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Abstract. This paper 1s concerned with the'estimatiop of a small perturbing
function affecting a2 system of second-order ODEs, in order to gel a solution
of it fitting a giver set of measurements. The classfcal approach consist
of perturbationr modeling and least-squares parameter specification. Alterna-
tive procedures are needed when no a-priori adequate perturbation model
is at disposal. A general scheme for methods needing no modeling assumpticn
i1s introduced end 2 complete error analysis of them is obtained. This
error characterisation zllows to detcrmine methods minimising the effect
of each error source; therefore, optimael schemes under different resttic-

tiong are deduced.
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1. Introduction. The aim of this work is to study the problem of how
to determine numerical values of a small perturbing function p(t) ,
which affects a system of second-order ordinary differential equations

of the form

§(t) = £(t,y(t)) + p(t) ,

where f(t,y) 1s a known function and the data consist of measured values
of the system solution y(t) and of its first derivative y(t) .

On having a perturbation model, the standard aproach comsist of least-
squares adjusting 3its free parameters in order to get a system solution
fitting the given measurements. Sometimes, either no a-priori modeling
.is posible, or parameter specification for an actual physical model is
an 1ll-posed problem. In both cases, it is useful to have perturbation
estim'ators not depending on previous modeling assumptioms.

The "obvious" determiristical method of approximating the second—or-der
derivatives §(t) 1in the equations by using any of the usual difference

schemes, would not be a good one. For instance 1f we consider the standard

discretisation
2
N (t-h) - 2y(t) + y(t+h) h _iv
ORE e - 5 (b

h
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(vhere. ','iv(t,h) =yiv(t+eih) , Ieild) and replace y-values by their

measurements ; , we get as an approximation of p(t) :

Y(t-h) - 2y(t) + y(t+h)

h2

P(t,h) = - F(t,5(t)) .

For the error in this estimation we have:

sy(t-h) - 28y(t) + gy(t+h)

2
h

p(t) - 'f:'(t,h) = —hziw(t,h) +

+ [£0t,y(t)) - £(t,y(t))] ,

‘where §y(s) are the measurement errors of the used ;:(s)-values.
This characterisation shows that, truncation errors appearing in the
determinztion of small p-values in this way, would be propertional to
2 iv
h® and to not-small y -values. On the other hand, the measureutnt
2
error component is 0{1/h }; so, it is mnot possible to usc an excesively
small stepsize h 1n order to leeve the error under a prescribed tclererce.
In some recent pspers [5], (6], P. E. Zadunaisky developed a class
of methods to estimate those perturbations, with truncation errores propor-

tional to higher order derivatives of the small perturbing function,
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without modeling assumptions. These methods have been successfully used
in several applications: the estimation of non gravitational forces affect-
ing a comet's trajectory near the perihelion [5], the modeling of dissipa-
tive forces affecting an inertial sensor [7], the localisation of an
unknown celestial body detected from the deviations produced in the trajec-
tories of other observable bodies [8]. On the other hand, a variant of
th‘ese methcds has been developed [4] in order to estimate the perturbations
in those problems where the measurable data cons'ist of y-values only
(and not of y-values).

The object of the present work is to introduce a new approach to this
kind of methods in order to get a general scheme of them and a complete
error analysis separating its components according to the different error
sources. This analysis will allow us to get cptimal schemes under several
different restrictions. Finally, the obtained optimal schemes will be
used in a classical problem of Celestial Mechanics in order to show their

efficiency.
2. Genera) 3cheme. Although the methods we are going to describe are
applicable to a set of second-order ODEs, for the sake of simplicity

we shall consider a single equation of the form

(2.1) (t) = £(t,y(t)) + p(t) ,



where p 1s an unknown perturbation depending on t .

To study this problem we shall assume that p and f are sufficiently
regular functions and we particularly suppose that the unknown perturbation
and 1its derivatives are small in relation to the corresponding values
of the solution y .

Let to be a point where we are going to compute the perturbation

]

value and let us assume that it is possible to measure y- and y-values

.d
on a mesh centered on t_. with stepsize h . Let and Ve be the

0
measurements of Y, = y(tk) and ik = j(tk) respectively, affected by

small random errors Gyk and Gik ; 1.e., for k = -m,...,m (m2l) :

d
e © Yk + Gyk ’
(2.2)

s
e Ve T e

The basic ifdea of our methods 1s to compare these measured values

with those of the solutions of certain init{al value problems "neighbouring"

to the original one. These, which will be called reference prablems,
are obtained from equation (2.1) by dropping the unknown perturbation
and by using as imnitial values the measured data at any of the nodes.

(k)
y

That 18, for k = -m,...,m , let (t) be the solution of the reference

problem:
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5 0 = e,y ®en,

(2.3)
(k) (k)

d . .d
y (tk) =Y Y (tk) =Y

k
Subtracting Taylor's formulae for y and y( ) we can write:

d (k)

5 * k)
2.8 12 GV

. + ( *
) = Sy, =6y, ) 2 b6y + I 18 E(D)) + T {p(r))

where
. Frat
(2.5) lk{g(t)) = ) g(t) (tkil-t) dt
k
and
(2.6) A(k)f(s) = f(t,y(r)) - f(t,y(k)(t)) .

Ezpresion (2.4) shows that Taylor integrals Ik{p(t)} can be written

+
in terms of residuals rk (which are differences of known measured vzlues

and computable vilues y ), measurement errors and Taylor inte-

k
grais of A( )f(t) which will be shown to be easily computable. So,

d ),
yk:l k£l

our next step 1s to show how to approximate p(to) by means of linear

*
combinations of Ik{p(t)} terms.
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Let us consider a set of coefficients
+ -
A= {ak , k==m,...,m-1 ; a , k=-m+l,...,m} .

We shall look for conditions over these coefficients 1in order to get

a linear combination

1 o1 - [}
—3| aka{P(t)} + T a;I;{P(t)}
h |k=-m k=~m+1

approximating Py = p(to) . To study this we can integrate Taylor series

for p to get:

r (r)
H @ +h
(2.7) Fip()) = nl ¢ s‘k)(- ) %o
K LB T

where

(k)

(2.8) 80 = (™2 - i

AL



(Bacause of notational simplicity we use Taylor series; notwithstanding
our results remain valid provided the perturbation p admits (R+l)
continuous derivatives, being R the order of the approximation).

k)

(
In particular BO =] and so. our approximation error is:

1 m-1 + + m - -
-— I + z t
P, 3 aklk{p(t)} aklk{p( )}
h {k=-m k=-m+1
m~1 P 1 rp(r)
- o | m-
+ - 0 + r = (k) 0
=l2- z —- I C+(=1 —_—
‘o * 20\ 2 IolarC-Da 8 ey
k=-m r=]{ k=-m
So, to have a linear expresion approximating Py wvhen h->0 , the
+
‘coefficients a have to verify the compatibility condition:

-1 .
(2.9) L fak+a_k) =2.
k=-m

Assuming such a cendition, we can write for the truncation error o(A)

of this approximetion:



-1 m
1 + + - -
(2.10) o(A) = Po” 3 z aka{p(t)} + I aka{p(t)}
h [k=-m k=-m+1
- hrpér)
- rilyr(A (r+2)1 °

where the factors vr(A) depend on the particular set A of coefficients;

that is:

w1 + r (k)
(2.11) Yr(A) = I [ak+(-l) a_k]Br .

Now in order to get an effectively computable expresion for Py Ve shall

)

use (2.4), where the Taylor integrals Ik{A(k f(t)} will be calculated

by discretising them with approximated A(k)f-values:

(2.12) n(k)fd = f(t ,yd) - f(t ,y(k)) .

h| 317 3]

+
By the moment, let us merely call 5r; to the computed integrals and

*
ek to the corresponding errors; that 1is:
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* A(k)

+ * +
(2.13) Ik{ f(t)} = Grk + e

+
Later, we shall show that it is possible to get approximations ST; such
. .
that the errors ek be negligible 1if a stepsize h small enough is
used.
By using expresions (2.4) and (2.10), and dropping all the error terms,

we get an estimated po-value:

(2.14) > ! m;]"(*ts+ I;:l “(r -bro
. s — - + - .
Po 2 2, (157 2, (r,-8r)
h (k=-m k=-m+1

‘The error Gpo of this estimation can be written
: "
(2.15) 6p0 =Py~ Py = N(A) + M(A) + a(A) + E(A) ,

where each compenent in this expresion takes account of a different error

source; tnat is:

r
1 ] m-1 + m_

.1 N(A) = —1{ L - -

(2.16) N(A) 5 ak(éyk+l Gyk) + I a (Gyk_1 Sy

) s
h l_k=~m =-m+1 k

k
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which comes from the measurement errors in the determination of y-values;

| m m-1
(2.17) MA) =g I oasy - za;agvk ,
=-m+] k=-m

which comes from the measurement errors in the determination of §—values;

of{A) 4is the truncation error of expresion (2.10), and,

] m-1 m
(2.18) E(A) = - —| = a:e; + I al:e; R
h* Jk=-m k=-m+1

which comes from the errors in the numerical computation of the integral

terms Ii{A(k)f(t)} .

3. Optimal schemes. Our next step is to study the possibility of deter-

mining values of the coefficients in A 1in order to get optimzl schemes
in the sense of minimising the error Gpo in the estimation of the pertur-
bation. To do this, it 1is necessary to consider bounds of the components
N(A) and M(A) , not depending on the particular set of measurement
errors .ﬁyk and Cik respectively.

Let 6Y be an upper bound of measurement errors Gyk 3 e. gt
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(3.1) 8Y = max Idyklr.
-mSkSm

Then, arranging the terms in (2.16) it is possible to write:

6Y
(3.2) N(A) S v(A)y— ,
2
h
where
w-1
+ - + + - - + -
(3.3) v(A) = |-a_m+a_m+l| + ) Z+1|ak_1-ak+ak*]—ak| + lam_l-aml
=—m

The estimation (3.2) is optimal and it 1is the unique that can be done
in absence of any hypothesis about Gyk—errors distribution.

Analogously, 1f we define

(3.4) §Y = max |e;.k| R
-mSkSn

we can write the optimal bound

(3.5) M(A) = u(A)Eg ’

where
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m-1
+
{3.6) p(A) = |a_m| + I Ja

+ - -
-a |+ a | .
k=-m+] -k "

k

The error component E(A) could be bounded in a similar way but it
will not be described because we shall show later that its effect is
negligible if an adequate quadrature formula and a sufficiently small

stepsize h are used. So, neglecting this component, we can write:

h p(r)l

8y > S 0
3 - - 1 ——————— 5 .
(3.7) |6p0| 2 v(A)h2 + L(A)—; + rfllyr(A)l oIy e(A,h)

r
|

By means of convexity arguments it is easy to show that to get a minimum
‘of e(A,h) 1t is sufficient to consider symmetric sets A of coefficients

in the sense of verifying:

(3.8) a =

e T k=-m,...,m-] .

In such a case, each set of coefficients is determined by the a8 s a;
values, and, the characterisations (2,16), (2.17), (2.18), the bounds

(3.3), (3,6) and the compatibility condition (2.9), can be rewritten

in terms of the ak's. Moreover, from (2.11) we have for r odd
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Yr(A) =0,

and, therefore, the truncation error can be rewritten

2s (28)
[y h po
9 TR I (et
with
m-1
(k)
(3.10) YZS(A) =-2 I akazs
k=-n

At this point, the problem of finding optimal schemes can be formulated
in the foliowig terms: given realistic bounds for the measurement errors
§5Y and 6Y , and estimations of the even order derivatives of the unknown
rerturbation, to determine the number m€N , the set of coefficients
8_ seeesd satisfying the compatibility condition (2.9) and, eventual-ly,
the stepsize h>0 , in such a way that the error bound e(A,h) attains
its mirnimum.

Because of the impossibility of a theoretical solution for this optimi-
sation preblem, we made an exhsustive numerical experimentation with

different values for the needed bounds. This experimentation shows that

in most of cases, e(A,h) takes 1ts minimum when one of both components



coming from measurement errors -that is N(A) or M(A)- vanishes. {(Let
us remark that there Is no set of coefficients verifying the compatibdility
condition and such that both components vanish simultaneously).

Sa, we decided to study each case separately in order tc get optimal
schemes under two different restrictions:

Case 1: N(A) = 0, for those problems whose main error source is the
determination of solution values;

Case 2: M(A) =0, for those problems whose main error source 1is
the determination of derivative values.

It is necessary to remark that in each case, the effect of the correspon-
ding measurement errors does not disappear, because of the neglected
component E(A) . Later on studying this component, we shall show that

Gyk and S}k errors appear there but not affected by amplifying factors
0(1/h) or O(I/hz) .

In the two following sections we shall describe the main results which
can be obtained under each restriction. For the sake of brevity, we shall
not give in this paper the préofs of some assertions. These proofs are
straightforward (see reference [3]) and, 1in our opinion, they are not

relevant for the comprehension of the main ideas introduced in this work.

4. Robust methods under solution measurement errors. In this section

we shall describe methods whose main part of the error is not affected
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by measurement errors Gyk in the ODEs snlution; .namely methods with
a vanishing M(A) component. The coefficients defining such a scheme

must verify (see (3.2), (3.3) and (3.8)):

(4.1) a_, =3 ;> k=},...,m

and in this case the set A of coefficients is determined by the values

In order to simplify the error analysis of these methods it is convenient

to make a change of coefficients. Let

b, = a - ak , for k=l,...,m-1 ,

(4.2)

The remaining error components can be written in terms of the new

coefficients. The cowpnnent which takes accouant of Gik errors is

m
b bk(syk-ﬁy_ )

(4.3) M(a) =
=1 k

-

and then, the bound (3.5), HM(A) s u(A)G&/h s 1s valid with
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w
(4.8) kay = 2 el .
k=1

For the cucfficients of the truncation error (3.9) we may write:

) 25.:.
.53 =-2° .
(4.5} Yo (8 k ,

On the other hard, tie compatibility condition ou the l‘-k's is now:

m
(4.6) Pkb =1,
k=1

At thie point, the number meN and the coefficliente b, ,...,b gatisfy-
i

1
m

ing (£.€), can be chosen in a fres way. Sc, it fc yet poscible te fmgosc
additionsl restiictions. We shall study how to get optiwal scheues under
twa different criteria.

Each criterion 1s an attempt to minimise the effict of each remaining
errcr scurce. The two additional 1¢qrircments are:

8} ta have derivarive weasurcment errcr bound u(a) attaining 1irs

wninicum,
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b) to have truncation error o(A) of maximal order in terms of the
stepsize h ,
and we shall analise each case separately.

Case l.a. In this case it is easy to show that under the restriction
imposed by the compatibility condition, u(A) attains its winfmum at

the set of coefficients corresponding to:

0, 1f k=l,...,o-1 ,
(4.7) b, =
1/2m , 1if k=m .

The error in the estimation of the perturbation ocbtained with these

coefficients is

.. 25 (2

59 -6§ ® (ah) sp( s) el

(4.8) gp = —2 oy 0 L et
0 2uh oy (2s*D)1 2m - Kk

which depends on (mh) but not on m or h separately, in an essential
way.
4
If we neglect the O(h )~terms in the truncation error, we get as an

approximate bound:
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2
(mh)"]op] .
(4.9) lopgl = -+ ———+2 max e |,

-msksm-1

(ve also assume pS#O ). So, the best procedure is to use m=! (in order
to reduce computational cost) and a stepsize h (eventually a multiple
of the original one) which mirimise the previous bound. An actual computa-
tion of such an h 1s usually not ponssible because of the necessity
of having a gnod estimate far pg . In spite of this, the previous analysis
shows the existence of an optimal stepsize and it suggests the convenience
of experimentation with different ones.

The optimal scheme corresponding to @l , will be described at the
end of this section.

Case J.b. In this case, it {is easy to show that for every value of

mé€N , the set of coefficients corresponding to

-1 .
(-1)k (m!)Z

(4.10) k- X (@) (mk)d

k=l,...,m ,

satisfies YZS(A) =0, for s=1,...,m] , and the compatiblity condition
(4.6). Sa, 1t defines a method with truncation error of maximal order,

that 1s o(A) = 0(h°™) .
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2m+2
Once more, neglecting the O(h )-terms in the truncation error and

(k)

the component coming from the computation of I;{A f{t)} too, we get

(2m)

0 #0 ):

as an approximate bound (assuming p

. 2
2 &Y (m!) 2m, (2m)
(6.11) lspyl 5 2™ s =+ (za+ 1)t 1 leg 1>
where
" ]
(4.12) S

n ki]k (mt) ! (m-k) !

From a theoretical point of view, it would be pnsible to determine

an optimal stepsize

L meny o _s¥ \2“’”
opt m m , (2m)
e =71

—
(=]

and by using this stepsize we would get as an optimzl bound of (4.11)

1

r

~ 2 3 -
s 1™ 2
m

&Y .

2
{2m+1){m!)

o s
7 1 §Y
(e (Zm+})! 1
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As the factor

1
) s:l"‘ 2m+1
(2m+1)(m!)
n " (2m1)!

grows with m , whenever the involved perturbation derivatives are smaller
than &Y , the optimal value of that bound will be attained at m=1 .

If that is not the case, it is not possible to do a thesretical compari-
son among methods of different orders. Notwithstanding, numerical experience
did not show any adventage for higher order methods, when a near optimal
stepsize was used. Therefore, lower order methods will be preferable
because of computational effort.

Example 1. For w=l , the optimal O(hz)-method is exactly the same
that was obtained under the previous restriction 1in case l.a. For this

method, the estimation of the perturbation is

(4.13) S Sk LR A N
0 2= o T fo T
2h
where
t & ot
(4.14) ?'kark 85, »

~
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* o (v8 - y%) are the previously defified residuals and 6r-
rk = }ktl yktl are the previously defined residuals an T
k
following numerical approximations of I {A(k)f(t)} ( A( )f; are the
(k) X
approximate evaluations of A fj defined in (2.12)):
¢ B D (D + b, (0.4 . (0).4d
6r_1sﬂ-(6 £-0 £, brg = 5p(-b £_ 438 ),
(4.15) 2 2
- (0) d (0) d - h (1) d, (1) d
Gro‘ Ga7f =2 5D brp = g(te Eyee Ey) -
The error in this estimation of Po is:
. . 2s (2
6y1—6y_] e h spé s)
§.16 = - + E(A) ,
(4.16) 8p, T s:1 (2e+D)1 (A)

where the component E(A) , coming from the errors in the numerical computa-

:()\ .
+ion of {' f(t)} , can ke splitted in two terms:

éf_]+4of0+5f]

(4.17) ;

£(A) = —+ T .

The first one involves the differences

(4.18)



which can be bounded by means of a Lipschitz constant L of £ and

d
measurement errors in yJ 3 1.e.:
(4.19) S| SLS&
. | J| v,

(k)

The second one can be written in terms of A °f derivative values and

powers of h ; in particular:

-1) 444 (1) 44
AL (1) 114 1

(4.20) T = 0 0 34 o a®yly

45 k=1

4
(Ek)h .

.vhere Ekt(t l’tl) and ¢, are numerical constants.

A(K)f— derivatives will be shown (see the appendix) to be bounded by

measurement errors and perturbation derivatives. Therefore, both truncatiou
errors in.this method are actually propnrtional to perturbation derivatiyes
instead of y-derivatives.
Finally, we wmust remark that in E(A) there appears the influence
2
of Gyk errors but, as it was previcusly stated, not affected by 0(1/h }-

factors.

5. Robust methods under derivative measurement errors. Now we shall lecok

for optimal schemes, such that ites main part of the error be mnot affected
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by measurement errors éik in the ODE solution derivative. We shall
proceed in an analogous way to that of the previous section. To get a
vanishing M(A) component for any particular errors Gik , 1t is necessary

to consider coefficients satisfying (sec (3.5), (3.6) and (3.8)):

(5.1)

The set A 1is again determined by the values a_,...,a . The adequate

0" m-1

change of coefficients is in this case:

(5.2)

(vhere we are considering amEO ) and we may write the remaining error

companents in terms of the 's . Namely:

"

1 o . m
(5.3) N(A) = ——=| L c (8y +8y ) - 2( £ c )dy |,
2 lk=1 k k -k k=1 k 0

and so, the inequality (3.2), N(A) S v(A)§¥/h2 , is satisfied with
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m m
(5.4) v(A) =2 |ck| +2] 2 ckl .
k=1 k=1

For the truncation error coefficients we may write

m
1
(5.5) v, (a) = -2 £ K%
2s : k
k=1
and the compatibility condition is now
. b 2
(5.6) Ik €, = 1.
k=1

As in the last section, it 1is possibie to chonse arbitrary values

for the number mneN and the coefficients ¢ EEL satisfying this

1
compatibility condition. Once again, we shall study two cases in order
to minimise the effect of each remaining error source:

a) methods with a measurement error bound v(A) attaining its minimum,

b) methads with truncation errnr a(A) of maximal order in terms
of the stepsize h .

Case 2.a. In this case, 1t is easy to show that V(A) attains its

ninimuz, under the restriction (5.6), for the set of coefficlents correspon~

ding to:
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0 , if k=1,...,m-1 ,

(5.7) c, =
2
1/m , 1if k=m .

The error in the estimation of the perturbation obtained with these

coefficients is:

28 (2
8y -28y +38y ® (mh) sp(() s) m-1
(5.8) gp =—2—08 5y ———— L (ke
- 2 - 2s+2)! T 2 - -
0 (mh) s=1 (28+2) m k=-m+] k -k

which again depends on (mh) but not on m or h 1in an essential way.
4
Reglecting the O(h )-terms in the truncation error we have the approxi-

‘mate bound:

2 "
48y (mh) Ipol

[ +
(5.9) l6p0| v Y + max |e +e
(mh) - -o¥] gksm-1

A

(we have assumed p;#O ). Just as in the previous section, the-best proce-
dure 18 to use wm=! and a stepsize h (eventually a multiple of the
original one) which minimise the previous bound. Usually it 1is not possible
to have a theoretical a-priori estimation of the optimal stepsize (because
of the necessity of pa-estimates), but the previous analysis suggest

the convenience of trying with different ones.
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The optimal scheme corresponding to ol ; will be describad at the
end of this section.
Case 2.b. In this case it is easy to show that for every value of

meN , the set of coefficients corresponding to

k-1 .2
(5.10) L 2ED @)

c k=1,...,m

k 2 b} » ’ »
k (m+k)! (m=k)!
satisfies YZS(A) =0, for s=l,...,m! and the compatibility condition
(5.6). So, it defines a method :with truncation error of optimal order,

namely O(A) = O(th) .

2m+2
Neglecting again the O(h m )-terms in OJ(A) and the component arising

from the computation of IE{A(k)f(t)}, we get as an approximate error
2
bound (assuming pg m)#o ):
2 &y Z(m')2 2m, (2m)

.11 § < 1 — e
(5.11) | pol 8(m!) Tm hz + (2me ) |p0 |,
where

" ]

(5.12) T = L —m |

™ =1 K (k) (k)

k even
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Froz a thceretical puint eof view, it weuld be poscible to determine

en optimal stepelze

[

r:

N (8 32 9 A

opt o o i

znd by ueing it, the optimsl value of bouwad (5.12) would be:

3
2 . lp:,m'l wtl
8(mt1)(ml) | e mamr oe —— oy .

i (2m+2) !

L
3

Ae the factor

4m"(2me2)

8(m?l)(m!)2

grows with m , whenever the invelved perturbaiion derivatives aie smaller
tken &Y , the optimzl value ¢f that bound attzins at m=l .

I{ thet 1s not the case, it iz not poscsible te do a thcoretlcal compari-
sor among necthods of different orders. Once again, numericzl experiments
did mnot show any adventage for methods of higher order, if a near optimal

stepsize were used. So, lower order methods will be preferable.
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2
For w=1 , the optimal O(h )-method is exactly the same that was obtained
under the previous restriction in case 2.a. It is interesting to remark
that the wmethod developed” in reference [8] by quite a different way,
4
coincides with the optimal O(h )-scheme of case 2.b (see referemce [3)).
2
Example 2. We shall describe now the optimal O(h )-method. The perturba-

tion estimation is in this case:

~ i
.13 = — -
(5.13) Pg 3 (r0+r0 sr ) ,
h
- + d (0)
where Ty = (yﬂ—y+l ) are the standard residuals and Gro is the follow-

(0)

0
ing numerical approximation of I;{A £(t)} + IB{A( )f(t)} :

2
_hT (04 (0).d
(5.14) brg=T7 (& £ vaE) .

The error in this estimation of Py is

2
Sy 26y +By - n2%p (%)
(5.15) & = _'1_0.__1. -2 —0_ - e
: Po 2 (2s+2)! _ 0’
h s=1

vhere the component eo , coming from the numerical computation (5.14),

can be written
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i
SF_ +106f +6f a(0pivph (0 vi. 6
(5.16) e = - 0+ g (B,
0 12 240

with £e(t l,tl) and C being a numerical constant.
Let us recall that ij-values defined in (4.18), can be bounded in
terms of a Lipschitz constant of f and 6yj-values (form. (4.19)) and
(0)

that A “f-derivatives will be shown 1in the appendix to be bounded by

measurement errors and perturbation derivatives.

6. Numerical experiments. In order to show the efficiency of the optimal

schemes developed 1in the previous sections, we applied them to a classical
problem of Celestial Mechanics: ;he localisation of an unknown massiv
‘body whose presence is presumed because of the gravitational perturbative
forces affecting other observable celestial bodies.

The particular problem we use to test our method; is the "discovery"
of Neptune from the deviations that it causes in Saturn's and Uranus'
orbits. Neptune was actually discovered at the end of the last century
by Leverrier and Adams by means of perturbational methods of analytical
nature. )

We made a numerical simmulation with a simplified "solar system" composed

oniy by the Sun and the three involved planets. To get the "true" positions

and velocicies of both observable planets -Saturn and Uranus-, the classical
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motion equations in heliocentric coordinates for this four bodies problem
were integrated to a high precision with true initial conditioms. This
and all the numerical integrations needed for this experiment were made
by using a subroutine based on the well-known Bulirsch-StSer extrapolation
method [1].

The "measured" positions and velocities were got by adding to the
"true" values, "measurement errors" taken from a zero mean normal random
sequence scaled to specific realistic varlances obtained from reference

[2). See Table 6.1.

TABLE 6.1

Variances of "measured" positions and velocities

Position (U.A.) Velocity (U.A./100 days)
Planet y y y
ne ! Y2 I3 Y Y2 Y
-6 -6 -6 -8 -8 -8
Saturn 2.*10 .9*10 1.*10 4.*10 10.*10 7.*10
-6 -6 -6 -8 -8 -8
Uranus 7.%10 2.*10 2.*10 14,*10 7.*10 5.*10

With this measured data we tried to estimate the perturbatory gravita-
tional forces owing to Neptune and affecting the motion equations of

the other two planets; i.e.:
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. -1 -1 -l
¥y = G[(m9+mU)VU(llyU\l ) - mSVS(UyS-yUll lb'sll )1+ s

(6.1)

-1 -1 -1
¥g = Glmgrm )V Uy h ) - m ¥ Cly =y =y W T+ pg s

S S

vhere the 1indexes means: © Sun, U Uranus, S Saturn, (and, later
on, N Neptune); mA is the mass of body A ; VA is the gradient respect
the variables Yy 3 Ul is the usual euclidean norm; G is the universal

gravitational constant, and, p_ and pg are the "unknown" gravitational

U
forces affecting Uranus' and Saturn's orbits respectively.

To estimate this gravitational perturbations we used both optimal

2
O(h )-schemes described 1in sections 4 and 5; let us call each procedure
PERT-1 and PERT-2 respectively. We experimented too with the higher order
optimal schemes obtained in the same sections, but these results will
not be described, because they are more or less of the same quality than
those of PERT-1 and PERT-2 (and more expensive in computational cost).

In order to get an idea of the quality of this estimations we used
them for the 1inverse problem of determining the position and mass of

the "unknown" planet -Neptune- by solving in the least square sense the

rectangular system of non linear algebraic equations

-1 -1
- v - -
Py = < my N(llyN yUl llle\ ),
(6.2)

-1 -1
Pg = =G mNVN(IlyN-ySII —lllel )
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defining the perturbative forces. To solve this system, with the "measureg"
positions of Uranus and Saturn and the obtained estimations of the pertur-
bative forces, we used Newtnn's method with the "true" Neptume's position
and mass as initial guess.

Finally we computed Neptune's spherical coordinates -right ascemsion
and declination- from 1its cartesian ones. The error in the estimatiom
of these magnitudes 1s what determines the possibility of visual localisa-
tion of the "unknown" planet. ‘

Each procedure, PERT-1 and PERT-2, was accomplished with different
stepsizes in order to find an optimal omne. The obtai:ned results showed
for both schemes that the optimal stepsize is such that measurement and
truncation errors are approximately of the same magnitude. For PERT-1
it 1is berween 800 and 2000 days and for PERT-2 between 2000 and 3000
days. The amplitude of these intervals shows a big robustness of our
methods under the choice of stepsize.

Table 6.2 summarise the results obtained with each scheme at differesnt
dates. The efficiency of each computed magnitude has been estimated by

means of the expression

N
(6.3) eff(q) = -1og10(l—;‘?“—) ,
q

v -
where q is the approximation of gq . When this efficiency is positive,
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it roughly counts the number of significant decimal digits cerrectly
calculated.

The estimation of the unknown Neptune's mass and coordinates strongly
depends on the particular measurement errors of the data. In order tc
be able to appreciate the general behaviour of each method, Table 6.2
shows the averages of absolute value of errors and of the efficiencies
for each computed magnitude, over three experiments carried out with

different particular measurements.

TABLE 6.2

Errors and efficiencies for PERT-] and PERT-2

Date: 2449200.5 J.D.
PERT-1 PERT-2
magnitude true value error eff, error eff.
-5 -7 -7
0.498*10 2.79*10 6.61*10
-5 -7 -7
pU -1.430*10 1.32*10 1.63 5.02*10 1.23
-5 -7 -7
-.528*10 0.65*10 2.32*10
-6 -7 -7
-.433*10 0.84*10 3.29*10
-6 -7 -7
DS - 1.607*10 1.85*10 0.90 1.15*10 0.67
-6 -7 -7
-.620*10 0.84*10 0.37*10
-3 -3 -3
mN 2.050*10 0.14*10 1.17 0.28*10 0.87
9.96 0.16 0.35
yN -26.28 0.39 1.78 0.49 1.60
-11.02 0.16 0.28
ang. coord. 290.76 0.44 0.79
-21.40 0.07 0.27




Date: 2449300.5 J.D.
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PERT-1 PERT-2
magnitude true value error eff. error eff.
-5 -7 -7
0.485*10 2.31*10 3.70*10
-5 -7 -
pu -1.437*10 0.97*10 1.79 3.47*10 7 1.47
-5 -7 -7
-.532*10 0.52*10 1.38*10
-6 -7 .7
-.465*10 0.39*10 3.29*10
-5 -7 -7
pS -1.505*10 1.57*10 0.98 1.27*10 0.61
-6 -7 -7
-.578*10 0.69*10 1.00*10
-3 -3 -3 L.
.h 2.050*10 0.40*10 0.71 0.46*10 0.6&
10.25 0.31 0.21
yN -26.18 0.82 1.51 1.01 1.42
-10.98 0.30 0.42
291.39 0.23 0.54
ang. coord,
-21.34 0.07 0.13
Date: 2449400.5 J.D.
PERT-1 PERT-2
magnitude true value error eff. error eff.
-5 -7 -7
0.472*10 1.75*10 5.52*10
-5 -7 -7
pU -1.443*10 0.4€6*10 1.92 4.08*10 1.35
-5 -7 -7
-.535*10 0.48*10 1.27*10
-6 -7 . -7
-.494*10 0.75*10 1.88*10
-5 -7 L =7
pS -1.402*10 0.32*10 1.18 2.19*10 0.73
-6 -7 -7
-.536*10 0.53*1G 0.26*10
-3 -3 -3
"h 2.050*10 €.08*10 1.42 0.61*10 0.53
10.55 G.12 0.10
YN -26.07 0.16 2.15 1.51 1.28
-10.95 0.06 0.49
292.02 0.19 0.95
ang, coord.
-21.27 0.04 0.12
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Combaring the results of each method in Table 6.2, a better performance
of PERT-1 can be observed. Such a behaviour could be predicted attending
to the previously made error analysis and to the lower variances of velocity
data. Table 6.1 shows that data errors in planet's position are greater
than those in planet's velocities. So, a method with a vanishing N(A)
component -like PERT-1- should be preferable to a method with a2 vanishing
M(A) component -like PERT-2-, since N(A) takes care of position errors
and M(A) of velocity ones. In fact, it explains too.that aptimal stepsizes
for PERT-2 are bigger than those for PERT-1, since measurement and trunca-
tion errors must be approximately of the same magnitude when using sgch
obtimal stepsize.

Finally, we must remark that Neptune's angular coordinates predicted

.by using PERT-1 are sensibly more precise than those obtained with the
O(ha) optimal method of case 2.b, which essentially 1s the same that

was used in reference [8].

7. Concluding remarks. Every method introduced in references [4],

{51, [6], [7] and [8] to estimate perturbations in ODEs without modeling
assumptions and with truncation errors proportional to its small deriva-

tives, are based on a same idea: to get a computable expresion of perturba-

tion values in terms of residuals (i.e. differences between ODE-salution

measured values and non perturbed ODE-solution values). The way used

in those works to gef. such expresions consist of discretising integrals



involving the perturbation by means of its unknown nodal values and,
then, solving the resultant equations.

An alternative way to get such expresion was introduced in this paper.
It consist of a direct approximation of the unknown perturbation-values
by means of arbitrary linear combinatio;s of those 1ntegf§ll. By this
way, a general scheme gor this kind of methods was studied, obtaining
a complete error analysis of them. This analysis can be applied to -ethpgs
in previous works since they are particular cases of this general scheme.

The obtained error characterisation allowed us to determine the coef-
ficients in the linear combinations in order to be used to -ini-§se the
influence of each error source; therefore, optimal schemes under different
restrictions were deduced. In particular, one of this optimal schemes
proved to be more adequate to solve a Celestial Mechanics problem tham

those, previously used.

Acknowledgements. The author wishes to express deep gratitude to his

thesis adviser Prof. P. E. Zadunaisky and also to A. Brunini who collabora-

ted in the numerical experimentation.

Appendix. In sections 4 and 5 we have shown how to numerically integrate

Ik{A(k)f(t)} with negligible errors in relation to the remaining error

components of the perturbation estimation (formulae (4.15) and (5.14)).
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In both cases, truncation errors of these numerical integrations invelve
A(k)f—derivatives (formulae (4.15) and (5.16)). The following lemma shows
that these derivatives are actually bounded by perturbation derivatives
and by wezsurement errors, 1f the stepsize is sufficiently small. Therefore,

it is proved that all truncation errors in our methods are indeed propor-

tional tc small perturbation derivatives.

~
Lemma. let y and y :[a,b]—»[c,d] be the solutions of the fellowing

initial value problems:

y(t) = £(t,y(t)) + p(r),

y(a) = Yo o y(a) = 90 H

] "
y(t) = £(t,y(t)) ,

V() .6 3 i+ 6
y(a Yo Yo » y(a) = Vo * 5y0 .

A
Let  Af(t) = £(t,y(t)) - £(t,y(r)) , for tela,b] . For every h20 and
every continuous function g , let lgﬁh = max |g(t)] . Given any
astsa+h
integer k20 , if £ has (k+l) continuous derivatives on the rectangle
R = [a,b]x[c,d] , 1f p 1is a continuous function with (k-2) continuous

derivatives on {a,b] (4f k22 ), and, if the interval [a,b] is small

2
enough to satisfy (b-a) L/2 < 1 , where L = max
R

L3 i Lipschit
3y s a pschitz
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constant for f , then, for any h20 such that a+hsb , the foilnwing

inequalities hold:

2
~ . h
(a.1) I9-¥lly, S €o oyl + Rlsyol + Sfpll,) »
2
(A.2) £y, s ¢y Usyyl +nleyyl + ) »
if k21 , then:
. A .
(A.3) 1y-yp, S (I8y,| + loy,l + byeky) »
(A.4) £, s ¢y dsygl + 1sygl + bipp) »
and, if kzj22 , then:
3-2
(1) ~(3) . (1
(A.5) e NERRD ARSI 1}:0'“) ! n
3-2
(1) i . (1)
(A.6) %3 1, s C}l (layol + ldyol + 1folp M) o

where Cj and C; , j=0,...,k , are constants not depending on h .
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W1
Proof. Subtracting the Taylor formulae for y and y , we can write

for every tela,b] :

t t
(A.7) y(t)-y(t) = 8y, * (t-a)aio + J Af(1) (t-T) dt + I p(t) (t-1) dt .
a a

On the other hand, as (T,y(T)) and (T;;(T)) belong to R for

every T¢[a,a+h] , we have the following bound:
(A.8) Jag(t)| s Luy_yﬂh .

By using this bound in (A.7) it follows for every tefa,a+th] :

2 2
. L(b-a) h
[y t)-y(e)| s lcyol + hley,l + -—-52——ﬂy-§lh + ?;Rpﬂh

i 2, -1
and, as L(b—a)2/2 <1, we get the bound (4.1) with C0 = [1-L(b-a) /2] ,
and, by replacing this bound in (A.8), we get (A.2) with €y = oL -
To prove the remaining bounds, it is necessary to have analogous esti-

~N
mates to (A.7) and (A.8) for (y-y)- and Af-derivatives. For (y:¥) we can

write:



4] -

] t t
(A.9) }(t)—y(t) = 6}0 + S Af(T) dT + } p(1) dt ,
a a

and, for j=2,...,k ,

¥ 90 = 889 Py + 9P (o) .

(A.10) P 0)-3 Py = (t) +

On the other hand, it is easy to show that for j=1,...,k and for te[a,b]

]
(A.11) IAf(j)(t)I S LA
1=0

(1) ~(1)
|y -y

(t) )],

J

vhere Aij are constants not depending on t .
Now from (A.9), (A.8) and (A.1), it follows bound (A.3) with

C1 = max{Cé(b-a) , 1+C6(b—a)2} which do not depend on h ; and, therefore,

from (A.11), (A.1) and (A.3) we get bound (A.4) with other constant 'Ci

not depending on h .
Finally, proceeding in a recursive way, we can prove the remaining

bounds (A.5) and (A.6) for j=2,...,k .
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