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0. Introduction.

In their paper [CQ2], Cuntz and Quillen show that, if char(k) = 0, then periodic cyclic 
homology may be regarded, in some sense, as the derived functor of (non-commutative) 
de Rham (co-)homology. The purpose of this paper is to formalize this derived functor 
analogy. We show that the localization Def~~1PA of the category PA of countable pro­
algebras at the class of (infinitesimal) deformations exists (in any characteristic) (Theorem
3.2) and that, in characteristic zero, periodic cyclic homology is the derived functor of de 
Rham cohomology with respect to this localization (Corollary 5.4). We also compute the 
derived functor of rational A’-theory for algebras over Q, which we show is essentially 
the fiber of the Chern character to negative cyclic homology (Theorem 6.2). For the 
construction of Def~lPA. we equip PA with the analogy of a closed model category 
structure, where the analogy of cofibrant objects are the quasi-free pro-algebras and the 
analogy of trivial fibrations are the deformations. Further, we define notions of strong and 
weak nil-homotopy between pro-algebra homomorphisms such that as is the case with 
“real” model categories ([Q])- Def~lPA turns out to be isomorphic to the localization of 
PA at the class of weak nil-homotopy equivalences, and equivalent to the localization of 
the subcategory of quasi-free algebras (i.e. the cofibrant objects) at the class of strong nil- 
homotopy equivalences (cf. 3.2). Of course this result would be automatic if the structure 
we put on PA were a model category (cf [Q]). which we prove it is not (3.6). However the 
analogy we have is sufficient to prove those localization properties and to consider derived 
functors therefrom. Quillen proves (in [Q]) that a functor between model categories which 
maps weak equivalences between cofibrant objects into weak equivalences admits a derived 
functor. The analogy of this result also holds in our setting; it says roughly that if a 
functor PA —> C remains invariant under pro-power series extensions of quasi-free pro­
algebras (i.e. F(A{X}/ < X >°°) = FA), then its left derived functor exists (Theorem
5.2) . Functors satisfying the latter condition are called Poincaré functors, as the condition 
that defines them is precisely a Poincaré lemma for (non commutative) power series. For 
example if F satisfies the stronger condition FA = F\4[f] then it is Poincare: such is the 
case of de Rham cohomology in characteristic zero. Unless explicitly mentioned, all results 
in this paper hold over any characteristic.

The notion of nil-homotopy used here (although related to) is different from the usual 
notion of polynomial (or pol-) homotopy, as used for example in KaroubiA’illamayor Λ- 
theory (see Section 4 below). In fact, a typical homotopy equivalence under pol-homotopy 
is the inclusion into the polynomial pro-algebra B B[t] which is not an equivalence under 
nil-homotopy. Instead, the inclusion into the power series pro-algebra B > B[t]/ < t 
is a nil-homotopy equivalence. Under nil-homotopy, quasi-free pro-algebras are precisely 
those having the homotopy extension property; other properties of quasi-free pro-algebras 
proven in [CQ1] are shown here to have a natural interpretation in terms of homotopy 
(Theorem 2.1).
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The rest of this paper is organized as follows. In section 1. the notion of (strong) nil- 
homotopy is introduced, and its first properties are proved. Section 2 is devoted to the 
interpretation of quasi-free pro-algebras as cofibrant objects with respect to the setting 
of the previous section (Theorem 2.1). The notion of weak nil-homotopy is introduced 
in section 3, where the existence of the localized category Def lPA is proved (Theorem

1. A Closed Model Category Analogy.

1.0 We consider associative, non-necessarily unital algebras over a fixed ground field k. 
We write A and V for the categories of algebras and vector spaces and PA and VV 
for the corresponding pro-categories. As in [CQ3] we consider only countably indexed 
pro-objects. A map f E PA(A.B) is called a fibration if it admits a right inverse as a 
map of pro-vector spaces, i.e. there exists s E PV(B.A) such that fs = 1. Fibrations 
are denoted by a double headed arrow By a (nil-) deformation (-») of a pro-algebra

3.2) . Section 2 is devoted to the comparison between our notion of nil-homotopv and the 
usual, polynomial homotopy. We prove that the localization at the union of the classes 
of nil-deformations and graded deformations exists and can be calculated as a homotopy 
category (Theorem 4.1). Section 5 deals with the formalization of the derived functor 
analogy of [CQ2]. We establish sufficient conditions for the existence of left derived functors 
(Theorem 5.2) and prove that, in characteristic zero, these conditions are met by the de 
Rham supercoinplex functor A θ- XA of Cuntz-Quillen (Corollary 5.4). In section 6 we 
compute the derived functor of the rational A’-theorv of rational pro-algebras. (Theorem
6.2) and of the negative cyclic homology of pro-algebras over any field (Corollary 6.9).

Note on Notation. We use most of the notations and notions established in [CQ 1,2,3]. 
However, some notations do differ: we write di (i = 0,1) for the natural inclusions 1*0, 
0 * 1 : A —> QA = A * A, and qa = doa — d^a. Thus our qa is twice Cuntz-Quillen's. Also 
our curvature is minus theirs; here ω(α, 5) = papb — p(ab). In this paper, the superscript 
B+ on a graded algebra B denotes the terms of positive degree, and not the even degree 
part as in op. cit.. The even and odd terms are indicated by Beven and Bodd. If A is a 
pro-algebra indexed by N, then the map An+i —> An is referred to as the structure map 
and is named σ or τ (subscripts are mostly omitted). Since for the most part we make no 
assumptions on chark, none of the results of op. cit. which involve dividing by arbitrary 
integers holds. Such is the case of the isomorphism between QA and the de Rham algebra 
with Fedosov product ([CQ1]), - as it assumes 2^0- which -we do not use. We do use the 
fact that qAn/qAn+x = Ω” A as A-bimodules, which does hold even if 2 is not invertible. 
On the other hand the isomorphism between the tensor algebra TA and the algebra of 
even differential forms holds in any characteristic with the same proof as in [CQ1].
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A we mean a fibration onto A which is isomorphic to one of the form P/A ~»PίK. 
Equivalently, p : BA>A is a deformation iff it is a fibration and for K = Ker(p) we have 
A 00 = 0. For example the map:

is a deformation, and is initial among all deformations with values in A. That is if 
p : B-»A is a deformation then there exists a map f : LA —> B with pf = πΛ. In 
particular if A is quasi-free in the sense of [CQ3] then p is split in 'PA (because πΛ 
is). Deformations admitting a right inverse shall be called deformation retractions: thus 
A is quasi-free iff every deformation B-»A is a retraction (or A is a retract of every 
deformation onto it). It follows that quasi-free pro-algebras are precisely those pro­
algebras A such that the map 0 >—> A has the left lifting property (LLP) with respect to 
deformations. Thus we have the analogy of closed model category ([Q]) where fibrations 
are as above, trivial fibrations are deformations, and cofibrant objects are quasi-free 
algebras. To pursue this analogy a step further, we define our weak nil-equivalences 
(or wne’s) as follows. We say that a map f 6 PA is a wne if any functor defined on 
PA and taking values in some category C which inverts (i.e. maps to isomorphisms) 
all nil-deformations also inverts f. Functors which invert wire’s are called nil-invariant. 
We shall show that the localization of PA with respect to deformations exists, whence 
f is a wne iff it is inverted upon localizing. For completeness, we call a map f quasi-free 
if it has the LLP with respect to deformations. Thus quasi-free maps play the role of 
cofibrations. I hurry to point out that the above notions of fibration, cofibration, and 
weak equivalence DO NOT make PA into a closed model or even into a model category. 
Indeed, if the map 0 —> A factors as a weak equivalence followed by a fibration then 
A is weak equivalent to 0 (3.5). As there are pro-algebras which are not equivalent to 
zero, axiom M2 for a model category ([Q]) does not hold. The latter problem would be 
solved if we allowed free maps of the form A —> A * TV to be weak equivalences: 111 
fact any map A —> B factors as A —A * TB followed by a f(a).pb b. This 
simply means that there are nil-invariant functors which do not invert free maps.

The notion of weak equivalence defined above may be expressed as the weak homotopy 
relation associated to a notion of strong homotopy between pro-algebra homomorphisms. 
The definition of this strong homotopy is the subject of the next subsection.

Cylinders and nil-homotopy 1.1.

The cylinder of a pro-algebra A is the following pro-algebra: 

(1)
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Here QA = A * A is the free product (or coproduct, or sum) and qA — Ker( QA —> A) is 
the kernel of the folding map. We write do = 1*0 and di =0*1 for the canonical inclusions 
A —> QA, do * di : QA —> Cyl A for the completion map, and p = Pa ■ CylA-»A for 
the the completion of the folding map μ : QA —> A. We have a commutative diagram:

(2)

One checks that do * di is quasi-free if A is. whence Cyl A is a cylinder object in the sense 
of [Q, 1.5. Def. 4]. Given homomorphisms /. g : A —-> B. we write f = g if there exists a 
map h : Cyl A —> B making the following diagram commute:

(3)

Note that as QA —> Cyl A is an epimorphism (although not a fibration), if a homotopy 
(i.e. a factorization through Cyl A ) exists, it must be unique. For example if A and B are 
algebras, then f = g iff there exists n such that for all cq........an E A. we have

and the homotopy is the map sending the class of qa to f(a) — g(a). One checks that ξ 
is a reflexive and symmetric relation, and that it is compatible with composition on the 
left: fo = /i => /2/0 = /2/1 (whenever composition makes sense). It follows that the 
equivalence relation ~ generated by = is compatible with composition on both sides We 
say that f and g are (nil-) homotopic if f ~ g. We write [PA] for the category having the 
same objects as PA and as morphisms the sets of equivalence classes:

A map f E PA is called a strong nil-homotopv equivalence if its class is an isomorphism 
in [PA].

Remark 1.2. The homotopy relation defined above may also be defined in terms of n-fold 

cylinders. Set Cyl1 A := CylA, d1 = dt and define the n-fold cylinder inductively by the 
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pushout diagram:

Π — 1 ~

Define δθ as the composite map A —-—> Cyln~1A —> CylnA and δ” as the composite

A Cyl A —> CylnA. One checks that two maps f,g : A —> B are homotopic iff there 
exist n and h : Cyln A —> B such that the following diagram commutes:

The map h in the diagram above will be called a homotopy between f and g.

The following lemma establishes a relation between the nil-homotopy equivalences just 
defined and the weak nil-equivalences of 1.0. above.

Lemma 1.3. Let f : A-»B be a deformation retraction. Then f is a strong nil-homotopy 
equivalence.

Proof. We have to prove that g = sf ~ 1. Upon re-indexing, we can assume f = {fn : 
An —> Bn}, s = : Bn —> An} are inverse systems of maps commuting with the
structure maps σ = ση, that afnsn = σ and that for Kn = Ker/n we have Λ" = 0. Then 
for a G An. we have f(ofgn * 1)</α) = a(fsfa — fa) = 0. from which <y[gn * 1(</α)) € A„_j. 
Thus a(gn * l)(qAn )n = 0 whence g * 1 : QA —> B factors through Cyl A. and g = 1. □

2. Quasi-free Algebras and the Homotopy Extension Property.

An interesting feature of nil-homotopy is that quasi-free algebras are precisely those 
having the homotopy extension property with respect to deformations. This fact is proven 
in Theorem 2.1 below. First we need:
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Power PRO-ALGEBRAS. POWER SPANS AND POWER DEFORMATIONS 2.0. By a grad­
ed pro-algebra we mean a non-negativelv graded object in PA. i.e. a pro-algebra B 
together with a direct sum decomposition of pro-vector spaces: B = φ^_0ΒΖί such 
that the multiplication map B ® B = θ Bn 0 Bm —> B maps Bn Z Bm into Br'^m 
Thus B+ = φ“=1 B" is a two-sided ideal in B, in the sense that multiplication maps 
B+ ® B and B ® B+ into B+. It is straightforward to show that every graded pro-algebra 
is isomorphic-by a homogeneous isomorphism- to an inverse system of graded algebras 
and homogeneous maps. The power pro-algebra associated with B is the pro-algebra 
B := B/. Thus a power pro-algebra is a particular kind of graded algebra. For 
instance if A is an algebra then the power pro-algebra, associated to the polynomials in a 
set X is the pro-algebra {A{X}/ < X >n}, whose completion is the power series algebra 
in the non-commutative variables X. More generally, one considers the tensor algebra 
TÁ(M) = T0(A) φ T1(A) φ T2(A) = whose associated power
algebra is Ty(AF) = {φ”=1 Tz(Af) : η E N} and when M is the free module on a set .V out* 
recovers the polynomial and power series algebras. These constructions can be copied for 
pro-algebras, pro-sets and pro-modules with the obvious definitions. However in general 
the free pro-module associated with a pro-set is not provective, as it doesn't have the LLP 
with respect to all epimorphisms, but only with respect to fibrations (cf.[CQ3]). We use 
the following special notations. If V is a pro-vector space and I < A is an ideal in a 
pro-algebra, we write Pa(V) for the power algebra associated with T^(A V A) and 
G/(A) and Gj(A) for the graded pro-algebra. A φ I/12 φ I2 /12 φ ... and its associated 
power algebra. If B is a graded pro-algebra and u : A —> B° is a. homomorphism, then 
by a power span of u we mean a A:-linear map T — Dn : A —> B+ such that the
following diagram commutes:

(4)

Briefly, we write

(4’)

to indicate the diagram above -even if A and B are not algebras. For example the ordinary 
Taylor span:
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is a power span of the canonical inclusion. Note that the image of f(x) in k[x, y]/ < y >n 
is just the class of f(x) — f(y) and is therefore defined in any characteristic: if /(.r) = 

then is Just short for Σ>=ο which is defined everywhere. Note

also that any power span T induces a homomorphism h : Cyl A —> B with hdo = u. 
which is a homotopy between u and hdi. Conversely if h is a homotopy starting at u. 
then T : A qA —> qA/qA00 B is a power span. Thus a power span is a special 
kind of homotopy where the target is a power algebra. By an n-¿r?mca¿ed span we mean 
a linear map Tn : A —> B/satisfying (4’). For example if T is a power span then 
Tn : A B/> B/#+n+1 is an /¿-truncated power span. Finally, by a power 
deformation retraction we mean a deformation retraction of the form B —> Bq where B is 
a graded algebra.

Theorem 2.1. (Compare [CQ1]). The following conditions are equivalent, for a pro­
algebra A.

(i) (LLPj A is quasi-free.

(ii) (Power Span Extension) If B is a graded algebra and u : A —> is a homo­
morphism. then any truncated span Tn : A —> B/B+" 1 lifts to a power span 
T : A —> B.

(iii) (Tubular Neighborhood) If f : B-^A is a deformation with kernel I and B is quasi- 
free, then there is an isomorphism l . B G]fB) such that fi is the projection 
Gi(B\A>B/I = A.

(iv) (Even FormsThere is a pro-algebra isomorphism LA = ven Α/ζΙ€ν( η + ^ A which
m.akes the following diagram, commute:

(v) (de Rham Algebra,) There is a pro-algebra isomorphism, Cyl A = QA/Q+^ A which 
makes the following diagram commute:
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Here the bottom arrow is the canonical isomorphism aqb h-> adb.

(vi) (Homotopy Extension) Given any commutative solid arrow diagram.:

where f is a deformation, the dotted arrow exists and makes it commute.

Proof. (i)=>(ii): Write Tn = D, where D¿ is the part of degree i; also let Do = u.
Thus un = u + Tn = ^=0D, is a homomorphism, from which the following identity 
follows:

(5)

Here the maps Di are regarded as 1-cochains with values in B. the cup product is the 
composite of D3 0 D,-j with the multiplication map B 0 B —> B and 3 is the Hochschild 
co-boundary map—as defined by the appropriate arrow diagram. We must prove that a 
¿•-linear map Dn_|_i : A —> Bn+1 exists so that 

(5’)

holds. It is straightforward to check that the right hand side of (5") is actually a cocycle, 
whence also a coboundary, as A is quasi-free. Explicitly, if g : Q2(A) —> Bn+\ is the 
bimodule homomorphism induced by the right hand side of (o') and if f : A —> Q2( A) 
satisfies — 3 f = d U d. then we can take Dn_|_i = gf.

(i) <=> (iii): If (iii) holds then UA-»A is a retraction, whence A is quasi-free. Súpose 
conversely that (i) holds. Because A is quasi-free, we have direct sum decompositions 
B = A θ I, and B/I2 = A Φ I /12 = Gi(B)/G/(B)+2. Write u : B^A G^B] 

for the composite map, and pi : B^Gi(B)/Gi(By for the projection. Because B is
- - 2

quasifree, the truncated span Ί\ = pi — u : B —> Gi(B)+/Gi(B)A extends to a power 
span T : A —> Gi(B)A/Gi(B)+ (by (ii)). It is clear that T induces the identity on I/I2: 
further, one checks -using (5)- that it also induces the identity on In/Ιη+γ. It follows that 
p : u + T is an isomorphism.

(iii)=>(iv):  Applying (iii) to πΑ : UA-^A. we get
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UA Gja/ja~(UA) = QevenA/Qeven+°°A.

(iv) =>(i): Analogous to (iii)=>(i).

(iiH(v): By (ii), we can lift the de Rham derivation d : A —> ΩΧΑ to a power s- 
pan T : A —> ΩΑ/Ω+°°Α of the identity map A = Ω°Α. By the discussion above. 
1 + T induces a homomorphism h : Cyl A —> ΩΑ/Ω+°°Α such that hq — T. In par­
ticular, h induces the canonical A-bimodule isomorphism qA/qA2 = Ω]Α mapping q to 
d. Thus we have hq = d + D, where D(A) C Ω-2/Ω-2 . It follows that the composite

A®n Ω+/Ω+°° —> Ω+/Ω+"+1 is just the cocycle dUn. whence the induced bimodule 
homomorphism qAn/qAn+1 = ΩηΑ is the canonical isomorphism, and the proof ensues.

(v) =>(i): By virtue of (5), if T2 — d + D2 ■ A —> Ω1 A φ Ω2Α is the 2-span induced by 

di, then — dD^ = ddd, whence A is quasi-free.

(vi) =>(v): Since ΩΑ/QCΑ°°-»ΩϋA φ Ω1 A is a deformation, there exists a homomotopy 
h : Cyl A —> ΩΑ/Ω+°° A lifting the homotopy 1 = 1 + d. The same argument as in the 
proof of (ii)=>(v) shows that h is an isomorphism.

(i)=>(vi): As 0 —-> A is quasi-free, so are do and do. □

Example 2.2. Let A be an algebra, and let UA = TA/JA00 its universal quasi-free 
model. By the theorem above, we have CylUA = QU A/Q+UÁ^. We want to give an 
explicit isomorphism CylUA = QU A/Q+U Α°° as well as to show that in this particular 
case, we also have an isomorphism

First of all, we observe that given a vector space V, we have isomorphisms:

Here qV = {(υ,— v) : υ E V} and the isomorphism V φ V = V φ qV maps (r.O) = dot' 
to itself while div i—> qv. Thus the composite isomorphism a : QTV=QTV maps qv to dv 
and do-r to x (v E V, x € TV). In particular this holds when V = A: in this case o maps 
the ideal < J A >C QTA generated by J A (which we identify with its image through 

do) into the ideal < J A >C ΩΤΑ, and qTA into Q+TA. It follows that o induces an 
isomorphism QTA/F00 = QT A/Q^, where T and Q are respectively the < J A > -\-qT A 
and < J A > +Q+TA-adic filtrations. On the other hand we have CylU A = QTA/F'^
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and ÜUA/WUA^ = ÍITA/G' where F =< JA" > + < g(JA") > +(</TA)'! and 
Q' =< JAn > + < dj A" > +(Ω+ΤA)". We have inclusions:

and

Lemina 2.3. below shows that for N sufficiently large, we also have inclusions Τ’ " j 
and ζΓ’η D . It follows that o induces the isomorphism CylL A=Q,L A/Q+L A and 
that ΩΚΑ/Ω+ΚΑ°° = STA/G* = Pua(A)

Lemma 2.3. Let A C B be algebras and let e : B —> A be a homomorphism such that 
ea = a. (a G A). Set I — Ker e, and let J G A be an ideal. Consider the following filtration 
in B:

Then there is an isomorphism.:

Proof. Let C}n =< J >n +In. It is straightforward to check that (< J > -\-I)2n C Q r>. 
whence B/(< J > +I)°° = B/Q'P Thus we must prove that B/Q^ = B/P~^. It is clear 
that Qn D pn. I claim that for N = η2 + n — 1. we also have G Pn. To prove the 
claim -and the lemma- it suffices to show that < J >AC Pn. Every element of < J >Λ 
is a sum of products of the form:

After fully expanding the product above, we get a large sum in which those terms not in 
In have at most n-1 Ls and at least n2 j's. Therefore, in each such term, at least n of 
the j’s must appear side by side, forming a string. Hence the term in question lives in 
<Jn>. □

Remark 2.f. The de Rham pro-algebra ΩΑ/Ω+Α^ = {θ™=ο ΩΓΑπ+ι }. of a pro-algebra 
A = {An}, together with the natural differentials b and d and the Karoubi operator k. can 
be regarded as a pro-truncated mixed DGA in the sense of [Kar]. Indeed, the identity:
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holds in ΩΓ(Αη+ι) for r <n and in Ω”Αηψι = ΩηΑ„+ι/[Ω°Α, Ωη A] for r = n. Thus:

is a pro-differential graded vector space, equipped with an even-odd gradation. This is 
the pro-complex of [CQ-2]; if k D Q, it is homotopy equivalent to the (short) de Rham 
pro-complex:

In any characteristic, we still have 3Q,U A XU A for every algebra A and 3klR XR for 
every quasi-free algebra R. In particular CylR carries all the relevant information for the 
cyclic homology of R.

3. The Homotopy Category.

WEAK NIL-HOMOTOPY 3.0. We write [UPA] for the category having the same objects as 
PA and -where the set of maps from A to B is [UA, UB], We have a functor 7 : PA —> 
[UPA], A > A, f [U/]. Two maps f,gE PA(A, B) shall be called weakly nil homotopic 
if 7/ = 'yg: by a weak nil homotopy equivalence we shall mean a map f E PA such that 
7/ is an isomorphism. We show below that the class of wTeak nil homotopy equivalences 
is precisely the class of weak nil equivalences as defined in 1.0 above, and that 7 is the 
localization of PA at this class. Further, we show that [UPA] is equivalent to the strong 
homotopy category [PAQ] of quasi-free algebras. First we need:

Lemma 3.1. The functor U : PA —> PAQ carries fibrations to fibrations and deforma­
tions to deformations.

Proof. Let f = {fn : A„ Bn} be a fibration, and let t = tn : Bn —> An be a section of 
f in PV. Upon re-indexing, we can assume that ftr = τ for the structure map of B. We 
want to construct a linear section t of Uf lifting t. Consider the following composite of 
linear maps:

Note that sn is a linear section of TBn TBn/JBn. Consider the composite : 
TBn/JBn TBn TAn —> TAra/JA”; then tn commutes with τ and
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for 0 < I < n — 1. Here p : A —> TA is the canonical section, ω(α,δ) — a b — ab is the 
curvature of p and ωίη is the curvature of tn. Now since ftr = t. we have u7n(5, άζ) E 
KerrByn (b,b' E Bn) and ρω<η(δ,δ') E Her τΤΒΤfn. It follows that I fntnr^ B = t\ b. 
whence U f is a fibration. Suppose further that f is also a deformation, and let I\ — Ker/, 
we can assume K™ = 0. Let L = Her Uf; if I E L” then πΑ1 E Λ" = 0. hence Q 
JAn/JA”, and = 0. □

Theorem 3.2. (Compare [Qui, 1.13, Th.lJ)
(i) Strong nil-homotopy equivalences are precisely those maps which are inverted by ev­

ery functor which inverts deformation retractions. Weak nil-homotopy equivalences 
are precisely those maps in PA that are inverted by every nil-invariant, functor, i.e. 
every functor which inverts all deformations.

(ii) The functor PA —> [PA] is the localization of PA at the class of deformation 
retractions, the functor PAQ —> [PAQ] is the localization at the class of power 
deformation retractions, and the functor 7 : PA [UPA] is the localization at the 
class of all deformations. There is a. category equivalence: [UPA] ~ [PAQ].

Proof, (i) Let se be the class of maps inverted by every functor which inverts deformation 
retractions and let se' be the class of strong homotopy equivalences. By virtue of Lemma 
1.3, the functor PA —> [PA] inverts deformation retractions, whence se C se'. Conversely, 

if F inverts deformation retractions then it inverts CylA~»A, and also i = 0.1. Thus 
F maps congruent maps to the same map; further, since f ~ g <==? Ff = Fg is an 
equivalence relation, F also maps nil-homotopic maps to the same map. and strong nil- 
equivalences to isomorphisms. This proves the first assertion of (i). Next, write and F 
for the classes of weak nil-equivalences (as defined in 1.0 above) and weak nil-homotopy 
equivalences. We have to prove that Cc7 — Cj'. In view of Lemmas 1.3 and 3.1. the functor 
7 is nil-invariant, whence ω G a/. Now let F : PA —> C be a nil-invariant functor, and let 
f E ω'(Α,Β). Because FtU and F~B are isomorphisms in C. Ff will be an isomorphism 
iff FU f is. By definition, the fact that f E ω,ζ means that U f is a strong equivalence, and 
therefore is inverted by F. Thus Uz — F.

(ii) The first assertion of (ii) is immediate from the proof of the first assertion of (i). 
The second assertion follows similarly, in view of 2.1-iii). Now let F be a nil invariant 
functor as above. We have to show that F factors as F = F'y for some F : [CPA] —> C. 
and that such F is unique. We put F(A) = F(A) and for [f] E [ΚΡΛ](Α. B), we set 
F[J] = FttbFf(F7tA)~1. It is clear that F is well-defined and that F — F^. Now 
suppose G is another functor with the same, property as F. Then GA = A on objects 
and if f E PA(A,B) then G must map [Uf] onto FUf — F[Uf]. Since any map [g] E 
[UPA](UA,UB] factors as [g] = A]_1. it suffices to prove that [F j4] = [LA'4]·
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But both π1 A and Lr7r4 are left inverse to the same map l : I A I 2 A induced by 
Tp : TA —> T2A, whence (by Lemma 1.3) [πσΛ] = I/]-1 = I^71"4]· This proves the 
third assertion. By the proof of (i), the functor 7 : PAQ —> [I PA] induces a functor 
7 : [PAQ] -7 [UPA]. Let 7' : [CTU] -7 [PAQ]. A θ (7 A, [f] [/]. Then [ttr] :

y'y(R) = UR —> R and [π1771] : 77/A) = UA -> A are natural isomorphisms -> 1 and 
y'U —> 1- This concludes the proof. □

Corollary 3.3. Let f,g ■. A B be pro-algebra homomorphisms. We have:

(i) Strong =7 Weak: If f is a strong equivalence then it is also a weak, equivalence. If 
f and g are strongly nil-homotopic then they are also weakly homotopic.

(ii) Weak => Strong: The converse of (i) holds if A and B are quasi-free.

Proof. As Cyl A —> A is a deformation, any nil invariant functor maps strong equivalences 
into isomorphisms and homotopic maps to the same map. In particular, this happens 
with the localization functor 7, proving (i). Part (ii) follows from the identities: [A. B] = 
[PAQfiA, B) = [UPA](A, B) = [UA, UB]. □

By defintion. the class Def of deformations sits into the intersection of the class ire of 
weak equivalences and the class Fib of fibrations. The proposition below shows that in 
fact Def = we Π Fib. In particular this proves that quasi-free maps are precisely those 
having the LLP with respect to those fibrations which are weak equivalences.

Proposition 3.4. A fibration is a deformation iff it is a weak equivalence.

Proof. If f is deformation then it is a weak equivalence by definition of the latter. Suppose 
now f : A -» B is a, fibration and a weak equivalence, and write K = Ker/. Upon 
re-indexing, we can assume / is an inverse system of epimorphisms {/„ : An -+> Bn .- 
commuting with structure maps. We must prove Λ'°° = 0. I claim it suffices to check 
this for the particular case when / is a strong equivalence. For if f is a weak equivalence 
and a fibration then Uf is both a strong equivalence (by 3.3) and a fibration (by 3.1). 
Whence, if we know the proposition for strong equivalences, we have KerU/^ = 0. Now 
a little diagram chasing shows that Ker Ufn Kn is an epimorphism (n > 1). whence 
also A 00 = 0. proving the claim. Assume then that there exists g € PA(B.A) with 
J := gf ~ 1, and that g — {gn : Bn An} is an inverse system of homomorphisms 
commuting with the structure maps. By definition of homotopy, there exist r > 1 and 
o? € PA(A,A) with 1 = o° = a1 = · ■ ■ = cxr = (3. Because a := ο1 = 1. for every n E N
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there exists mo > n such that for m > mo. Tmn(a * 1) factors as follows:

Therefore, given cq........am E Am. we have:

Thus if ai,...,czm G Ker(rct), we have r(ai ...am) = 0. We have proven the following 
statement:

(6) (Vn > l)(3mo > n) and for each rn > mo

an Ar = Nm > m such that (Kerrmna„)1 — 0

We are going to show next that if a satisfies (6) and ~ — o. then * satisfies (6) too. It 
will follow that 3 -and then also f- satisfies (6). whence = 0 as we had to prove. So 
assume (6) holds for a and let 7 : A —> A with 7 Ξ a. Proceeding as above, we can find, 
for each /?, an mi > mo > n such that if m > mp then

In particular Tmn(Ker 7mC Ker Tmna whence for Λ’ as in (6) we have (Kert'm)"1' =
0. □

Corollary 3.5. A pro-algebra A is weak equivalent to zero iff A^ = 0.

Proof. If A ~ 0 then L’A-»0 is a deformation by 3.2-i) and 3.4. Therefore ΓΑΧ = 0. 
whence A00 = 0. The converse is trivial. □

Remark 3.6. We can now see how far PA is from being a closed model category. Indeed: 
by 3.5 above, if 0 —> A factors as a weak equivalence followed by a fibration, then A ~ 0. 
O11 the other hand, if TV is a tensor algebra.then clearly TV^ ψ 0. despite the fact that 
the map 0 >—> TV has the LLP with respect to all fibrations.
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4. Nil-homotopy v. Polinomial homotopy.

4.0. We want to compare our nil-homotopy relation with the more usual notion of 
homotopy defined via polynomial homotopies, as used for example to define Karoubi- 
Villamayor AMheory ([KV]). Given two homomorphisms fag E PA(A, B), we shall write 
f P= g if there exists a homomorphism h : A —> B[t], with values in the polynomial ring 
on the commuting variable such that the following diagram commutes:

Here e¿ stands for ‘"evaluation at z” (i = 0,1). Note is defined even it B is not unital, 
in which case t B[t]; we set = Σ2Γ=οαί· ^so note that the map (eo.ej)
is a fibration; a natural linear section is given by (έ»ο·> &1) —t We observe that

is a reflexive and symmetric relation, and that if f P= g then fh = gh (whenever the 
pol P°l .

composition makes sense). It follows that the equivalence relation ~ generated by = is 
preserved by composition on both sides. Thus B[t] plays the role the free path space of 
a topological space plays in ordinary topological homotopy. We showed in 1.2 above that 
nil-homotopy can be described in terms of higher fold cylinders. Analogously, polynomial 
homotopy (or simply pol-homotopy) can be defined in terms of higher free path spaces. 
Set B1 = B[¿], and define B1 inductively by the pull-back square:

1 € Π ~ 1 

We write eg and e” for the composite maps B1 -» B1 B and B1 —> B1 B.

Thus (ej.ej*) : B{" -+ B X B is a fibration, and two maps Jo, /i : A —> B are iff there
exist n and h : A —> B1 such that he? = fa.

We write [PA]po1 for the (strong) polynomial homotopy category, and call a map f E 
PA(A,B) a polynomial equivalence if its class [/]po/ is an isomorphism in [PA]po1. A 
typical polynomial equivalence is the projection B = θ^_0 Bn -» Bq of a graded algebra 
or pro-algebra onto the part of degree zero, which is homotopy inverse to the inclusion 
Bq <—> B. A homotopy between the composite B Bq <—> B and the identity map is
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pol
given by h : B —> B[t], h(b) = btdeg^. Projections of the form φ^οΒη-»#ο shall be 
called graded deformations. For example power deformations are graded, because power 
algebras are. We also consider the category [UPA]po1 having as objects those of PA and 
as homomorphisms from A to B the homotopy classes [PA, UB]po1. The relation between 
nil-homotopy and polynomial homotopy is established by the following:

Theorem 4.1.
(i) The functor U : PA —>■ PAQ carries pol-homotopic maps to pol-homotopic maps.

(ii) If f,g : A B are nil-homotopic and if A is quasi-free, then they are also pol- 
homotopic.

(iii) The functor PA —> [PA]po1 is the localization at the class of graded-deformations, 
and the functor Ύ : PA -> [UPA]po1 is the localization at the union of the class­
es of nil-deformations and graded-deformations. There is a category equivalence 
[PAQ]po1 [UPA]po1.

pol pol
Proof, (i) It suffices to show that if f,g : A —> B € PA satisfy f = g, then Uf = Ug. Let 
H : A —> B[t] be a homotopy from f to g. Then H' = HrA : UA —> B[t\ is a homotopy 
from fvA to gnA and Uf,Ug are liftings of fnA.girA to UB. Hence by [CQ-2, Lemma 
9.1], we have Uf P= Ug.

(ii) By Theorem 2.1, the map CylA —> A is a power deformation retraction, hence a 
graded deformation. It follows that do P= di, and then f P~ g.

(iii) The proof of the first assertion is analogous to the proof of the first assertion of 
Theorem 3.2-ii). Next, we must show that inverts both nil and graded deformations 
and is initial among functors with such property. That 7' inverts graded deformations 
follows from (i), and that it inverts nil-deformations from (ii) and 3.2. If F : PA —> C 
inverts both types of deformation, then F : \UPA\po1 —> C, A FA, [/7PX](A, B) 9 
[f] FkbFf(Fjλ)_1 stisfies F^' = F and is the only such functor. □

5. Derived Functors.

Notations 5.0. Recall from [Q] that if F : Λ4 —> AT is a functor between model cate­
gories, then the total (left) derived functor LF : HoAd —> HoM is the (left) derived functor 
of the composite T'F : C —> HoFi' with respect to the localization Γ : Ad —> Ho Ad. Simi­
larly, given a category C together with a functor Γ : C —> C", and a functor F : PA —> C. 
we may (and do) consider the total left and right derived functors of F with respect to Γ 
and to 7 : PA [UPA] and 7' : PA -> [UPA]po1.
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Motivation 5.1. The following proposition generalizes a common procedure for deriv­
ing functors. As a motivation, recall the way crystalline (or infinitesimal) cohomology is 
defined for commutative algebras of finite type over a field of characteristic zero. Given 
an algebra A one chooses a smooth k-algebra R and an epimorphism p : R. A and
defines H*risA as the cohomology of the (commutative) de Rham pro-complex 
where I = Kerp (cf. [Η], [I]). The essential step in proving that H*ris is well-defined is 
the observation that if A above is quasi-free, then Ri is an algebra of power series over 
A, and that (continuous) H¿R satisfies the Poincaré Lemma: HdR(A) = ([H]).
Here Η^βΑ[[ί]] d= #*(]¿mΩ*(Α[/]/ < tn >). Actually Poincaré Lemma is derived from 
the stronger fact that Ω*(Α) Ω*Α[/] is a homotopy equivalence of pro-complexes ([H]).
A non-commutative analogue of this construction was given by Cuntz and Quillen in [C- 
Q2]. They showed that the non-commutative de Rham pro-complex XU A associated to 
an associative algebra A has the homotopy type of the periodic cyclic complex 0Ω(Α). 
In the framework of this paper, we interpret these results as saying that crystalline and 
periodic (co)-homology are respectively the derived functors of commutative and of non- 
commutative de Rham cohomology (see 5.4 below). The next proposition gives sufficient 
and necessary conditions so that when the construction above is applied to an arbitrary 
functor F, the result represents the left derived functor LF. We call this condition the 
Poincaré condition because it resembles the Poincaré Lemma quoted above. In both the 
commutative and non-commutative cases, one uses the fact that, in characteristic zero, de 
Rham cohomology is invariant under polynomial equivalence. Thus the Poincaré condition 
is automatic (see 5.3). However there are Poincaré functors which are not pol-homotopy in­
variant. For instance the Grothendieck group Ko is nil-invariant (and therefore represents 
its derived functor) despite the fact that in general, Ao(A[¿¡) ψ Ko(A).

Theorem-Definition 5.2. (Poincaré Functors) Let F : PA —> C and Γ : C —> C be 
functors. The following are equivalent:

(i) FU represents the derived functor of F with respect to Γ and to 7 : PA —> [UPA].

(ii) TFU is nil-invariant.

(iii) Given any commutative diagram:

where pi is a nil-deformation and Rt is quasi-free (i = 0.1). the map TFf is an 
isomorphism in C.
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(iv) Given any pro-vector space V and any quasi-free pro-algebra R. the map VF(R r—> 
Pr(V)) is an isomorphism in C.

(v) Condition (iv) holds for V = A and R = UA (A E PA).

We call F a Poincaré functor if it satisfies the equivalent conditions above.

Proof. We mimic the proof of the fact that a functor between model categories which 
preserves homotopy equivalences between cofibrant objects admits a derived functor ([Qui 
1.4.1]).

(i) <=> (ii) That (i)=>(ii) is clear. Assume now TFU is nil-in vari ant. and let F : 
[UPA] —> C' be the induced functor. We have to prove that F — LF, i.e. that PFU = Ffi 
is equipped with a natural map a : PFU —> PF such that if G : [UPA] —> C is another 
functor and β : G := ó7 —> F is a natural map then β factors uniquely through a. Let 
a = PF(vA) : ΓΓδΜ -» PF A and set β = (fiUfiGTvA)~x : GA -> PFU A. Then β satisfies 
β = αβ and is the only such map.

(ii) =>(iii) The map f is a strong equivalence because each pi is a deformation and Ri is
quasi-free. Therefore PFUf is an isomorphism. On the other hand we have πR1 Uf — fKR° 
where each 7Γβ· is a deformation retraction; thus it is enough to show that each ΓΤττ^1 is 
an isomorphism. But if Li : Ri —> URi is a right inverse for TRi, then : URi —> U Ri
is a nil-equivalence, whence the proof reduces to showing that if g : UB —» UB is a 
strong equivalence, then PFg is an isomorphism. We know by hypothesis that PFUg is 
an isomorphism, and we have KUBFUg — gvL B. But ΓΤπίΒ must be an isomorphism, 
because PFUnB is, and both πυΒ and UrB have a right inverse in common: namely the 
map induced by Tp : TB —> T2B.

(iii) =>(iv) Let r : Pr(V)-»R be the projection map. Then r is a deformation and is a 
retraction of the canonical inclusion. Thus (iv) is a particular case of (iii), with Ro = A = R 
and R. = Pr(V).

(v) is logically weaker than (iv).

(v)=>(ii) By virtue of Example 2.2, if (v) holds, then PF sends homotopy equivalences 
UA —> UB to isomorphisms, whence PFU sends weak nil-equivalences to isomorphisin- 
s. □

Corollary 5.3. If F preserves either nil-deformation retractions or graded deformatioiis. 
then it is Poincaré. In the latter case FU represents the left derived functor with respect 
to both y : PA[UPA] and to 7' : PA [UPA]po1.

Proof. That F is Poincaré means that its restriction to PAQ preserves nil-homotopy (cf. 
3.2). Such is the case if F preserves either nil-homotopy or, by 4.1-ii), pol-homotopy of
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arbitrary pro-algebras. The same argument as in the proof of the theorem shows that, in 
the latter case, FU also represents the derived functor with respect to y'. □

Corollary 5.4. Let X : PA —» PS :=((Pro-Supercomplexes)) be the functor which assigns 
to every pro-algebra A the de Rham pro-super complex XA of 2.4 above. Let Γ : PS > 
HoPS be the localization at the class of homotopy equivalences and let y and 'y1 be as 
above. If the ground field k has char(k) = 0 then the functor X is Poincare (relative to Γ 
and to y), and its left derived functor with respect to both 7 and y' is represented by the 
periodic cyclic pro-complex ΘΩ of 2.4 above.

Proof. In characteristic zero, the functor X preserves polynomial homotopy (e.g. by [Kas], 
or by [CQ2&3]), whence it is Poincaré and XU represents LX (by 5.3). On the other hand, 
in any characteristic, XU A is homotopy equivalent to dLlU A, because UA is quasi-free (e.g. 
by [P]). In characteristic zero, by virtue of Goodwillie’s theorem ([Gl], [CQ2]), ΘΩΙ! A has 
the homotopy type of OLIA. Summing up, if char(k) — 0 then FT ~ ΘΩ represents LX. □

Remark 5.5. In characteristic p > 0, the lemma above fails to hold. Indeed, if X were 
Poincaré then -by 5.2-the homology of the periodic cyclic complex

CP(Po(k)) — Hom(Xk,XPo(k)) should be zero, which -as a straightforward calcula­
tion shows- it is not. See also Lemma 6.6 below.

6. The derived functors of rational A-theory and Cyclic Homology.

The purpose of this section is to show that the functor which assigns to every Q- 
pro-algebra its rational A"-theory space is (almost) a Poincaré functor, and that its left 
derived functor is essentially the fiber of the Chern character with values in negative cyclic 
homology. See Theorem 6.2 below for a precise statement. The proof of Theorem 6.2 has 
two main ingredients. The first ingredient is Goodwillie’s isomorphism

(7)
between the relative rational A"-group of a nilpotent ideal and its analogue in negative 
cyclic homology [G2], Actually Goodwillie’s result is stated and proven for unital alge­
bras; we shall use an adaptation of this that holds for arbitrary pro-algebras, which is 
obtained in 6.1 below. This adaptation says that the relative A"-group of an infinitesimal 
deformation is isomorphic to the corresponding negative cyclic homology group, and essen­
tially reduces the question of the Poincaréness of K to that of HN. The second ingredient 
is the calculation of relative HN for a power deformation. This calculation is carried out 
without any hypothesis on the characteristic of k (Proposition 6.8).
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6.0. The derived functor of rational Λ-theory.

We use the following model for the rational Λ'-theory of a unital algebra or ring:

Here Gl is the general linear group, and B denotes the simplicial set associated to the 
category of Gl. Thus for us Ix®(A) is a simplicial set; note that its homotopy groups are 
precisely Quillen’s rational Λ-groups. For general, non-necessarily unital algebras over the 
ground field k we set:

Thus in general Λ'^(Α) depends on k, and coincides with the usual rational Λ-group if A 
is unital or more generally if it is excisive for Λ < Now we extend this definition to rhe 
case of pro-algebras, by taking homotopy inverse limits, as follows. If A = {Aa : A E A} 
we put:

Next we generalize Goodwillie’s isomorphism to the pro-algebra case; we assume through­
out that chark = 0. Recall from [G2] that the isomorphism (7) is induced by a natural 
Chern character K^(A) —> HN*(A) := HN^A/k) which is defined for every unital alge­
bra A. By [W] this character may be realized as a simplicial map ch : Λ'^(Α) —> S_V(A). 
where SN is constructed as follows. First truncate the total chain complex for negative 
cyclic homology to obtain a complex CN* such that H^CN1) = HNn(A) (n > 1) and 
Hn(CNt) = 0 if n < 0. Next define SN as the result of applying the Dold-Kan correspon­
dence to GN1. Hence SN is a connected, fibrant simplicial set with 7rnSAr(A) = HNnA 
(n > 1). and the isomorphism (7) says that the map between fibers Λ'^'( A. I) —> SN(A. I) 
is a weak equivalence. If now A is any -non necessarily unital- algebra, and I <1 A is a 
nilpotent ideal, then we have weak equivalences:

(8)

He have thus extended (7) to non-unital algebras. If now A = {Aa : A E A} is a pro­
algebra, we set SN(A) = holim SN(A\), and write ch : K®(A/k) —> S Ar(A) for the maj)

A
induced by passage to holim. As holim preserves fibers, fibrations and weak equivalences 4— —
of fibrant s. sets, (cf. [BK]) it follows that the weak equivalences (8) hold for arbitrary 
deformations and pro-algebras. We have proven:
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Lemma 6.1. With the notations and definitions of 6.0 above, there is a natural map 
of fibrant simplicial sets ch : K^(A) —> SN(A) which is defined for all pro-algebras A. 
and coincides with Goodwillie’s character in the case of unital algebras. If f : A-»B is a 
deformation, then the induced map SN\f) is a weak equivalence.

Proof. See the discussion above. □

6.1.1. In particular the lemma above holds if f is a power deformation of quasi-free 
pro-algebras, whence —by Theorem 5.2-iv)- will be Poincaré iff SA is. In the next 
subsection we compute the homotopy groups of SN(f) for power deformations of quasi- 
free pro-algebras and show that these are all zero except for 7Fi, which is nonzero. Thus 
the simplicial set SN' obtained from the complex CN by truncating in degree 2, so that 
Tvn(SN'} = HNn if n > 2 and zero otherwise is a Poincaré functor; further, its derived 
functor is null-homotopic, cf. 6.9 below. It follows that the Λ-theory space obtained by 
the same process as above using the elementary group instead of the general linear group 
is a Poincaré functor. Explicitly, the functor:

(9)

is Poincaré.

Theorem 6.2. (The derived functor of A’-theory^
The functor A t—■> K^(A) is not Poincaré. However, the functor A θ KE^(A) of (9) 

above is, and therefore it has a left derived functor LKE*. Set LK'^(A) : = nnLKE~: 
then there is an exact sequence:

Proof. The first two assertions follow from the discussion above and 6.9 below. To prove 
the third assertion consider the exact sequence of A-groups associated with the universal 
deformation πΛ : UAA>A. Then LK^(A) = K®(UA) (n > 2) (by 5.2) and Κη(πΛ) 
ΗΝη(πΑ) (n > 1) (by 6.1). Because UA is quasi-free. HNn(UA) = 0 for n > 2. and 
therefore ΗΝη(πΑ) = HNn+1(A), for n > 2. This proves that the sequence is exact at 
LK®(A) and to the left. By the same argument, the natural map HNz(A) ΗΝι(πΛ) 
is injective, whence AT^(A) —> Α’Ρ(π-4) factors through c/¿2. It follows that the sequence 
is exact also at A'p(A), completing the proof. □
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6.3. The derived functor of negative cyclic homology.

The purpose of this subsection is to compute the homotopy type of the relative space 
SN(Pa(V) —> A) associated with a power deformation retraction of a quasi-free pro­
algebra A over a field. We do not make any assumptions with regards to chark. The 
calculation uses two lemmas (6.4 and 6.6) which show the patologies that appear in char­
acteristic p > 0. In particular, 6.6 gives a different proof of the fact that the de Rham 
pro-complex X is Poincaré iff chark = 0. In Lemma 6.4 we give a formula for the homo­
topy type of the X pro-complex of a free product. Recall that if A and B are algebras, 
then there is an isomorphism of vector spaces:

In particular, the natural inclusion T(A ® B) ‘-y A * B is an algebra homomorphism. 
Putting this map together with the natural inclusions A c—> A * B and B > A * B. we get 
map of super complexes:

As all the maps in the above discussion are natural, all of this generalizes immediately to 
the case of pro-algebras. The following lemma may be regarded as a particular, easy case 
of [FT, 3.2.1]. We give an independent proof in this particular case.

Lemma 6.4. ('Compare [FT, 3.2.1] J Let A. B be pro-algebras. There exist a natural map 
of pro-mixed complexes: π : X(A*B) —> XA&XB ®XT(A$B) such that tt¿ = 1 and a 
natural homotopy h : 1 ~ ιπ.

Proof. By naturality. we may assume A and B are algebras. The map A* B —? Ax B. a i—► 
(a, 0), b π-> (0, b) induces a retraction XA*B —> XA&XB. Write XA*B = XΑφXBΦ1’. 
Thus Lo = U φ V := T(A ® B) φ T(B 0 A) φ T(A ® B) φ· A φ T(B 0 A) 0 B. where U is 
the sum of the first two terms and V is the sum of the last two. Further, one checks that:

Consider the maps: a : U U, χ.ς,ρ^...χηρη ynxo ■· ■ yn-ixn> and μ : U —> U. 
xoyo · · · xnynx xxoyo · · · xnyn· Under the identifications above, the map sends x £ 
T(A ® B) = Ω1Τ(Α ® B)^ onto x -j- ax £ U. Define a mixed complex map π : U —> 
XT(A 0 B), πο(«ο, «i, vo^’i) = Xo + pyo + axi + apyi, (u0. z/i, t’o-) = ^o- Ui € U. 
t'i £ V; 0 denotes the alphabetical order, and 1 denotes the inverse order. One checks 
that π/ = 1. Further the map h : lo —> Fi, h(x-o. jq ,y0, ) = (O.J’i + pyixyo.yi) verifies
Ζ17Γ! = hb and ¿οπο = bh. □
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Corollary 6.5. (Compare [CQ-3, 7.3]} If chark = 0, then there is a homotopy equivalence 
of supercomplexes: X(A * B) « XA φ XB.

Proof. Immediate from the well-known calculation of the cyclic homology of a tensor al­
gebra (e.g. [FT, 2.3.lj). □

Lemma 6.6. Let A be an algebra, V a vector space and Pa(V) the power pro-algebra. 
Give TV and T(A 0 TV) a gradation by setting deg(a) = 0 and deg(v) = 1 (a E A, 
v E V). Then there exists a natural homotopy equivalence of pro-mixed complexes

Proof. By definition the power pro-algebra Pa(V) is graded, and the gradation is given 
by the prescription of the lemma. This gradation is reflected by the X-complex; we have 
a degree decomposition: C := X(Pa(V)) = {^L0Xde9~t(PA(V)n-i-i)}· We observe that 
for i < n the direct summand sub complexes corresponding to degree i in the X complex 
of Ρα(Υ)π — A * TV/ < V >n and of A * TV are isomorphic. Further the pro-complex 
D := is the zero pro-complex, as the structure maps r^2n are all zero.
Therefore C is isomorphic to the pro-complex {Xdeg-n(A * TV)}. Now the lemma is 
immediate from 6.4. □

Remark 6.7. As the homotopy equivalence in the lemma above is natural, it extends au­
tomatically to pro-algebras. Since on the other hand the Hochschild, cyclic and related 
homology groups of a tensor algebra are well known, one could conceivably write down 
explicitly all the relative pro-homology groups for the projection Pa(V) —> A in any 
characteristic. In the next proposition we calculate the negative cyclic group for the par­
ticular case when A is an algebra and V is a vector space. Since in characteristic zero 
HHq(TV) = HHi(TV), our calculation can also be derived from [G2] in this particular 
case.

Proposition 6.8. Let k be a field of characteristic p > 0; and let A be a quasi-free k- 
pro-algebra. If V is a pro-vector space and f : Pa(V) —> A is the natural projection, then 
SN(f) is an Eilenberg-Maclane space T(T(A, V), 1), where T(A, V) is an abelian group 
which depends functorially on A and V. Explicitly if A is a quasi-free algebra and V is a 
vector space, then T(A, V) = Π^.0((7ηφθΓ>0 Dn,r) is the infinite product of the following
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co-invariant spaces:

Here h/n and T¡/r act by tq 0· · -®vn s—>· vn®vi®·· ·0υη-ι and byay®x\®---®arE§xr i-> 
ar 0 xr 0 cq 0 Xi 0 · · · 0 ar-i 0 ^r-i

Proof. By the cofinality theorem for holim ([BK]), we may assume A and I are indexed 
by N. Thus for n > 1 we have an exact sequence:

(10)

Since Pa(V) is quasi-free, the inverse system {HNn(f¡) : i 6 N} is isomorphic to the 
inverse system [HNn(X(f)) : i E N} (here X is regarded as a mixed complex). Thus both 
ends in the exact sequence above are zero for n > 2. Furthermore SN(f) is connected 
by definition; this concludes the proof of the first assertion. Assume now A is a quasi- 
free algebra and V is a vector space. It follows form 6.6 that we have an isomorphism of 
pro-vector spaces 

(11)

As every map in the pro-vector space of the right hand of (11) is a surjection, the (im1 
term in (10) is zero, and the second assertion of the proposition follows. □

Corollary 6.9. The functor A > SN(A) is not Poincare, regardless of the characteristic 
of k. The functor A SN'(A) of 6.1.1 above is Poincare (in any characteristic) and its 
left derived functor is null homotopic. □
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