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ESTIMATION OF PERTURBATIONS WITHOUT MODELING ASSUMPTIONS 

IN SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS

By Rodolfo Rodriguez

Abstract. This paper is concerned with the estimation of a small perturbing 

function affecting a system of second-order ODEs, in order to get a solution 

of it fitting a given set of measurements. The classical approach consist 

of perturbation modeling and least-squares parameter specification. Alterna

tive procedures are needed when no a-priori adequate perturbation model 

is at disposal. A general scheme for methods needing no modeling assumption 

is introduced and a complete error analysis of them is obtained. Tills 

error characterisation allows to determine methods minimising the effect 

of each error source; therefore, optimal schemes under different restric

tions are deduced.

1980 Mathematics Subject Classification (1985 Revision). Primary 65L99.
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I. Introduction. The aim of this work is to study the problem of how 

to determine numerical values of a small perturbing function p(t) , 

which affects a system of second-order ordinary differential equations 

of the form

where f(t,y) is a known function and the data consist of measured values 

of the system solution y(t) and of its first derivative y(t) .

On having a perturbation model, the standard aproach consist of least

squares adjusting its free parameters in order to get a system solution 

fitting the given measurements. Sometimes, either no a-priori modeling 

is posible, or parameter specification for an actual physical model is 

an ill-posed problem. In both cases, it is useful to have perturbation 

estimators not depending on previous modeling assumptions.

The ’'obvious" deterministical method of approximating the second-order 

derivatives y(t) in the equations by using any of the usual difference 

schemes, would not be a good one. For instance if we consider the standard 

discretisation
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(where. ) and replace y-values by their

measurements y , we get as an approximation of p(t) :

For the error in this estimation we have:

where jy(s) are the measurement errors of the used y(s)-values.

This characterisation shows that, truncation errors appearing in the 

determination of small p-values in this way, would be proportional to 

2 ivh and to not-small y -values. On the other hand, the measurement

2
error component is O(l/h ); so, it is not possible to use an excesively 

small stepsize h in order to leave the error under a prescribed tolerance.

In some recent papers [5], [6], P. E. Zadunaisky developed a class 

of methods to estimate those perturbations, with truncation errors propor

tional to higher order derivatives of the small perturbing function.
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without modeling assumptions. These methods have been successfully used 

in several applications: the estimation of non gravitational forces affect

ing a comet's trajectory near the perihelion [5], the modeling of dissipa

tive forces affecting an inertial sensor [7], the localisation of an 

unknown celestial body detected from the deviations produced in the trajec

tories of other observable bodies [8]. On the other hand, a variant of 

these methods has been developed [4] in order to estimate the perturbations 

in those problems where the measurable data consist of y-values only 

(and not of y-values).

The object of the present work is to introduce a new approach to this 

kind of methods in order to get a general scheme of them and a complete 

error analysis separating its components according to the different error 

sources. This analysis will allow us to get optimal schemes under several 

different restrictions. Finally, the obtained optimal schemes will be 

used in a classical problem of Celestial Mechanics in order to show their 

efficiency.

2. General Scheme. Although the methods we are going to describe are 

applicable to a set of second-order ODEs, for the sake of simplicity 

we shall consider a single equation of the form

(2.1)



where p is an unknown perturbation depending on t .

To study this problem we shall assume that p and f are sufficiently 

regular functions and we particularly suppose that the unknown perturbation 

and its derivatives are small in relation to the corresponding values 

of the solution y .

Let ίθ be a point where we are going to compute the perturbation 

value and let us assume that it is possible to measure y- and y-values 

d .d
on a mesh centered on ίθ with stepsize h . Let y^ and y^ be the 

measurements of y^ s y(t^) and y^ 3 y(t^) respectively, affected by 

small random errors dy^ and dy^ ; i.e., for k = -m,...,m (mil) :

(2.2)

The basic idea of our methods is to compare these measured values 

with those of the solutions of certain initial value problems "neighbouring" 

to the original one. These, which will be called reference problems, 

are obtained from equation (2.1) by dropping the unknown perturbation 

and by using as initial values the measured data at any of the nodes.

(k)
That is, for k ■ -m,...,m , let y (t) be the solution of the reference 

problem:
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(2.3)

(k)
Subtracting Taylor's formulae for y and y we can write:

(2.4)

where

(2.5)

and

(2.6)

Expresión (2.4) shows that Taylor integrals I^{p(t)} can be written

in terms of residuals r, (which are differences of known measured values --------------- k
d (k)y . and computable values y . ), measurement errors and Taylor inte- 
k±l k±l

grais of i^')f(t) which will be shown to be easily computable. So,

our next step is to show how to approximate ρ(ΐθ) by means of linear

+
combinations of I^ipit)} terms.
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Let us consider a set of coefficients

We shall look for conditions over these coefficients in order to get 

a linear combination

approximating ρθ = ρ(ίθ) · ^° stu^y this we can integrate Taylor series 

for p to get:

(2.7)

where

(2.8)
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(Because of notational simplicity we use Taylor series; notwithstanding 

our results remain valid provided the perturbation p admits (R+l) 

continuous derivatives, being R the order of the approximation), 

(k)In particular βθ ■ 1 and so our approximation error is:

So, to have a linear expresión approximating ρθ when h—^0 , the

+ 
'coefficients a, have to verify the compati billty condition:

(2.9)

Assuming such a condition, we can write for the truncation error σ(Α) 

of this approximation:



-9-

(2.10)

where the factors γ^(Α) depend on the particular set A of coefficients; 

that is:

(2.11)

Now in order to get an effectively computable expresión for ρθ we shall 

(k)
use (2.4), where the Taylor integrals Ι^{Δ f(t)} will be calculated 

(k)by discretising them with approximated Δ f-values:

(2.12)

+
By the moment, let us merely call ^r^ to the computed integrals and 

+
e^ to the corresponding errors; that is:
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(2.13)

+
Later, we shall show that it is possible to get approximations ir^ such 

+
that the errors e^ be negligible if a stepsize h small enough is 

used.

By using expresions (2.4) and (2.10), and dropping all the error terms, 

we get an estimated ρθ—value:

(2.14)

’The error δρθ of this estimation can be written

(2.15)

where each component in this expresión takes account of a different error 

source; that is:

(2.16)



-11-

which comes from the measurement errors in the determination of y—valuesj

(2.17)

which comes from the measurement errors in the determination of y-values;

σ(Α) is the truncation error of expresión (2.10), and,

(2.18)

which comes from the errors in the numerical computation of the integral 

+ (k)
terms Ι,"{Δ f(t)} .

k

3. Optimal schemes. Our next step is to study the possibility of deter

mining values of the coefficients in A in order to get optimal schemes 

in the sense of minimising the error δρθ in the estimation of the pertur

bation. To do this, it is necessary to consider bounds of the components 

N(A) and M(A) , not depending on the particular set of measurement 

errors Sy^ and δγ^ respectively.

Let δΥ be an upper bound of measurement errors dy^ ; e< g.;
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(3.1)

Then, arranging the terms in (2.16) It is possible to write:

(3.2)

where

(3.3)

The estimation (3.2) is optimal and it is the unique that can be done 

in absence of any hypothesis about dy^-errors distribution.

Analogously, if we define

(3.4)

we can write the optimal bound

(3.5)

where
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(3.6)

The error component E(A) could be bounded in a similar way but it 

will not be described because we shall show later that its effect is 

negligible if an adequate quadrature formula and a sufficiently small 

stepsize h are used. So, neglecting this component, we can write:

(3.7)

By means of convexity arguments it is easy to show that to get a minimum 

of e(A,h) it is sufficient to consider symmetric sets A of coefficients 

in the sense of verifying:

(3.8)

In such a case, each set of coefficients is determined by the a, s a k k

values, and, the characterisations (2,16), (2.17), (2.18), the bounds

(3.3), (3,6) and the compatibility condition (2.9), can be rewritten

in terms of the a, ’s. Moreover, from (2.11) we have for r odd 
k
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and, therefore, the truncation error can he rewritten

(3.9)

with

(3.10)

At this point, the problem of finding optimal schemes can be formulated 

in the foliowig terms: given realistic bounds for the measurement errors 

6Y and δΥ , and estimations of the even order derivatives of the unknown 

perturbation, to determine the number mtN , the set of coefficients 

a ,...sa , satisfying the compatibility condition (2.9) and, eventually, 

the step size h>0 , lit such a way that the error bound e(A.,h) attains

its minimum.

Because of the impossibility of a theoretical solution for this optimi

sation problem, we made an exhaustive numerical experimentation with 

different values for the needed bounds. This experimentation shows that 

in most of cases, e(A,h) takes its minimum when one of both components
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coming from measurement errors -that is N(A) or M(A)- vanishes. (Let

us remark, that there is no set of coefficients verifying the compatibility 

condition and such that both components vanish simultaneously).

So, we decided to study each case separately in order to get optimal

schemes under two different restrictions:

Case 1 : N(A) = 0, for those problems whose main error source is the

determination of solution values;

Case 2: M(A) = 0 , for those problems whose main error source is 

the determination of derivative values.

It is necessary to remark that in each case, the effect of the correspon

ding measurement errors does not disappear, because of the neglected 

component E(A) . Later on studying this component, we shall show that 

6y^ and 6y^ errors appear there but not affected by amplifying factors 

2
O(l/h) or O(l/h ) .

In the two following sections we shall describe the main results which 

can be obtained under each restriction. For the sake of brevity, we shall 

not give In this paper the proofs of some assertions. These proofs are 

straightforward (see reference [3]) and, in our opinion, they are not 

relevant for the comprehension of the main ideas introduced in this work.

4. Robust methods under solution measurement errors. In this section

we shall describe methods whose main part of the error is not affected
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(4.3)

and then, the bound (3.5), K(A) £ y(A)5Y/h , Is valid with

by measurement errors Cy in the DDEs solution; namely methods with 

a vanishing M(A) component. The coefficients defining such a scheme 

must verify (see (3.2), (3.3) and (3.8)):

(4.1)

and in this case the set A of coefficients is determined by the values

of a_,... , .0’ ’ m-1

In order to simplify the error analysis of these methods it is convenient

to make a change of coefficients. Let

(4.2)

The remaining error components can be written in terms of the new

coefficients. The component which takes account of 6y^ errors is
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(4.0

For the coefficients of the. truncation error (3.9) w may write:

(4.5)

On the other hand the compatibility condition cu the b, *s is now: k

(4.G)

At this point, the number m«N and the corfftciente b,,...,b satisfy- 

ing (4.C)f can be chosen in a free way. Sc. it 1ε yet possible to impose 

additional restrictions. We shall study how to get optimal schemes under 

two different criteria.,

Each criterion is an attempt to minimise the effect of each remaining 

error source. The two additional requirements are:

a) to have derivative measurement error' bound p(A) attaining its 

minimum.
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b) to have truncation error σ(Α) of maximal order in terms of the 

stepsize h ,

and we shall analise each case separately.

Case l.a. In this case it is easy to show that under the restriction 

imposed by the compatibility condition, μ(A) attains its minimum at 

the set of coefficients corresponding to:

(4.7)

The error in the estimation of the perturbation obtained with these

coefficients is

(4.8)

which depends on (mh) but not on m or h separately, in an essential 

way.

If we neglect the 0(h )-terms in the truncation error, we get as an 

approximate bound:
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(4.9)

(we also assume ρθ/Ο ). So, the best procedure is to use. m=l (in order 

to reduce computational cost) and a stepsize h (eventually a multiple 

of the original one) which minimise the previous bound. An actual computa

tion of such an h is usually not possible because of the necessity 

of having a good estimate for ρθ . In spite of this, the previous analysis 

shows the existence of an optimal stepsize and it suggests the convenience 

of experimentation with different ones.

The optimal scheme corresponding to m=l , will be described at the 

end of this section.

Case l.b. In this case, it is easy to show that for every value of 

m<N , the set of coefficients corresponding to

(4.10)

satisfies ^2s^^ "θ’ ^°Γ s«l,...,m-l , and the compatiblity condition

(4.6). So, it defines a method with truncation error of maximal order, 

2m.
that is σ(Α) = 0(h ) .
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2m+2
Once more, neglecting rhe O(h )-terms in the truncation error and

± (k)the component coming from the computation of I^{¿ fit)} too, we get

i z (2m). _ .as an approximate bound (assuming ρθ ):

(4.JI)

where

(4.12)

From a theoretical point of view, it would be posible to determine

an optimal stepsize

and by using this stepsize we would get as an optimal bound of (4.11)
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As the factor

grows with m , whenever the involved perturbation derivatives are smaller 

than δΥ , the optimal value of that bound will be attained at m=1 .

If that is not the case, it is not possible to do a theoretical compari

son among methods of different orders. Notwithstanding, numerical experience 

did not show any adventage for higher order methods, when a near optimal 

stepsize was used. Therefore, lower order methods will be preferable 

because of computational effort.

2
Example 1. For m=l , the optimal 0(h )-method is exactly the same 

that was obtained under the previous restriction in case 1 .a. For this 

method, the estimation of the perturbation is

(4.13)

where

(4.14)
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r = (yd - y^^) are the previously defined residuals and Sr, are the 
k k±l k±l k

following numerical approximations of I~{Δ^^^f(t)} ( Δ^^ί^ are the

(k)
approximate evaluations of Δ f defined in (2.12)):

(4.15)

The error in this estimation of ρθ is:

(4.16)

where the component E(A) , coming from the errors in the numerical computa- 

tion of 1, {Δ fit)} , can be splitted in two terms:

(4.17)

The first one involves the differences

(4. ' 8)
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powers of h ; in particular:

which can be bounded by means of a Lipschitz constant L cf f and 

d 
measurement errors in y ; 1.e.:

(4.19)

(k)The second one can be written in terms of Δ f derivative values and 

powers of h ; in particular:

(4.20)

.where C.fit ,,t.) and c. are numerical constants, k -1 1 k
i^^f- derivatives will be shown (see the appendix) to be bounded by 

measurement errors and perturbation derivatives. Therefore, both truncation 

errors in this method are actually proportional to perturbation derivatives 

instead of y-derivatives.

Finally, we must remark that in E(A) there appears the influence

2
of óy^ errors but, as it was previously stated, not affected by 0(1/h )- 

factors.

5. Robust methods under derivative measurement errors. Now we shall look 

for optimal schemes, such that its main part of the error be not affected
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by measurement errors ¿y. in the ODE solution derivative. We shall 
k

proceed in an analogous way to that of the previous section. To get a 

vanishing M(A) component for any particular errors óy^ , it is necessary 

to consider coefficients satisfying (see (3.5), (3.6) and (3.8)):

(5.1)

The set A is again determined by the values a„,...,a , . The adequate 
0 m-1

change of coefficients is in this case:

(5.2)

(where we are considering 3^=0 ) and we may write the remaining error 

components in terms of the c^'s . Namely:

(5.3)

and so, the inequality (3.2), N(A) < v(A)«Y/h2 , ts satisfied with
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(5.4)

For the truncation error coefficients we may write

(5.5)

and the compatibility condition is now

(5.6)

As in the last section, it is possible to choose arbitrary values 

for the number meN and the coefficients c,,...,c satisfying this 
1 tn

compatibility condition. Once again, we shall study two cases in order 

to minimise the effect of each remaining error source:

a) methods with a measurement error bound v(A) attaining its minimum,

b) methods with truncation error σ(Α) of maximal order in terms 

of the stepsize h .

Case 2.a. In this case, it is easy to show that V(A) attains its 

minimum, under the restriction (5.6), for the set of coefficients correspon

ding to:
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(5.7)

The error in the estimation of the perturbation obtained with these

coefficients is:

(5.8)

which again depends on (mh) but not on m or h in an essential way. 

4
Keglecting the 0(h )-terms in the truncation error we have the approxi

mate bound:

(5.9)

(we have assumed ρθ/Ο ). Just as in the previous section, the' best proce

dure is to use 8=1 and a stepsize h (eventually a multiple of the 

original one) which minimise the previous bound. Usually it is not possible 

to have a theoretical a-priori estimation of the optimal stepsize (because 

of the necessity of ρθ-estimates), but the previous analysis suggest 

the convenience of trying with different ones.



-27-

The optimal scheme corresponding to hfI , will be described at the 

end of this section.

Case 2,b. In this case it is easy to show that for every value of 

m*N , the set of coefficients corresponding to

(5.10)

satisfies Y (A) = O , for s“l,...,m-l and the compatibility condition 2s

(5.6). So, it defines a method with truncation error of optimal order,

namely °(A) ■ 0(h^m) .

Neglecting again the 0(h^m ^)-terms in σ(Α) and the component arising

± (k)from the computation of I^i^ fit))» we get as an approximate error 

bound (assuming Ρθ^^θ ):

(5.11)

where

(5.12)



From a theoretical point ci view, it would be possible to determine 

cn optimal steps it.e

and by using, it, the optimal value of bound (5.12) would be:

Δε the factor

grows with m , whenever the involved perturbation deiivativcc are smaller 

then ίϊ , the optimal value of that bound attains at m-1 .

If that is not the case, it is not possible to do a theoretical compari

son. among methods of different orders. Once again, numerical experiments 

did not show any adventage for methods of higher order. If a near optimal 

stepsize were used. So, lower order methods will be preferable.
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For m=l , the optimal 0(h )-method is exactly the same that was obtained

under the previous restriction in case 2.a. It is interesting to remark.

that the method developed in reference [8] by quite a different way, 

4
coincides with the optimal 0(h )-scheme of case 2.b (see reference [3]).

2
Example 2. We shall describe now the optimal 0(h )-method. The perturba

tion estimation is in this case:

(5.13)

+ d (0)
where Γθ = ^+]"^+] ) are ^β standard residuals and δτθ Is the follow

ing numerical approximation of ΙθίΔ^θ^ί(t)} + Ιθ{Δ^θ\(ί)} :

(5.14)

The error in this estimation of p„ is 
0

(5.15)

where the component εθ , coming from the numerical computation (5.14), 

can be written
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(5.16)

with Ct(t J »tj) and C being a numerical constant.

Let us recall that 6f -values defined in (4.18), can be bounded in 
j

terms of a Lipschitz constant of f and 5y^-values (form. (4.19)) and 

(0)that Δ f-derivatives will be shown in the appendix to be bounded by 

measurement errors and perturbation derivatives.

6. Numerical experiments. In order to show the efficiency of the optimal 

schemes developed in the previous sections, we applied them to a classical 

problem of Celestial Mechanics: the localisation of an unknown massiv 

body whose presence is presumed because of the gravitational perturbative 

forces affecting other observable celestial bodies.

The particular problem we use to test our methods is the "discovery" 

of Neptune from the deviations that it causes in Saturn's and UranUs* 

orbits. Neptune was actually discovered at the end of the last century 

by Leverrier and Adams by means of perturbational methods of analytical 

nature.

We made a numerical simmulation with a simplified "solar system" composed 

only by the Sun and the three involved planets. To get the "true" positions 

and velocities of both observable planets -Saturn and Uranus-, the classical



-31-

motion equations in heliocentric coordinates for this four bodies problem 

were integrated to a high precision with true initial conditions. This 

and all the numerical integrations needed for this experiment were made 

by using a subroutine based on the well-known Bulirsch-Stoer extrapolation 

method [1].

The "measured" positions and velocities were got by adding to the 

"true" values, "measurement errors" taken from a zero mean normal random 

sequence scaled to specific realistic variances obtained from reference 

[2]. See Table 6.1.

TABLE 6.1

Variances of "measured" positions and velocities

Position (U.A.) Velocity (U.A./100 days)

Planet yi y2 y3 ^2

Saturn 2.*1θ'6 .9*10‘6 -6 
l.*10 4.*)0~8 io.*io'6 -8

7.*10___

Uranus 7.*1θ”6 2.*io’6 -6
2.*10 14,*10'8 7.*10'8 -8 

5.*10

With this measured data we tried to estimate the perturbatory gravita

tional forces owing to Neptune and affecting the motion equations of

the other two planets; i.e.:
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(6.1)

where the indexes means: Θ Sun, U Uranus, S Saturn, (and, later 

on, N Neptune); m is the mass of body A ; V is the gradient respect 
A A

the variables y^ ; tt*U is the usual euclidean norm; G is the universal 

gravitational constant, and, p^ and p$ are the ’'unknown*' gravitational 

forces affecting Uranus' and Saturn’s orbits respectively.

To estimate this gravitational perturbations we used both optimal 

2
0(h )-schemes described in sections 4 and 5; let us call each procedure 

PERT-1 and PERT-2 respectively. We experimented too with the higher order 

optimal schemes obtained in the same sections, but these results will 

not be described, because they are more or less of the same quality than 

those of PERT-1 and PERT-2 (and more expensive in computational cost).

In order to get an idea of the quality of this estimations we used 

them for the inverse problem of determining the position and mass of 

the "unknown" planet -Neptune- by solving in the least square sense the 

rectangular system of non linear algebraic equations

(6.2)
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defining the perturbative forces. To solve this system, with the "treasured" 

positions of Uranus and Saturn and the obtained estimations of the pertur

bative forces, we used Newton's method with the "true" Neptune’s position 

and mass as initial guess.

Finally we computed Neptune's spherical coordinates -right ascension 

and declination- from its cartesian ones. The error in the estimation 

of these magnitudes is what determines the possibility of visual localisa

tion of the "unknown" planet.

Each procedure, PERT-1 and PERT-2, was accomplished with different 

stepsizes in order to find an optimal one. The obtained results showed 

for both schemes that the optimal stepsize is such that measurement and 

truncation errors are approximately of the same magnitude. For PERT-1 

it is between 800 and 2000 days and for PERT-2 between 2000 and 3000 

days. The amplitude of these intervals shows a big robustness of our 

methods under the choice of stepsize.

Table 6.2 summarise the results obtained with each scheme at different 

dates. The efficiency of each computed magnitude has been estimated by 

means of the expression

(6.3)

where q is the approximation of q . When this efficiency is positive,
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it roughly counts the number of significant decimal digits correctly 

calculated.

The estimation of the unknown Neptune's mass and coordinates strongly 

depends on the particular measurement errors of the data. In order tr 

be able to appreciate the general behaviour of each method. Table 6.2 

shows the averages of absolute value of errors and of the efficiencies 

for each computed magnitude, over three experiments carried out with 

different particular measurements.

TABLE 6.2 

Errors and efficiencies for PERT-1 and PERT-2

Date: 2449200.5 J.D.
PERT-1 PERT-2

magnitude true value error eff. error eff.

pu

-5 
0.498*10

-5 
-1.430*10

-5 
-.528*10

-7 
2.79*10

-7 
1.32*10

-7 
0.65*10

1.63

-7 
6.61*10

-7 
5.02*10

-7 
2.32*10

1.23

ps

-6
-.433*10

-6 
- 1.607*10

-6
-.620*10

-7 
0.84*10

-7 
1.85*10

-7 
0.84*10

0.90

-7 
3.29*10

-7 
1.19*10

-7 
0.37*10

0.67

m 
N

-3
2.050*10

-3 
0.14*10 1.17

-3 
0.28*10 0.87

yN

9.96

-26.28

-11.02

0.16

0.39

0.16

1.78

0.35

0.49

0.28

1.60

ang. coord. 290.76

-21.40

0.44

0.07

0.79

0.27
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Date: 2449300.5 J.D.
PERT-1 PERT-2

magnitude true value error eff. error eff.

%

-5 
0.485*10

-5
-1.437*10

-5 
-.532*10

-7 
2.31*10

-7 
0.97*10

-7 
0.52*10

1.79

3.70*10~7

-7 
3.47*10

-7 
1.38*10

1.47

ps

-6 
-.465*10

-1.505*10’°

—6 
-.578*10

-7 
0.39*10

-7 
1.57*10

-7 
0.69*10

0.98

-7 
3.49*10 

1.27*1θ’7

-7 
1.00*10

0.61

m 
N

-■3
2.050*10

. -3
0.40*10 0.71 0.46*10’3 0.64

yN

10.25

-26.18

-10.98 '

0.31

0.82

0.30

1.51

0.21

1.01

0.42

1.42

ang. coord.
291.39

-21.34

0.23

0.07

0.54

0.13

Date: 2449400.5 J.D.
PERT-1 PERT-2

magnitude true value error eff. error eff.

pu

-5 
0.472*10

-5
-1.443*10

-5 
-.535*10

-7 
1.75*10

-7 
0.46*10

-7 
0.48*10

1.92

-7 
5.52*10

-7
4.08*10

-7 
1.27*10

1.35

P5

-6
-.494*10

-5
-1.403*10

-6
-.536*10

-7 
0.75*10

-7 
0.32*10

-7 
0.53*10

1.18

-7 
1.88*10

-7
2.19*10

-7 
0.26*10

0.73

N
-3 

2.050*10
-3 

0.08*10 1.42
-3 

0.61*10 0.53

yN

10.55

-26.07

-10.95

0.12

0.16

0.06

2.15

0.10

1.51

0.49

1.28

ang. coord.
292.02

-21.27

0.19

0.04 !

0.95

0.12



-36-

Comparing the results of each method in Table 6.2, a better performance 

of PERT-1 can be observed. Such a behaviour could be predicted attending 

to the previously made error analysis and to the lower variances of velocity 

data. Table 6.1 shows that data errors in planet’s position are greater 

than those in planet's velocities. So, a method with a vanishing N(A) 

component -like PERT-1- should be preferable to a method with a vanishing 

M(A) component -like PERT-2-, since N(A) takes care of position errors 

and M(A) of velocity ones. In fact, it explains too that optimal stepsizes 

for PERT-2 are bigger than those for PERT-1, since measurement and trunca

tion errors must be approximately of the same magnitude when using such 

optimal stepsize.

Finally, we must remark that Neptune's angular coordinates predicted 

by using PERT-1 are sensibly more precise than those obtained with the 

4
0(h ) optimal method of case 2.b, which essentially is the same that 

was used in reference [8].

7. Concluding remarks. Every method introduced in references [4], 

[5], [6], [7] and [8] to estimate perturbations in ODEs without modeling 

assumptions and with truncation errors proportional to its small deriva

tives, are based on a same idea: to get a computable expresión of perturba

tion values in terms of residuals (i.e. differences between ODE-solution 

measured values and non perturbed ODE-solution values). The way used 

in those works to get such expresions consist of discretising integrals
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involving the perturbation by means of its unknown nodal values and, 

then, solving the resultant equations.

An alternative way to get such expresión was introduced in this paper. 

It consist of a direct approximation of the unknown perturbation-values 

by means of arbitrary linear combinations of those integrals. By this 

way, a general scheme for this kind of methods was studied, obtaining 

a complete error analysis of them. This analysis can be applied to methods 

in previous works since they are particular cases of this general scheme.

The obtained error characterisation allowed us to determine the coef

ficients in the linear combinations in order to be used to minimise the 

influence of each error source; therefore, optimal schemes under different 

restrictions were deduced. In particular, one of this optimal schemes 

proved to be more adequate to solve a Celestial Mechanics problem than 

those, previously used.
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Appendix. In sections 4 and 5 we have shown how to numerically integrate 

(k)Ι^{Δ f(t)} with negligible errors in relation to the remaining error 

components of the perturbation estimation (formulae (4.15) and (5.14)).
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In both cases, truncation errors of these numerical integrations involve 

(k)Δ f-derivatives (formulae (4.15) and (5.16)). The following lemma shows 

that these derivatives are actually bounded by perturbation derivatives 

and by measurement errors, if the stepsize is sufficiently small. Therefore, 

it is proved that all truncation errors in our methods are indeed propor

tional to small perturbation derivatives.

Lemma. Let y and y : [a,b]—^[c ,d] be the solutions of the following 

initial value problems:

Let Af(t) » f(t,y(t)) - f(t,y(t)) , for tc[a,b] . For every h^O and

every continuous function g , let |g|^ - max |g(t)| · Given any 
aStSa+h

integer kiO , if f has (k+1) continuous derivatives on the rectangle

R “ [a,b]x[c,d] , if p is a continuous function with (k-2) continuous

derivatives on [a,b] (if ki2 ), and, if the interval [a,b] is small 

2 3f
enough to satisfy (b-a) L/2 < 1 , where L ■ max — is a Lipschitz 

R ’y
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constant for f , then, for any h£0 such that a+hSb , the following 

inequalities hold;

(A.l)

(A. 2)

if kil , then:

(A. 3)

(A.4)

and, if k¿j¿2 , then:

(A. 5)

(A.6)

where C and C^ , j=O,...,k , are constants not depending on h .
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Proof. Subtracting the Taylor formulae for y and y , we can write 

for every te[a,b] :

(A. 7)

On the other hand, as (T,y(T)) and (τ,;(τ)) belong to R for 

every T<.[a,a+h] , we have the following bound:

(A. 8)

By using this bound in (A.7) it fallows for every t<[a,a+h] :

2 ' 2-1
and, as L(b-a) /2 < 1 , we get the bound (A.1) with Οθ ■ [l-L(b-a> /2) ,

and, by replacing this bound in (A.8}, we get (A.2) with Cj * C^L .

To prove the remaining bounds, it is necessary to have analogous esti

mates to (A.7) and (A.8) for fy—y)— and Af-derivatives. For (y-y) we can 

write:
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(A.9)

and, for j=2,...,k ,

(A.10)

On the other hand, it is easy to show that for j»l,.^.,k and for tt[a,b]

(A.11)

where A^ are constants not depending on t .

Now from (A.9), (A.8) and (A.l), it follows bound (A.3) with

2Cj = Mx{C¿(b-a) , l+C^b-a) } which do not depend on h ; and, therefore, 

from (A.11), (A.l) and (A.3) we get bound (A.4) with other constant 'C’ 

not depending on h .

Finally, proceeding in a recursive way, we can prove the remaining

bounds (A.5) and (A.6) for J«2,...,k .
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