 and hn(t) =t (HEA“/Ynﬂ)) if t'> 2.

(b) Let H be the distribution function with density

(4.5)  h(t) = (log 2™ { we -t her . w72

I1.2] (2,%)

Then there exists r€(0,1) such that

n
(4.6) sup [H_(t)-H(8) | = 0z™,

(4.7 sup, [h_(t)-n(e) | = o™

Proof. (a) Let n> 2. By Proposition 2.1 we have if 1< tc< 2

A = =
Bo(6) = T A0 <tly =y, =¥

n-1
-1

< - = =

Zy s (eany-1A (<X <ty Iyn_1 YAy, =¥

-1 . -1 -1
EY:Y>(t'1)-1(1-t -t Y )A(yn_1 = Y)

-1 =1 -1 1 -1
(1-t )A(yn_1>(t—1) )-t EA(Y_ ,Yn_1>(t—1) )

n-1

and if t>2

-1 -1 B
X(2<un< t) = zy).(z-y <x,< t-y lyn-‘l = Y))‘(Yn—‘l =vy)

= ("’-1

-1 -1
-t )Zy(1+y IAly 4 =¥
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-5_ -1
= @ e (y ) -

But an integration by parts shows that

1 1 1 &1
E, ( '3 < t-1) = (t-‘l)A(y < t-1) - A(c——=< s)ds

yh-1 n-1 n-1 0 Yn-1

if t> 1, which implies (since yn_1 >1)

1
! ) =1 -I A 1 <s)ds.

E, (
A
0 yn—l

yn-l

From the preceding relations we can easily obtain the indicated ex-
pressions for Hn. The property of hn follows from the equality

fua

J

_‘] -2
(J t A <s)ds)dt =
0

1 ¥n-1

u u-1
=I = <t-nat - 1—[ AM——<s)ds
1 yn-1 u 0 Yn-l

where u>1. On the other hand, note that hn(t) =
1

t_z(Z -I Aly, > 5-1)ds) if t>2..
0 n-1

(b) It is proved in [20, chapitre IX] that the function R{x) :=

(log 2) 'log(2x/(x+1)) &f x>1, =0 if x<t satisCies

(4.8) supxlk(yn< x) - P(x)[<— c
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for some C>0 and r€(0,1). Now (4.6) and (4.7) follow from (a)
since H and h are related to 1-F just as Hn and hn are to

]
anI .

4.6. Corollary. Assume £ : [1,o)+ (0,») is regularly varying with
exponent a€[1/2,1], Epf_z(a1) =+m and satisfies

X
(xo) £f(x) = x"L(x) whess L{x} = ¢ exp{f e(t)t'1dt} with e @,
1
e:[1,») R measurableé, bounded and limt+-€(t) = 0.

Let v, be defined by (2.14) if a €(1/2,1] and write Vi =

N(O,1). Let

m(f) = (log 2)"] I (f(x+y")-f([x]))(xy+1)'2dx -dy
171

@

if a =1, m(f) =I £(t)h(t)dt (h being the density in (4.5)) 1if
1

a€[1/2,1) and define §, by

-'| N
(4.9) £, (t) = £(n) ukj([nt]{f(uj)-m(f)-EP(f(a1);f(a.,) <_f(n))}
if a=1,

-1

= p> - i 2,1},

(4.10) £, (t) = £(n) kj([nt]{f(uj) m(£f) } if a€(1/2,1)

-'| R _
(4.11) g (t) = b(n) Ek:k[nt]{f(uj)—m(f)) if o= 1/2,



where {b(n)} is any sequence satisfying 1imnnb(n)-25(b(n)) = 1 (with’
U defined as in Corollary 2.12). Then for any p<<A, LD(En)-»va .
The same result holds if En is defined by replacing in (4.9)-(4.:1)
“J' by xj and m(f) by m'(f) where m'(f) = Ep(f(x1)-f(a1)) if

a=1, = Epf(xl) if ac[1/2,1).

Proof. By (Ko) £ 1is bounded on finite intervals and, as we will show,
it satisfies (4.2). Writing M = max{1, 'sup, lete) |}, by (Ko) we

have if kEN*, k<x<y<k+2,

Lt -Liy) | < 100 ((y/x) ™ 1)< ML) x| x-y]|

1

where M' = HJM- (x_1y<3); then, since a< 1,

[£x)-£) < L -Lip | + [y iy

< M IL(x) + Liy))| x-y] .

174

On the other hand, there exists C such that L(x) <Cx for avery
x>1. Thus if kEN* and x,yE€[k,k+2

. 1/4
(4.12) e -£() |« m2c310 /% |yl = MO | 3=y} (say)

which proves (4.2). Corollaries 2.12 and 2.13 and Lemma 4.3 now imply

the assertion about {xj }. For {uj} we conclude that Lp(g;l)-»w Q .
v )
a
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El; being defined by (4.9) with m(f) replaced by Ep(f(uj)-f(aj))
(which depends on j) in the case & = 1 and by (4.10)-(4.11) with
m(f) replaced by Epf(uj) if a € [1/2,1).

suppose o €[1/2,1). By Lemma 4.5 we have

|5, £u)-m(E)] < (sup, g ,7E(E) sup ] h_(t)-h(e)

+ (J gt a0l 1+ B () -
2 Yn-1

—
log 2

and hence, for some constant C1,

(4.13) |E>‘f(un) -m(f)| < Clrn for every n> 1.

write 9y = Ep(f(un)| Mn!.)' As in the proof of Lemma 4.3, using (4.4)
and (4.12), we obtain that for some C2

1/2 2 -£
- ) 2 .
(4.149) EP (f(un) gn!,) <C2? for every n>1 and >1
On the other hand, since there exist constants X and r'€ (0,1) such
that lP(A)-A(A)I < K(r')kP(A) for any AEO(ak’akH"")' k> 1 (argue
as in the proof of [12, Lemma 19.4.2] using (7) of [21]), we have for
some C

3

(4.15)  |E l< c3(.-c-)“”L if n>1>1

P%ne A I



n n-2 .
([JO(P(gn,_>x)—Mgm_> x))dx| < mp““n) (") ). Taking l.n =[n/2] we
get from (4.13)-(4.15)

[ -lﬂ n-ln
{E E(u ) -m(£) | < c,2 "+ cytzh

-t
+ (2 log 2) /2 c,2 "t e,

1
Thus IEPf(un)-m(f)| = 0(s™) for some s€(0,1) which implies that
suptlgn(t)-ﬁ;l(t)' + 0 pointwise and so the proof in the case a <1
is complete.
Now assume @ = 1, First observe that Proposition 2.1 implies
that for any Borel measurable function h
-]

- yly+1) -
h(xn)d)‘ (I h(x) 7 ax)A (Y,oq =)

{y,_=v} 1 (xy+1)

provided one of the two members exists, y being a possible value of

P AT Thus, writing

3

(4.16) K(y) =J (f(x+y-1')_—f([x]))y€y+1)(xy+1)-2&, y>1,
1

we have (by (4.12) K is bounded amd the following integrals exist).

By(fta)-f(a)) = T J (e, + D-£lx 1hran

{
‘Yn~1’y}

.] X dL (y__,).
[1,=) Afn-1
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Oon the other hand, m(f) = J K dF where F is the distribution
[1,=)
function appearing in (4.8).
Denote g(x,y) the integrand in (4.16) and v(x,y) =

y(y+1)(xy+1)-2. If x>1 and y,y'>1 we get by (4.12)
-1 o1
lgtx,y)-gtx,y") | < M([xD]y -(y") [vix,y) |

+ M) [k (y ) "= Ix] | v yd =vix,y) |

< 10 M([xD) Gey) " ]y-y'].

Hence if y,y'> 1 we have

| K(y)-k(y") ]| < 1o<I Ml x]) x 28 v 2 ly-y*|
1

= Ay y-y] (say)
and K is absolutely continuous. Then
° : -2
IEA(f(un)—f(an))—m(f]|< AJ 1|x(yn_1 >t)-(1-F(£)) |t “at
and (4.8) gives that |E,(f(u)-f(a))-m(n)] = o(x™. In order to com-

plete the proof, observe that analogous relations to (4.14) and (4.15)

are valid and argue as above. ®

'4.7. Examples.

"4.7.1. If f(x) = x® where ae€[1/2,1) then wm(f) =



(a(1-a)log 2) " 1(2%-1) and we can take b(n) = (n log n/leg 2) /2 in

(4.11).

4.7.2. Let £(x) = x. Then m'(f) = (log 2) '-1 and m(f) =
o
m'(£) + (log 2)" " I y 2yen Ty = 20eg 2270 1 £ s de-
1 ~
fined by (2.20) then for any p <<}, Lo(En)_'w Q\_,, and Lp(En)"w Q.i, ’
where ;' = § -1 * V', ;' = § -1 * v', v' being
((log 2) -1) 2{(leg 2) '-1)
defined by (2.21) (we use the notation at the beginning of this sec-
tion). Similar remarks to those made in 2.14.2 apply. We point out
that the convergence of [, (En(1)) was indicated by Doeblin [7, page

365].
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§5. An application to Diophantine approximation.

5.1. Theorem. let c€(0,1/2]. Given n>1 and w€Q define

A . (w) = card {(p,q)€ " : lqu)—pl<§- , 1< q< n}

= card{qEN* : (qu) <§ , 1< g<n},
where (a) is the distance between o and the nearest integer, and

At (w) = card{(p,q) ENN* : 0< qu -p<E , 1€ q<n}
c,n q

= card{quN* 2 qw —[qm ]<§ , 1€ g< n}.

Consider the random functions

2
E(0) = LA ) 172 (A - 2 ¢ 1og [n"]},
2 ¢ log n log(log n) c, nf'j
+ 1r2/6 1/2 + t
En(t) = ( ) {A - clog [n] 1},
c log n log(log n) cln

+ .
t€lo,1], n 3. “Then for any p <<\, Lp(En"’w W and Lp(En)-’w W in
D, W being Wiener measure.

Define as above by réplacing the constant ¢ by a function f

A
f.n
such that Zf(q)q-1 diverges. For fairly general £, the theorems of

Le Veque, ErdSs and Schmidt show that A, ~2Z £(@)q | =: bln) a.e.
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(see [17)). philipp [22] proved, in accordance with a conjecture

of Le Veque [18 b], the asymptotic normality of b(n)-V

(A, b)) for
f satisfying, besides other conditions, 1imq £(q) = 0; here &ifferent
norming constants are needed. We remark that [18] and [22], which
contain several related results, use centiii} ligi¥ theoress tpr weakly
dependent variables having finite variances. Relation (5.4] was suggest

ed by an estimation made in [17, page 35].

: : . +
Proof. Fix c€(0,1/2). We will write An(An) fo_r Ac,n (Ac,n)'

(I) Convergence of En. Step 1. "Let np>1 and wER. It is well known

that
(5.0 law-p'|<(2¢" 7" , g.c.d. (p',q") =1 imply p' = p (W),
q' = qk(w) for some k>0.
Then
c
Aqn(w)—1(w) = #{(k,r) ENN* : Iqu(w)w-rpk(w) | < , 1< qu(m)<qn(m)}
qu(w)

1/2}

=I:;éﬂ{rEN': r<(cu (W) ;
for the proof of the second equality, use that qu(m) w—pk(w)l =
(X @a () +q_ ()77 if k>1 and

/2

(5.2) r <(c uk‘“(mn1 « k>0, implies rg, (v} <q,  ,(w)
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(observe that if k >1 and r2< € Uq then (qu) <
.2 2
COa1 I * Y ) Sy Bt VD g < A g g ) -

k+1
Now consider the denumerable set Q of those w for which

(c uk+1(u))1/2 is an integer for some k> 0. Then if w€ Q\ Qo

n 1/2
A%(w)d(m) Zj_1 [(c uj(w)) ].
Define the r.v. L Q - IN* by
(5.3) 'tn(w) =k if qk_.l(m) <n<qk(w) (k = 1,2,...).

Therefore we have for wEﬂ\ﬂo

T_(w)
« n 1/2
(5.4) An(w) =& 5= [ (c uj(m)) ] -8 (w)
where
(5.5) Bn(w) = #{(p,q) ENW* : Iqw-pl <§ » D<g<q (w)} < (-3- a (w))vz
n n

(we write q, (w) = q, (@) (w), etc.). In order to prove the inequality
n

n
in (5.5), note that if (p,q) belongs to the set defining Bn then, by

(5.1) and (5.2), p=1x Pr _1(w), g=r qT _1(m) with a positive integer
n

n.
r<(cu (.m))‘l/2 .
Ta

Step 2. From now on fix p<~A. By Example 2.14.1 we know that, writing
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(1 _ log 2 1/2 1/2 1/2
£, (&) =« ) 2j<[nt]{(caj) - Ep(cay) } (telo,1D,
cnlogn
L (E“J)-» W. We will deduce that if
[+ n w
(2) - log 2, 1/2 1729 _ 1/2
£ (8 = V0T s ng (o) 0T - By (Leu) hl

cn logn

(

n2))+w W; for this purpose, it is sufficient to show that

we have LD(E

if

1/2 1/2 .
£, = [(cu,) - (ca,) n=f.-E_f., , > 1,
3 ! 4y ] 2y L B B 2 B

(observe that lfjl < 1) then {nj} verifies (3) of Corollary 3.4.

In order to prove this, fix j»1, £>1 and write f. =

jL
1/2
£fIM.), r. = .
EP(JIHJL) x5 [(cuj) ] and

- . - -
A, ={c1r2.+62 <u.<c1(r.+‘lJ2-62 }.
je J J J

Given positive integers kj—!.""'kj+£ and A := Ajl(kj-—l ""'kj+2.)

defined by (4.3) we have that if: o€ Ajln 4 and w'€A then fj (w) =

£ (since @€ A, using (4.4) we get é-1r§(w) <uy @<

c-1(rj(m)+1).2 which says that rj(w') = rj(w)),- hence fj (w) =
P(A)-1I £, d if w A, NA. This implies that £, = £, almost
s 3 it 3 je
surely on A, .
o 3R

On the other hand
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L

1 + 62 )

2

c s =12 -1
P(Ajl)<(l°g 2) Er_o(l(c ri<us<c r

+ e (een? - sz"'<uj<c” BRI

If j»2 and 1 satisfies 63 '<1 we obtain, using that Hj(b) -

B () <20 (b-a) if 1<a<b (this follows from Lemma 4.5(a)),

c -1 - T ) -1
P(Ajl) <12c(log 2) (1+2 Er-l r )2 " = c12 “fw

and a similar bound is valid for j = 1. Hence there exists a constant

-2
)<< " for every j and L.

C such that P(A:.:z

Now we can write

2 .. 2
(5.86) Ep(nj-EP(njl My )™ = o (Em2, )

-
= (£.-£, )2 dP < 4C2
c j e
A,
jr

for every j>1 and & >1., Thus Corollary 3.4 implies that

(2))_’ .
n w

Lp(E
Step 3. If j>2, by Leoma 4.5(a)

172 - -1 -
By (Lew) 2 = 27z (e ot Hom o)

1 - 1 1
)) Z = -
j=1 =1 rz (an

- C(1+El(y )


satisfi.es
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and this series is I:-‘l r?a 12/6; then Lemma 4.5(b) giwes, for some
comstant C,,
S Iyl V2] - —STcc ) for every §51

A 6 loga ! ¥ :

Writing r:“- ‘P(leujl)' rj being defined as above, and argquing as

in the proof of the inequality in (5.6) we get for some c2

va, .2 1/2, -4
(5.8) K, (:j tjl) <Cy(277) for every j>»1 and £5> 1
{note that [rj-rj ll‘ 2 almost surely. It is enough to verify that

kj(d-rj(u')|<2 if w0 €8(k

’

j-l""'kjﬂ,) - defined by (4.3) -~

; but in this case we have

172
j)

mant vhich led to (4.15) shows that for some C

with positive integers kj_",...,k
/2

23!

lrj(u) - rjb')l < (c(kj+2))1 - (ck + 7€2). Moreover, the argu

3

(5.9 E rj’.l<CJ(t')j-" if § >8> 1

Iz, Tye ~ Fa

with r'€(0,1).
By (5.7)-(5.9) we have now |E( [(cujT_Vz])-w log 27" c 2%
otsh with s€(0,1), which implies that if

1/2] _ cnz )

5;3)“3 - log 2 ) 142 T
€ log 2

{[(cu))
cn logn J

j<[nt]
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then 1’,‘»(51_(13))+w W (see proof of Corollary 4.6). javk

Step 4. By a well known theorem of Khintchine ].:Lm.k k-1qk =B :=

12/(12 log 2) a.e. This and (5.3) give

T
(5.10) lim —2 =87 ae.
log n
Now we claim
-1/2 172 )
(5.11) n, = (log n log(log n)) max, ien ark + ¢ in measure.
For every € > 0, since 1k<'rn if k<n,
P(n >e€) <P(T > (14e)B"" log n)
- 1/2
+ P((log n log(log n)) 1/2ma.x RN

j<{1+e)B~llog n aj

and the second term on the right is bounded by
-1
(14e)B (log n)P(a1>e2 log n log(log n}); then (5.10) and (2.5) imply
(5.11).
We also need
172

(5.12) tn := (log n log(log n)) ‘/“max |t

1<ken -log kl + 0 in measure.

k

First cbserve that, since L@ < k< 4 0< log 9 - log k
k k k
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<log(y_[ ) <log(a1, +1) < al/z, and we get IBTk-log kl < lBTk—loq q. ] +
k 3 k k

1/2 . -1/2

a_‘,k . Moreover, if Yn(t) Tn {log q[ttn] [t‘l‘n B) (t€lo,1]),

we have

1/2

- /
max, |10g qu - BTy T sup lYn(t)l

n t€[0,1]

and (5.12) follows from (5.10), (5.11) and a theorem of Billingsley [S,
page 194 and Theorem 17.1].

We claim that if

T
2 2
g9 0 - (—TL12 )‘/ZZ.L?tJmcu.)Vz - €5}
¢ log n log(log n) J J 6 log 2

then L‘D(.‘:l:‘”)»w W. Here we will use the notation and results of [5,

§17). Define

[log n]-11’ el if [log n]—1‘rn(w) <1

[n7]

@n(trw) =

1:8.1 otherwise

and g(t) = ™!

(t€[0,1], wER). We have ‘bn(.,m) ED° for each w,
g€D° and °n converges in p-measure to g in Do ; this follows

from (5.12) since

supte[o'” “n'(t'.') - g(t),

< [1log n]~'{ max n lTk-B-1 log k| + 3 ') .

i<
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(3)

i th ak ce of ,
Starting from e we convergenge o Lp(e[log n]

¢n) (use [ 5, Theo-

rem 4.4]), noting that if w satisfies [ log n]-1 rn(w)< 1 and

t €lo,1]
(3) .
(E[log nle ¢n)(t,m) =
(w) P
= log2 123 ("] {[(eu, (w) /2] - ST}
cllog nllog([log n]) =1 -4 6 log 2

and using (5.10), we can argue as in [5, proof of Theocrem 17.1] to con-
clude that L (5 )» Ww.
In order to complete the proof, observe that by (5.4) and (5.5)

(4 2 1/2 1/2
supt€[0’1][5n(t)-§n ()] < x°/(12¢)) 2((3/2) nL*2cs ). a.e.

and use (5.11) and (5.12).

(II) Convergence of E:. Slight modifications in (I) are needed. We
only make two remarks. Since a convergent pk(w)/qk(m) is less than

w if and only if k is even, (5.4) is true for A: if in the sum

of the right member j runs through odd values and Bn is suitable
defined; then the inequality in (5.5) also holds. On the other hand, we

have for t € [0,1]

T /2 _ a2
1<j<[nt] % % en<lin/2]e] zhet |
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1/2 1/2
< 2[{n/21t] T *[[n/2)t]+2

From (the c[0,1] version of ) the preceding result one can deduce
‘(see [5]) the following. Given. c€(0,1/2] let Tc x_‘(m;) be the first
’

i, 1< i< n, such that

ch(w)<2clogj for every j€{i,...,n}

or
Ac j(m)> 2 c log 3 for every j&{i.... ,n}

.

if Ac n(u)) # 2 ¢ log n; otherwise define Tc 1_l(m) = n. Then for any
r ’
p<< A, Lp((log Tc n) /log n) converges weakly to the arc sine law;
. ’

this says that if O<a<b< 1 then

1imn p(na< ‘I‘c nS nb) = (2/7) (arc sinV b - arc sinV a).
14
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