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0. Introduction.

In their paper [CQ2], Cuntz and Quillen show that. if char(k) = 0, then periodic cyclic
homology may be regarded, in some sense, as the derived functor of (non-commutative)
de Rham (co-)homology. The purpose of this paper is to formalize this derived functor
analogy. We show that the localization Def "'PA of the category P.A of countable pro-
algebras at the class of (infinitesimal) deformations exists (in any characteristic) (Theorem
3.2) and that, in characteristic zero, periodic cyclic homology is the derived functor of de
Rham cohomology with respect to this localization (Corollary 5.4). We also compute the
derived functor of rational K-theory for algebras over Q. which we show is essentially
the fiber of the Chern character to negative cyclic homology (Theorem 6.2). For the
construction of Def "'PA. we equip P.A with the analogy of a closed model category
structure, where the analogy of cofibrant objects are the quasi-free pro-algebras and the
analogy of trivial fibrations are the deformations. Further, we define notions of strong and
weak nil-homotopy between pro-algebra homomorphisms such that —as is the case with
“real” model categories ([Q]) Def ' P.A turns out to be isomorphic to the localization of
P.A at the class of weak nil-homotopy equivalences, and equivalent to the localization of
the subcategory of quasi-free algebras (i.e. the cofibrant objects) at the class of strong nil-
homotopy equivalences (cf. 3.2). Of course this result would be automatic if the structure
we put on PA were a model category (cf [Q]). which we prove it is not (3.6). However the
analogy we have is sufficient to prove those localization properties and to consider derived
functors therefrom. Quillen proves (in [Q]) that a functor between model categories which
maps weak equivalences between cofibrant objects into weak equivalences admits a derived
functor. The analogy of this result also holds in our setting: it says roughly that if a
functor PA — C remains invariant under pro-power series extensions of quasi-free pro-
algebras (i.e. F(A{X}/ < X >*) = FA), then its left derived functor exists (Theorem
5.2). Functors satisfying the latter condition are called Poincaré functors. as the condition
that defines them is precisely a Poincaré lemma for (non commutative) power series. For
example if F satisfies the stronger condition FA = FA[t] then it is Poincaré: such is the
case of de Rham cohomology in characteristic zero. Unless explicitly mentioned. all results
i this paper hold over any characteristic.

The notion of nil-homotopy used here (although related to) is different from the usual
notion of polynomial (or pol-) homotopy, as used for example in Karoubi-Villamayor Iy -
theory (see Section 4 below). In fact, a typical homotopy equivalence under pol-homotopy
1s the inclusion into the polynomial pro-algebra B < B([t] which is not an equivalence under
nil-homotopy. Instead, the inclusion into the power series pro-algebra B — B[t]/ <t >
is a nil-homotopy equivalence. Under nil-homotopy, quasi-free pro-algebras are precisely
those having the homotopy extension property; other properties of quasi-free pro-algebras
proven in [CQ1] are shown here to have a natural interpretation in terms of homotopy
(Theorem 2.1).
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The rest of this paper is organized as follows. In section 1. the notion of (strong) nil-
homotopy is introduced, and its first properties are proved. Section 2 is devoted to the
interpretation of quasi-free pro-algebras as cofibrant objects with respect to the setting
of the previous section (Theorem 2.1). The notion of weak nil-homotopy is introduced
in section 3. where the existence of the localized category Def ~'PA is proved (Theorem
3.2). Section 2 is devoted to the comparison between our notion of nil-homotopy and the
usual, polynomial homotopy. We prove that the localization at the union of the classes
of nil-deformations and graded deformations exists and can be calculated as a homotopy
category (Theorem 4.1). Section 5 deals with the formalization of the derived functor
analogy of [CQ2]. We establish sufficient conditions for the existence of left derived functors
(Theorem 5.2) and prove that, in characteristic zero. these conditions are met by the de
Rham supercomplex functor A — X A of Cuntz-Quillen (Corollary 5.4). In section 6 we
compute the derived functor of the rational K-theory of rational pro-algebras. (Theorem
6.2) and of the negative cyclic homology of pro-algebras over any field (Corollary 6.9).

Note on Notation. We use most of the notations and notions established in [CQ 1.2.3].
However, some notations do differ: we write 9; (z = 0,1) for the natural inclusions 1 * 0,
0x1:A—QA=Ax*A, and ga = 0pa — 01a. Thus our ga is twice Cuntz-Quillen’s. Also
our curvature is minus theirs; here w(a,b) = papb — p(ab). In this paper. the superscript
B on a graded algebra B denotes the terms of positive degree, and not the even degree
part as in op. cit.. The even and odd terms are indicated by B¢¥¢" and B°%. If 4 is a
pro-algebra indexed by N, then the map A,4+; — A, is referred to as the structure map
and is named o or T (subscripts are mostly omitted). Since for the most part we make no
assumptions on chark, none of the results of op. cit. which involve dividing by arbitrary
integers holds. Such is the case of the isomorphism between J A and the de Rham algebra
with Fedosov product ([CQ1]), - as it assumes 2 # 0— which we do not use. We do use the
fact that gA™/qA™t! = Q"4 as A-bimodules. which does hold even if 2 is not invertible.
On the other hand the isomorphism between the tensor algebra T'A and the algebra of
even differential forms holds in any characteristic with the same proof as in [CQ1].

1. A Closed Model Category Analogy.

1.0 We consider associative, non-necessarily unital algebras over a fixed ground field 4.
We write A and V for the categories of algebras and vector spaces and PA and PV
for the corresponding pro-categories. As in [CQ3] we consider only countably mndexed
pro-objects. A map f € P.A(A.B) is called a fibration if it admits a right inverse as a
map of pro-vector spaces, i.e. there exists s € PV(B. A) such that fs = 1. Fibrations
are denoted by a double headed arrow —». By a (nil-) deformation (—») of a pro-algebra
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A we mean a fibration onto A which is isomorphic to one of the form P/R™~»P/K.
Equivalently, p : B-» A is a deformation iff it is a fibration and for A" = Ker(p} we have
I = 0. For example the map:

A

UA:=TA/JA® A

is a deformation. and is initial among all deformations with values in 4. That is if
p: B-»A is a deformation then there exists a map f : UA — B with pf = 7t In
particular if A is quasi-free in the sense of [CQ3] then p is split in PA (because =
is). Deformations admitting a right inverse shall be called deformation retractions: thus
A is quasi-free iff every deformation B—A is a retraction (or A is a retract of every
deformation onto it). It follows that quasi-free pro-algebras are precigely those pro-
algebras A such that the map 0 >~ A has the left lifting property (LLP) with respect to
deformations. Thus we have the analogy of closed model category ([QQ}) where fibrations
are as above, trivial fibrations are deformations, and cofibrant objects are quasi-free
algebras. To pursue this analogy a step further. we define our weak nil-equivalences
(or wne's) as follows. We say that a map f € PA is a wne if any functor defined on
PA and taking values in some category C which inverts (i.e. maps to isomorphismis)
all nil-deformations also inverts f. Functors which invert wne’s are called nil-invariant.
We shall show that the localization of P.A with respect to deformations exists. whence
f is a wne iff it is inverted upon localizing. For completeness. we call a map f quasi-free
if it has the LLP with respect to deformations. Thus quasi-free maps play the role of
cofibrations. I hurry to point out that the above notions of fibration. cofibration. and
weak equivalence DO NOT make PA into a closed model or even into a model category.
Indeed. if the map 0 —3 A factors as a weak equivalence followed by a fibration then
A is weak equivalent to 0 (3.5). As there are pro-algebras which are not equivalent to
zero, axiom M2 for a model category ([Q]) does not hold. The latter problem would be
solved if we allowed free maps of the form A — A * TV to be weak equivalences: 1
fact any map A — B factors as A — A x T'B followed by a +— f(a).pb — b. This
simply means that there are nil-invariant functors which do not invert free maps.

The notion of weak equivalence defined above may be expressed as the weak honotopy

relation associated to a notion of strong homotopy between pro-algebra homomorphisms.
The definition of this strong homotopy is the subject of the next subsection.

CYLINDERS AND NIL-HOMOTOPY 1.1.

(1)

The cylinder of a pro-algebra A is the following pro-algebra:

Cyl(A) := QA/qA™
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Here QA = A x A is the free product (or coproduct, or sum) and ¢4 = Ker{QA — 4) is
the kernel of the foldlng map. We write Jg = 1*0 and 8, = 0+1 for the canonical inclusions

A — QA 00 * 81 QA — CylA for the completion map. and p = py * Cyld—=A4 for
the the completion of the folding map p : QA — A. We have a commutative diagram:

l\ o % 01

CylA

[®)

One checks that dg * 9; is quasi-free if A is. whence C'ylA is a cylinder object 1n the sense
of [Q. 1.5. Def. 4]. Given homomorphisms f.g : A — B. we write f = g if there cxi~ts a
map I : C'ylA — B making the following diagram commute:

(3) do*d l /
CylA-

Note that as QA — CylA is an epimorphism (although not a fibration). if a homotopy
(i.e. a factorization through CylA ) exists, it must be unique. For example if 4 and B are
algebras. then f = ¢ iff there exists n such that for all a;..... an, € A. we have

(fla1) —gla1)) ... (flan) — glan)) =0

and the homotopy is the map sending the class of ga to f(a) — g(a). One checks that =
is a reflexive and symmetric relation, and that it is compatible with composition on the
left: fo = fi = fafo = foft (whenever composition makes sense). It follows that the
equivalence relation ~ generated by = is compatible with composition on both sides We
say that f and g are (nil-) homotopic if f ~ ¢g. We write [PA] for the category having rhe
same objects as P A and as morphisms the sets of equivalence classes:

[A.B] := PA(A. B)/ ~

A map f € PA is called a strong nil-homotopy equivalence if its class is an isomorphism

in [PA.

Remark 1.2. The homotopy relation deﬁned above may also be defined in terms of n-fold
cylinders. Set Cyl* A := CylA, 31 = 0 and define the n-fold cvlinder inductively by the



e |

DERIVED FUNCTOR ANALOGY

pushout diagram:

~

A 2, cyllA

el |
Cyl"™'A —— Cyl"A

- 5 o ' = o
Define 8% as the composite map 4 ——— Cyl"~'4 — Cyl"4 and J7 as the composite

E.;i

4 % CylA — Cyl™A. One checks that two maps f,g: A — B are homotopic iff there
exist n and h : Cyl"A — B such that the following diagram commutes:

0oa I, B

53*5;1l h
Cyl™A

The map h in the diagram above will be called a homotopy between f and g.

The following lemmna establishes a relation between the nil-homotopy equivalences just
defined and the weak nil-equivalences of 1.0. above.

Lemma 1.3. Let f: A B be a deformation retraction. Then f is a strong nil-homotopy
equivalence.

Proof. We have to prove that ¢ = sf ~ 1. Upon re-indexing. we can assume f = {f, :
A, — B,}. s = {sp : B, — A, } are inverse systems of maps commuting with the
structure maps ¢ = 0,. that of,s, = o and that for i,, = Ker f, we have L] = 0. Then
for a € A,. we have f(o(gn, *1)ga) = o( fsfa — fa) = 0. from which o(g, ¥ 1(qa)) & K, .
Thus o(gn * 1)(gA,)" = 0 whence g * 1 : QA — B factors through C'yld. and ¢ = 1. 0]

2. Quasi-free Algebras and the Homotopy Extension Property.

An interesting feature of nil-homotopy is that quasi-free algebras are precisely those
having the homotopy extension property with respect to deformations. This fact is proven
in Theorem 2.1 below. First we need:



8 GUILLERMO CORTINAS

POWER PRO-ALGEBRAS. POWER SPANS AND POWER DEFORMATIONS 2.0. By a grad-
ed pro-algebra we mean a non-negatively graded object in P.A. i.e. a pro-algebra B
together with a direct sum decomposition of pro-vector spaces: B = @, _,B" such
that the multiplication map B ® B = @ B" ® B™ — B maps B" = B™ into B"™™
Thus BT = @,_, B" is a two-sided ideal in B. in the sense that multiplication maps
Bt @ B and B® B7 into BT. It is straightforward to show that every graded pro-algebra
is isomorphic-by a homogeneous isomorphism- to an inverse system of graded algebras
and homogeneous maps. The power pro-algebra associated with B is the pro-algebra
B := B/B*". Thus a power pro-algebra is a particular kind of graded algebra. For
instance if A is an algebra then the power pro-algebra associated to the polynomials i a
set X is the pro-algebra {A{X}/ < X >"}. whose completion is the power series algebra
in the non-commutative variables X. More generally. one considers the tensor algebra
TiM)=To(A)PTHA)PT*(A)---=A+M=M: M., whose associated power
algebra is TA(AI) ={@PL, T (M) :n € N} and when M is the free module o a set ¥ one
recovers the polynomial and power series algebras. These constructions can be copied for
pro-algebras, pro-sets and pro-modules with the obvious definitions. However in general
the free pro-module associated with a pro-set is not proyective. as it doesn 't have the LLP
with respect to all epimorphisms, but only with respect to fibrations (cf.[CQ3]). We use
the following special notations. If V7 is a pro-vector space and I < A 1s an 1deal i1 a
pro-algebra, we write P4(V) for the power algebra associated with Ti(‘—i =10 A and
Gr(A) and GI(A) for the graded pro-algebra A & I/I? & I?/I° « ... and its associated
power algebra. If B is a graded pro-algebra and u : A — B° is a homomorphisni. then
> D, : A —> BT such that the

n=1

by a power span of u we mean a k-linear map T = )
following diagram comimutes:

A Q A multiplication A4
(4) u@T—%—T@u—T@Tl i T
+
B > B = B o B i B . é sum+mult.iplication\ f)’+
& N Y T Y :
Briefly. we write
4% T(zxy) = uxTy + Touy — TxT
Y Y Yy Y

to indicate the diagram above —even if A and B are not algebras. For example the ordinary
Taylor span:

n (l
k] — klally]) = {kleg)/ < v >") o) {30 20

=0
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is a power span of the canonical inclusion. Note that the image of f(x) in k[z,y]/ <y >"
is just the class of f(z) — f(y) and is therefore defined in any characteristic: if f(r) =

" (1) 3 . — . . a -
S gaiz' then ‘r—f‘{i‘ is just short for Z;:O' (j)“i—{-;’ which is defined everywhere. Note

also that any power span T induces a homomorphism h : Cyld — B with hdy = u.
which is a homotopy between u and hd;. Conversely if h is a homotopy starting at u.
hooa . : .
then T : A - gA — qA/qA>™ — B is a power span. Thus a power span is a special
kind of homotopy where the target is a power algebra. By an n-truncated span we mean
a linear map T, : A — B/B" LER satisfying (4). For example if T is a power span then
T c o .
T, : A — B/Bt” — B/B“Ln+1 is an n-truncated power span. Finally. by a power
deformation retraction we mean a deformation retraction of the formy B — By where B 1s
a graded algebra.

Theorem 2.1. (Compare [CQ1]). The following conditions are equivalent for a pro-
algebra A.

(i) (LLP) A s quasi-free.

(ii) (Power Span Extension) If B is a graded algebra and u : A — BY is a homo-
morphism then any truncated span T, : A — B/B“Ln*l
T:A— B.

(iii) (Tubular Neighborhood) If f : B-—» A 1s a deformation with kernel I and B s quasi-
free, then there s an isomorphism ¢ : B o G1(B) such that fi is the projection
Gi(B)»B/I = A.

(iv) (Even Forms) There is a pro-algebra isomorphism U A = Qv¢n 4 /Qvn 7 4 which
makes the following diagram commute:

lifts to a power span

UA L} Q“ven'/_l/Qeven—%—Xrl

TrAll

A

(v) (de Rham Algebra) There is a pro-algebra isomorphism CylA = QA/QF ™ A which
makes the following diagram commute:

CylA SRR ¢ TP 6 Lany |

! l

AdqgA/gA? ——— AgaQ'A
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Here the bottom arrow is the canonical isomorphism agb — adb.

(vi) (Homotopy Extension) Given any commutative solid arrow diagram.

A — B
)

50J, ,’, llf

e

Cyld — C

where f 13 a deformation. the dotted arrow exists and makes it commute.

n

Proof. (1)=(ii): Write T,, = >.._; D; where D; is the part of degree i: also let Dy = u.

Thus up, = v+ T, = Y.y D; is a homomorphism. from which the following identity
follows:
(5) —8D; =) D;UD;, (0<i<n)

J=1

Here the maps D; are regarded as l-cochains with values in B. the cup product 1s the
composite of D; ® D,_; with the multiplication map B @ B — B and ¢ is the Hochschild
co-boundary map—as defined by the appropriate arrow diagram. We must prove that a
k-linear map D,4+; : A — B™*! exists so that

n

(57) —6Dpy1 =Y DiUDpy1-

=1

holds. It is straightforward to check that the right hand side of (57} is actually a cocycle.
whence also a coboundary. as A is quasi-free. Explicitly. if ¢ : Q%(4) — B,4; is the
bimodule homomorphism induced by the right hand side of (5"} and if f : A — Q%*(A)
satisfies —0f = d U d. then we can take D, = gf.

(1) <= (ii1): If (iii) holds then U A—» A is a retraction. whence A is quasi-free. Supose
conversely that (i) holds. Because A is quasi-free, we have direct sum decompositions

. A - 2 :
B =A&I. and B/I* = A® I/I? = G{(B)/G;(B)". Write u : B»A — G/(B,
for the composite map, and p; : B;»G](B)/G1(B)+- for the projection. Because B is
5 . 2

quasifree, the truncated span T} = p; —u : B — G(B)T/G[(B)t extends to a power
span T : A — G[(B)'*’/é[(B)"’x (by (i1)). It is clear that T induces the identity on I/I*:
further, one checks ~using (5)- that it also induces the identity on I"/I"*). Tt follows that
p:u+ 7T is an isomorphism.

(ii1)=>(iv): Applying (iii) to 72 : UA—>A. we get
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UAGrajam(UA) = QevenA/Qevent™ A,
(iv)=>(1): Analogous to (iii)=-(i).

(i1)=-(v): By (ii), we can lift the de Rham derivation d : 4 — Q' 4 to a power s-
pan T : A — QA/QT A of the identity map A = Q°A. By the discussion above.
1 + T induces a homomorphism h : CylA — QA/Q+ A such that hg = T. In par-
ticular, h induces the canonical A-bimodule isomorphism ¢A/gA? = Q' A mapping ¢ to
d. Thus we have hq = d + D. where D(A) C 932/5222x. It follows that the composite
A®n MY Qr/Qt™ — Q‘*‘/Q‘Fn_{—1 is just the cocycle d“". whence the induced bimodule
homomorphism gA™/gA"T! = Q™ A is the canonical isomorphism, and the proof ensues.

(v)=(i): By virtue of (5),iff Ty =d + D3 : A — Q' A = Q*A is the 2-span induced by
01, then —6Dy = d U d. whence A is quasi-free.

(vi)=(v): Since QA/QTA™ 50°A 3 Q! A is a deformation, there exists a homomotopy
h:CylA — QA/QF™ A lifting the homotopy 1 = 1 + d. The same argument as in the
proof of (ii)=(v) shows that A is an isomorphism.

(1)=(vi): As 0 — A is quasi-free, so are 0y and 50. d

Example 2.2. Let A be an algebra, and let UA = TA/JA> its universal quasi-free
model. By the theorem above, we have CyllUA = QUA/QTUA™. We want to give an
explicit isomorphism CylUA = QUA/QTUA™ as well as to show that in this particular
case, we also have an isomorphism

QUA/QTUA™ = Pya(A)
First of all, we observe that given a vector space V', we have isomorphisms:

QIV =TV aV)ZT(VaqeV)ZT(V)*T(qV)
=T (TVaVaTV)=QTV

Here ¢V = {(v,—v) : v € V} and the isomorphism V' & V' = V 4 ¢V maps (¢.0) = dov
to itself while &;v — guv. Thus the composite isomorphism a : QTVZQTT maps qv to dv
and Jox to x (v € V,x € TV). In particular this holds when V' = A: in this case a maps
the 1deal < JA >C QT A generated by JA (which we identify with its image through

Jo) into the ideal < JA >C QTA, and ¢TA into QYT A. It follows that a induces an

isomorphism QT A/F>* = QT A/G™. where F and G are respectively the < JA > +¢T A
and < JA > +Q7T A-adic filtrations. On the other hand we have CylUA = QTA/F'™
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and QUA/Q‘*UA:)C = QTA/G" where F' =< JA" > + < q(JA") > +{(¢T )" and
G'=< JA" > + < dJA" > +(QTTA)". We have inclusions:

FrOF"DF" =< JA™ > +(qTA)"

and

GrOGM"M DG =< JA" > +(QTTA)"

Lemma 2.3. below shows that for N sufficiently large. we also have inclusions F~ " 2 F

and G°" O GV. It follows that o induces the isomorphism C'ylUAZQUA/QTUA™ and
that QUA/QTUA™ = QTA/G"> = Py 4(A)

Lemma 2.3. Let A C B be algebras and let € : B — A be a homomorphism such that
ea =a,(a € A). Set I = Kere. and let J C A be an ideal. Consider the following filtration
mn B:

B D f’n :< ']72 > +[I?

Then there 1s an isomorphism:

B/F® = B/(<J>+I)

Proof. Let G™ =< J >" +I". It is straightforward to check that (< J > +I)*" C G".
whence B/(< J > +1)> = B/G>. Thus we must prove that B/G> = B/F>. It is clear
that G® O F". I claim that for N = n? + n — 1. we also have Gy - F*. To prove the
claim —and the lemma-— it suffices to show that < .J >~ C F". Every element of < .J >
is a sum of products of the form:

(Jl+ll)(.]1\"+l’\) (\JIE]IIEI)

After fully expanding the product above. we get a large sum in which those terms not in
I™ have at most n-1 ¢’s and at least n? j's. Therefore. in each such term. at least 1 of
the ;'s must appear side by side, forming a string. Hence the term i question lives 1
<Jr>. 0O

Remark 2.4. The de Rham pro-algebra QA/Q1A™ = {PI_, Q" An11}. of a pro-algebra
A= {A,}. together with the natural differentials b and d and the Karoubi operator «. can
be regarded as a pro-truncated mixed DG A in the sense of [Kar|. Indeed. the identity:

bdw + dbw = «w — kw
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holds in Q7{A,4,) for r <n and in Q' A4, = Qr A, 1 /[QPA. Q" A] for r = n. Thus:
60A) = (P19 Antr) & O Anyr, B +)

is a pro-differential graded vector space, equipped with an even-odd gradation. This is
the pro-complex of [CQ-2]; if & D Q, it is homotopy equivalent to the (short) de Rham
pro-complex:

b
XUA: QUA — QUA

In any characteristic, we still have 8QU A ~ XU A for every algebra A and QR ~ X IR for
every quasi-free algebra R. In particular C'ylR carries all the relevant information for the
cyclic homology of R.

3. The Homotopy Category.

WEAK NIL-HOMOTOPY 3.0. We write [UP A] for the category having the same objects as
PA and where the set of maps from A to B is [UA,UB]. We have a functor ~ : PA —
[UPA]. A~ A, f = [Uf]. Twomaps f,g € PA(A, B) shall be called weakly nil homotop:c
if vf = v¢9: by a weak nil homotopy equivalence we shall mean a map f € PA such that
~f 1s an isomorphism. We show below that the class of weak nil homotopyv equivalences
is precisely the class of weak nil equivalences as defined in 1.0 above. and that 5 is the
localization of PA at this class. Further. we show that [["PA] is equivalent to the strong
homotopy category [P.AQ] of quasi-free algebras. First we need:

Lemma 3.1. The functor U : PA — PAQ carries fibrations to fibrations and deforma-

tions to deformations.

Proof. Let f = {fn,: Apn - B,} be a fibration. and let t = ¢,, : B, - A, be a section of
fin PV. Upon re-indexing, we can assume that ftr = 7 for the structure map of B. We
want to construct a linear section ¢t of U f lifting t. Consider the following composite of
linear maps:
TB,
gy =
J Bz

n—1 0
5P e*B, - @B, =TB,
1=0 1=0
Note that s, is a linear section of TB, —» TB,/JB". Consider the composite t, :

TB,/JB" Zny TB, L TA, = TA,/JA?; then t, commutes with 7 and

tAn(Pbow(bhbﬂ o w(bg—1,b91) =
= ptn(bo)(w(tnbi,tnbe) + pwy, (b1.b2)) ... (w(tnb2i—1.tnb2r) + pwt, (b2i—1.b21))



14 GUILLERMO CORTINAS

for 0 <! <n-—1. Here p: A — TA is the canonical section. w(a.b) = a b — «ab is the
curvature of p and wy, is the curvature of t,. Now since ftr = 7. we have w (b. V) €
KerrBf, (b,b" € B,) and pw, (b.b') € Ker 7TBTf,. It follows that Ufut,ri8 = 708
whence U f is a fibration. Suppose further that f is also a deformation. and let A' = Ker f.
we can assume K™ = 0. Let L = KerUf; if | € L" then 7}l € K7 = 0. hence L C

JA,/JA" and LT =0. O

Theorem 3.2. (Compare [Qui, 1.15. Th.1])

(i) Strong nil-homotopy equivalences are precisely those maps which are inverted by ev-
ery functor which inverts deformation retractions. Weak nil-homotopy equivalences
are precisely those maps in P.A that are inverted by every nil-invariant functor. i.e.
every functor which inverts all deformations.

(i1) The functor PA — [PA] is the localization of PA at the class of deformation
retractions, the functor PAQ — [PAQ)] s the localization at the class of power
deformation retractions, and the functor ~ : PA — [UPA] is the localization at the
class of all deformations. There is a category equivalence: [UPA]l = [PAQ].

Proof. (1) Let se be the class of maps inverted by every functor which inverts deformation
retractions and let se¢’ be the class of strong homotopy equivalences. By virtue of Lemma
1.3. the functor P A — [PA] inverts deformation retractions. whence se C se’. Conversely.

if F inverts deformation retractions then it inverts CylA-»A. and also d,. 1 = 0.1. Thus

F maps congruent maps to the same map; further. since f N g < Ff = Fgis an
equivalence relation, F also maps nil-homotopic maps to the same map. and strong nil-
equivalences to isomorphisms. This proves the first assertion of (1). Next. write w and .’
for the classes of weak nil-equivalences (as defined in 1.0 above) and weak nil-homotopy
equivalences. We have to prove that w = &’. In view of Lemmas 1.3 and 3.1. the functor
~ 1s nil-invariant, whence w C w'. Now let F : PA — C be a nil-invariant functor. and let
f € W(A.,B). Because Fr* and Fr? are isomorphisms in C. Ff will be an isomorphism
iff F'U f is. By definition, the fact that f € «’ means that U f is a strong equivalence. and
therefore is inverted by F. Thus w = &'.

(1) The first assertion of (ii) is immediate from the proof of the first assertion of (ij.
The second assertion follows similarly. in view of 2.1-ii1). Now let F' be a nil invariant
functor as above. We have to show that F factors as F = F~ for some F : [["PA] — C.
and that such F is unique. We put F(A) = F(A) and for [f] € [UPA](A.B). we set
Ffl = FrBFf(Fr*)~!. It is clear that F is well-defined and that F = F~. Now
suppose G is another functor with the same property as F. Then GA = A on objects
and if f € PA(A, B) then G must map [U'f] onto FUf = F[U f]. Since any map [g] €
[UPA|(UA.UB) factors as [g] =[xV B][Ug][x"*]71. it suffices to prove that [z' ] = [['x].
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But both 704 and Ur? are left inverse to the same map ¢ : UA — 7?4 induced by
Tp : TA — T?A, whence (by Lemma 1.3) [z4] = [(J7! = [Ux?]. This proves the
third assertion. By the proof of (i), the functor 4 : PAQ — [U'PA] induces a functor
5 : [PAQ] — [UPA]. Let 4/ : [UPA] — [PAQ]. A — UA, [f] — [f]. Then [« 5] :
v7F(R) = UR — R and [#Y4] : 39/(A) = UA — A are natural isomorphisms 5~' =1 and
~'~ = 1. This concludes the proof. [

Corollary 3.3. Let f,g: A — B be pro-algebra homomorphisms. We have:

(1) Strong = Weak: If f is a strong equivalence then it is also a weak equivalence. If
f and g are strongly nil-homotopic then they are also weakly homotopic.

(i1) Weak = Strong: The converse of (i) holds if A and B are quasi-free.

Proof. As CylA — A is a deformation, any nil invariant functor maps strong equivalences
into isomorphisms and homotopic maps to the same map. In particular. this happens
with the localization functor ~, proving (i). Part (ii) follows from the identities: [A. B] =

[PAQ|(A,B) = [UPA)(A,B) = [UA.UB]. O

By defintion. the class Def of deformations sits into the intersection of the class we of
weak equivalences and the class Fib of fibrations. The proposition below shows thar in
fact Def = we N Fib. In particular this proves that quasi-free maps are precisely those
having the LLP with respect to those fibrations which are weak equivalences.

Proposition 3.4. A fibration s a deformation iff it 1s a weak equivalence.

Proof. 1f f is deformation then it is a weak equivalence by definition of the latter. Suppost
now f : A - B is a fibration and a weak equivalence, and write i = Ker f. Upou
re-indexing, we can assume f is an inverse system of epimorphisms {f, : 4, - B,
commuting with structure maps. We must prove '™ = (. [ claim it suffices to check
this for the particular case when f is a strong equivalence. For if f is a weak equivaleiice
and a fibration then U f is both a strong equivalence (by 3.3) and a fibration (by 3.1..
Whernce. if we know the proposition for strong equivalences. we have Ker " f> = (. Now
a little diagram chasing shows that Ker U f,, —-» K, is an epimorphism (n > 1). whence
also k'™ = 0. proving the claim. Assume then that there exists ¢ € PA(B.4) with
3 = gf ~ 1. and that ¢ = {g, : B, — A,} is an inverse system of homomorphisins
commuting with the structure maps. By definition of homotopy. there exist r > 1 and
a; € PAIA.A) with 1 =a® =o' =--- = a" = 3. Because a := o' = 1. for every n € N
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there exists mg > n such that for m > mg. Tmela * 1) factors as follows:

ax*l
Qflm —> flm

qilrn —_— {n
“ m
Therefore. given aj.. ... A € Ap . we have:

0=71(ax1)(qgay...qam)

=7((aay —ay) ... (@am —am))

(=1)"™7(ay...am) mod < Taai....ad, >

Thus if ay..... an € Ker(ra), we have T(ay...a,) = 0. We have proven the following
statement:

(6) (Vn > 1)(3Fme > n) and for each m > my

an N = N,, > m such that (Ker rppan)" =0

We are going to show next that if a satisfies (6) and 5 = o. then ~ satisfies (6 too. It
will follow that .3 —and then also f- satisfies (6). whence A'™ = 0 as we had to prove. So
assume (6) holds for a and let ~ : 4 - A with ~ = a. Proceeding as above. we can find.
for each n, an m, > mg > n such that if m > m . then

0

(=D)™ralay ...an) mod < ryaj....~ay >

In particular 7, (Ker 4, )™ C Ker rpne whence for N as in (6) we have (Ker~~,,)" " =
n rm ;

0. O

Corollary 3.5. A pro-algebra A is weak equivalent to zero iff A> = (.

Proof. If A ~ 0 then UA—»0 is a deformation by 3.2-1) and 3.4. Therefore ["A> = (.
whence 4> = 0. The converse is trivial. O

Remark 3.6. We can now see how far P A is from being a closed model category. Indeed:
by 3.5 above, if 0 — A factors as a weak equivalence followed by a fibration. then A ~ (.
On the other hand. if TV is a tensor algebra then clearly TV # 0. despite the fact that
the map 0 — TV has the LLP with respect to all fibrations.
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4. Nil-homotopy v. Polinomial homotopy.

4.0. We want to compare our nil-homotopy relation with the more usual notion of
homotopy defined via polynomial homotopies, as used for example to define Karoubi-
Villamayor K-theory ([KV]). Given two homomorphisms f,g € PA(A, B), we shall write

l)li . . . .
f - g if there exists a homomorphism h : A — B[t], with values in the polynomial ring
on the commuting variable ¢, such that the following diagram commutes:

A —'% B[

(f‘g)J, / (EOwel)
&

B x B

Here ¢; stands for “evaluation at ¢” (i = 0.1). Note ¢ is defined even if B is not unital.
in which case t ¢ B[t]; we set e1()_._,ait') = >/ yai. Also note that the map (eo.€1)
is a fibration: a natural linear section is given by (bg,.by) — bg + bit. We observe that

l i 1 ol
2 is a reflexive and symmetric relation, and that if f = g then fh = gh (whenever the

composition makes sense). It follows that the equivalence relation o generated by = s
preserved by composition on both sides. Thus B[t] plays the role the free path space of
a topological space plays in ordinary topological homotopy. We showed in 1.2 above that
nil-homotopy can be described in terms of higher fold cylinders. Analogously. polynomial
homotopy (or simply pol-homotopy) can be defined in terms of higher free path spaces.
Set B! = B[t], and define B!" inductively by the pull-back square:

Bln BIn—l
B B

n—1

We write €2 and €? for the composite maps B!" — B! % B and BY" — pl" ‘B

Thus (e, e?) : B" — B x B is a fibration, and two maps fo, fi : A — B are 2% ff there
exist n and h : 4 — BT" such that he? = f;.

We write [PA]P°! for the (strong) polynomial homotopy category, and call a map f €
PA(A.B) a polynomial equivalence if its class [f]?° is an isomorphism in [PAJP°Y. A
typical polynomial equivalence is the projection B = @, _, Bn — Bo of a graded algebra
or pro-algebra onto the part of degree zero, which is homotopy inverse to the inclusion
By — B. A homotopy between the composite B —» By — B and the identity map is
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pol
given by h : B — BIt], h(b) = bt?¢9®) Projections of the form @, , Brn—Bo shall be
called graded deformations. For example power deformations are graded, because power
algebras are. We also consider the category [UP.A|P° having as objects those of P.A and
as homomorphisms from A to B the homotopy classes [UA,U B]P°!. The relation between
nil-homotopy and polynomial homotopy is established by the following:

Theorem 4.1.
(i) The functor U : PA — PAQ carries pol-homotopic maps to pol-homotopic maps.

(ii) If f,g : A = B are nil-homotopic and if A is quasi-free, then they are also pol-
homotopic.

(iii) The functor PA — [PAJP! is the localization at the class of graded-deformations,
and the functor ' : PA — [UPAJP is the localization at the union of the class-
es of nil-deformations and graded-deformations. There is a category equivalence

[PAQJPO! ~ [UP AP,

ol ol
Proof. (1) It suffices to show that if f,g : A = B € PAsatisty f Z g, then U f = Ug. Let
H : A — Blt] be a homotopy from f to g. Then H' = Hrn“ : UA — B{t] is a homotopy
from fr? to gr and Uf,Ug are liftings of fr#.gr4 to UB. Hence by [CQ-2, Lemma

ol
9.1], we have U f = Ug.
(i1)By Theorem 2.1, the map CylA — A is a power deformation retraction. hence a
~ lﬂl
graded deformation. It follows that Jg = 01, and then f = qg.

(iii) The proof of the first assertion is analogous to the proof of the first assertion of
Theorem 3.2-ii). Next, we must show that 4’ inverts both nil and graded deformations
and is initial among functors with such property. That ~' inverts graded deformations
follows from (i), and that it inverts nil-deformations from (ii) and 3.2. If F : PA = C
inverts both types of deformation, then F : [UPA]P" — C, A — FA, [UPA](A,B) >
[f] = FrBF f(Fr?)~! stisfies Fy' = F and is the only such functor. [J

5. Derived Functors.

Notations 5.0. Recall from [Q] that if F': M — M/’ is a functor between model cate-
gories, then the total (left) derived functor LF : HoM — HoM' is the (left) derived functor
of the composite I'F : C —» HoM' with respect to the localization I : M — HoM. Simi-
larly, given a category C' together with a functor I' : C — C’, and a functor F': PA — C.
we may (and do) consider the total left and right derived functors of F' with respect to T’
and to v : PA — [UPA] and v : PA — [UPAP.
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Motivation 5.1. The following proposition generalizes a common procedure for deriv-
ing functors. As a motivation, recall the way crystalline (or infinitesimal) cohomology 1s
defined for commutative algebras of finite type over a field of characteristic zero. Given
an algebra A one chooses a smooth k-algebra R and an epimorphism p : R —+ A and
defines H? . A as the cohomology of the (commutative) de Rham pro-complex Qg ;=
where I = Kerp (cf. [H], [I]). The essential step in proving that H? . is well-defined is
the observation that if A above is quasi-free, then Ry is an algebra of power series over

A. and that (continuous) H}, satisfies the Poincaré Lemma: Har(A) = HjpAl[t]] ([H]).

Here H}p A[[t]] - H*(lim Q*(Aft]/ < t™ >). Actually Poincaré Lemma is derived from

the stronger fact that 2*(A4) 5 Q*A[t] is a homotopy equivalence of pro-complexes ([H]).
A non-commutative analogue of this construction was given by Cuntz and Quillen in [C-
Q2]. They showed that the non-commutative de Rham pro-complex XU A associated to
an associative algebra A has the homotopy type of the periodic cyclic complex 62(A).
In the framework of this paper, we interpret these results as saying that crystalline and
periodic (co)-homology are respectively the derived functors of commutative and of non-
commutative de Rham cohomology (see 5.4 below). The next proposition gives sufficient
and necessary conditions so that when the construction above is applied to an arbitrary
functor F, the result represents the left derived functor LF. We call this condition the
Poincaré condition because it resembles the Poincaré Lemma quoted above. In both the
commutative and non-commutative cases, one uses the fact that, in characteristic zero. de
Rham cohomology is invariant under polynomial equivalence. Thus the Poincaré condition
is automatic (see 5.3). However there are Poincaré functors which are not pol-homotopy in-
variant. For instance the Grothendieck group Kj is nil-invariant (and therefore represents
its derived functor) despite the fact that in general, Ko(A[t]) # Ko(A).

Theorem-Definition 5.2. (Poincaré Functors) Let F : PA — C and T : C — (' be
functors. The following are equivalent:

(1) FU represents the derived functor of F with respect to T’ and to ~v: PA — [UPA].
(1) TFU s nil-invariant.
(111) Gwen any commutative diagram:
By 2+ By
Po P1
A

where p; 15 a nil-deformation and R; s quasi-free (i = 0.1). the map TFf 1s an
isomorphism in C'.
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(iv) Gtiven any pro-vector space V and any quasi-free pro-algebra R. the map T'F(R —
Pr(V)) is an isomorphism in C'.
(v) Condition (iv) holds for V= A and R=UA (A€ PA).

We call F a Poincaré functor if it satisfies the equivalent conditions above.

Proof. We mimic the proof of the fact that a functor between model categories which
preserves homotopy equivalences between cofibrant objects admits a derived functor ([Qui
1.4.1]).

(1) <= (ii) That (i)=(ii) is clear. Assume now I'FU is nil-invariant. and let F
[UPA] — C' be the induced functor. We have to prove that F =LF.ie. that TFU = F~
is equipped with a natural map a : TFU — I'F such that if G : [UPA] — C' is another
functor and 3 : G := Gy — F is a natural map then 3 factors uniquely through a. Let
a=TF(n*): TFUA - TFAandset 3= (BU)(Gr?)"' : GA - TFUA. Then 3 satisfies
3 = af and is the only such map.

(i1)=-(iii) The map f is a strong equivalence because each p; is a deformation and R; is
quasi-free. Therefore I'FU f is an isomorphism. On the other hand we have nf1 U f = frFo
where each 7% is a deformation retraction; thus it is enough to show that each TFr % is
an isomorphism. But if ¢; : R; — UR,; is a right inverse for 8 then ;7% : UR; — UR,
is a nil-equivalence, whence the proof reduces to showing that if ¢ : UB — UB is a
strong equivalence, then T'Fg is an isomorphism. We know by hypothesis that ['FUg is
an isomorphism, and we have 7VBFUg = gn¥B. But TFxY? must be an isomorphism,
because TFU®? is, and both 7V8 and Un? have a right inverse in common; namely the

map induced by Tp: TB — T?B.

(iii)=-(iv) Let r : Pr(V)—>»R be the projection map. Then r is a deformation and is a
retraction of the canonical inclusion. Thus (iv) is a particular case of (iii), with Ry = A = R

and Ry = Pr(V).
v) 1s logically weaker than (iv).
)

(
(v)=-(il) By virtue of Example 2.2, if (v) holds, then I'F sends homotopy equivalences
UA — UB to isomorphisms, whence ' FU sends weak nil-equivalences to isomorphism-
s. O

Corollary 5.3. If F preserves either nil-deformation retractions or graded deformations.
then it 1s Poincaré. In the latter case FU represents the left derwed functor with respect

to both v : PA — [UPA] and to v' : PA — [UP AP

Proof. That F is Poincaré means that its restriction to P.AQ preserves nil-homotopy (cf.
3.2). Such is the case if F' preserves either nil-homotopy or, by 4.1-ii), pol-homotopy of
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arbitrary pro-algebras. The same argument as in the proof of the theorem shows that, in
the latter case, FU also represents the derived functor with respect to +'. O

Corollary 5.4. Let X : PA — PS :=((Pro-Supercomplezes)) be the functor which assigns
to every pro-algebra A the de Rham pro-super complez X A of 2.4 above. Let T : PS —
HoPS be the localization at the class of homotopy equivalences and let v and ' be as
above. If the ground field k has char(k) = O then the functor X is Poincaré (relative to T’
and to v), and its left derived functor with respect to both v and ~' is represented by the
periodic cyclic pro-complez 02 of 2.4 above.

Proof. In characteristic zero, the functor X preserves polynomial homotopy (e.g. by [Kas],
or by [CQ2&3]), whence it is Poincaré and XU represents LX (by 5.3). On the other hand,
in any characteristic, XU A is homotopy equivalent to QU A, because U A is quasi-free (e.g.
by [P]). In characteristic zero, by virtue of Goodwillie’s theorem ([G1], [CQ2]), QU A has
the homotopy type of #QA. Summing up, if char(k) = 0 then FU = 6 represents LX. [

Remark 5.5. In characteristic p > 0, the lemma above fails to hold. Indeed, if X were
Poincaré then —by 5.2~the homology of the periodic cyclic complex

CP(Py(k)) = Hom(Xk, X Py(k)) should be zero, which -as a straightforward calcula-

tion shows— it is not. See also Lemma 6.6 below.

6. The derived functors of rational K-theory and Cyclic Homology.

The purpose of this section is to show that the functor which assigns to every Q-
pro-algebra its rational K-theory space is (almost) a Poincaré functor, and that its left
derived functor is essentially the fiber of the Chern character with values in negative cyclic
homology. See Theorem 6.2 below for a precise statement. The proof of Theorem 6.2 has
two main ingredients. The first ingredient is Goodwillie’s 1somorphism

(7) KQ(A,I) = HN,(A,I)

between the relative rational K-group of a nilpotent ideal and its analogue in negative
cyclic homology [G2]. Actually Goodwillie’s result is stated and proven for unital alge-
bras; we shall use an adaptation of this that holds for arbitrary pro-algebras, which is
obtained in 6.1 below. This adaptation says that the relative K-group of an infinitesimal
deformation is isomorphic to the corresponding negative cyclic homology group, and essen-
tially reduces the question of the Poincaréness of K to that of HN. The second ingredient
is the calculation of relative HN for a power deformation. This calculation is carried out
without any hypothesis on the characteristic-of & (Proposition 6.8).
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6.0. THE DERIVED FUNCTOR OF RATIONAL A -THEORY.

We use the following model for the rational A -theory of a unital algebra or ring:
K9A4) := QBGIA

Here GI is the general linear group. and B denotes the simplicial set associated to the
category of GI. Thus for us K®(A) is a simplicial set: note that its homotopy groups are
precisely Quillen’s rational A -groups. For general. non-necessarily unital algebras over the
ground field & we set:

KQ(4) := fiber(KYA) — KYk))

Thus in general K'¢(A4) depends on k. and coincides with the usual rational i -group if A
is unital or more generally if it is excisive for K'~. Now we extend this definition to rhe
case of pro-algebras, by taking homotopy inverse limits. as follows. If A = {4y : XA = A}
we put:
KQA) = holim K9(A4,)
A

Next we generalize Goodwillie’s isomorphism to the pro-algebra case; we assume through-
out that chark = 0. Recall from [G2] that the isomorphism (7) 1s induced by a natural
Chern character K@(A4) — HN,(A) := HN.(A/k) which is defined for every unital alge-
bra A. By [W] this character may be realized as a simplicial map ch : K9(A) — SN (A}
where SN is constructed as follows. First truncate the total chain complex for negative
cyclic homology to obtain a complex CN?! such that H,(CN') = HN,(A) (n > 1) and
H,(CNY) =0if n <0. Next define SN as the result of applying the Dold-Kan correspon-
dence to CN'. Hence SN is a connected. fibrant simplicial set with 7, SN(4) = HN, A
(n > 1). and the isomorphism (7) says that the map between fibers K%(A.T) — SN(A.T)
is a weak equivalence. If now A is any —non necessarily unital- algebra. and I < A is a
nilpotent ideal. then we have weak equivalences:

(8) KA. T) = KYA,T) =5 SN(A.T) = SN(A.])

He have thus extended (7) to non-unital algebras. If now 4 = {4y : A € A} 15 a pro-
algebra, we set SN(A) = holim SN(Ay), and write ch : K¥(A/k) — SN(A) for the map

l\
induced by passage to holim. As holim preserves fibers. fibrations and weak equivalences

-

-
of fibrant s. sets. (cf. [BK]) it follows that the weak equivalences (8) hold for arbitrary
deformations and pro-algebras. We have proven:
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Lemma 6.1. With the notations and definitions of 6.0 above, there 1s a natural map
of fibrant simplicial sets ch : K(A) — SN(A) which 1s defined for all pro-algebras A.
and coincides with Goodwillie’s character in the case of unital algebras. If f : A»B 15 a

8]

deformation, then the induced map K¥(f) =~ SN(f) is a weak equivalence.

Proof. See the discussion above. O

6.1.1. In particular the lemma above holds if f is a power deformation of quasi-free
pro-algebras, whence —by Theorem 5.2-1v)- K9 will be Poincaré iff SN is. In the next
subsection we compute the homotopy groups of SN(f) for power deformations of quasi-
free pro-algebras and show that these are all zero except for 7. which is nonzero. Thus
the simplicial set SN’ obtained from the complex C'N by truncating in degree 2, so that
Tn(SN’) = HN, if n > 2 and zero otherwise is a Poincaré functor: further, its derived
functor is null-homotopic, ¢f. 6.9 below. It follows that the K-theory space obtained by
the same process as above using the elementary group instead of the general linear group
is a Poincaré functor. Explicitly, the functor:

(9) KEQ4) = holim fiber(Quo(EA — Qo Ek)
/\

is Poincaré.

Theorem 6.2. (The derived functor of A'-theory)
The functor A — KQ(A) is not Poincaré. However. the functor A — KEQ(A) of 19)

above is, and therefore it has a left derived functor LKEY. Set LKY(A) := 7, LRE~:
then there 1s an exact sequence:

... > HN, 1A - LEQA) —» K9(4) = Ha(4) —
... — HN3(A) = LKX(A) — KZ(A) — HNo(A)

Proof. The first two assertions follow from the discussion above and 6.9 below. To prove
the third assertion consider the exact sequence of A -groups associated with the universal
deformation 74 : UA»A. Then LKY(A) = K?(UA) (n > 2) (by 5.2) and Ap(a') =
HN,(7?) (n > 1) (by 6.1). Because [’A is quasi-free. HN,(I'4) = 0 for n > 2. and
therefore HN,(74) = HN,,1(A), for n > 2. This proves that the sequence is exact at
LK?(A) and to the left. By the same argument, the natural map HNy(A4) — HN{r)
1s injective, whence K2Q(A) — KIQ(WA) factors through chy. It follows that the sequence
18 exact also at K?(A), completing the proof. [
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6.3. THE DERIVED FUNCTOR OF NEGATIVE CYCLIC HOMOLOGY

The purpose of this subsection is to compute the homotopy type of the relative space
SN(P4(V) — A) associated with a power deformation retraction of a quasi-free pro-
algebra A over a field. We do not make any assumptions with regards to chark. The
calculation uses two lemmas (6.4 and 6.6) which show the patologies that appear in char-
acteristic p > 0. In particular. 6.6 gives a different proof of the fact that the de Rham
pro-complex X is Poincaré iff chark = 0. In Lemma 6.4 we give a formula for the honio-
topy type of the X pro-complex of a free product. Recall that if A and B are algebras.
then there is an isomorphism of vector spaces:

A*xB=A®B&T(AB)@T(BRA) s T(AQB)® A& T(B® A) = B

In particular, the natural inclusion T(A @ B) «— 4 x B is an algebra homomorphism.
Putting this map together with the natural inclusions A — A * B and B — A x B. we get
map of super complexes:

XA3XB® XT(A®B) < X(A*B)

As all the maps in the above discussion are natural. all of this generalizes immediately to
the case of pro-algebras. The following lemma may be regarded as a particular. easy case
of [FT. 3.2.1]. We give an independent proof in this particular case.

Lemma 6.4. (Compare [FT, 3.2.1]) Let A, B be pro-algebras. There erist a natural map
of pro-mized complezes: 7: X(A*B) - XA~ XB& XT(A® B) such that m: = 1 and a

natural homotopy h: 1 ~ (x.

Proof. By naturality. we may assume A and B are algebras. The map 4*B — 4 ~ B. a —
(a,0), b+ (0,b) induces a retraction X A*xB — XA®XB. Write YA*xB = XA$XB4Y.
Thus Yo=UBV :=T(AQB)&T(BxA)3T(A2B)2 A2T(B® A) ® B. where U is
the sum of the first two terms and V is the sum of the last two. Further. one checks that:

e~ — e~ —

Y1=2T(A®B)dAST(BR A)dB & T(A®B)2 AdB&T(B 2 A) @ BdA =Y,

Consider the maps: a : U — U. IoYo.-.Tn¥Yn ** Yndo .. -Yn—1In. and p : V. — U,
ZoYo - -+ TnYnd H* TToYo - .. TnYn. Lnder the identifications above. the map ¢; sends r €
T(A® B) = Q'T(A ® B)y onto r + ar € U. Define a mixed complex map 7 : }¥* —
XT(A® B), mo(uo,u1.v0.v1) = o + uyo + ary + apyr, 71 (up.-ur.vo.v1) = ug. u; € L.
v; € Vi 0 denotes the alphabetical order. and 1 denotes the inverse order. One checks
that 7« = 1. Further the map h : Yo — Yi. h{zo.21.y0.y1) = (0. 11 + py1.yo0.y1) verifies
17T = hb and LoTo = bh. O
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Corollary 6.5. (Compare [CQ-3, 7.3]) If chark = 0, then there is a homotopy equivalence
of supercomplezes: X(A*x B) ~ XA ® XB.

Proof. Immediate from the well-known calculation of the cyclic homology of a tensor al-

gebra (e.g. [FT, 2.3.1]). O

Lemma 6.6. Let A be an algebra, V a vector space and P4(V) the power pro-algebra.
Give TV and T(A @ TV) a gradation by setting deg(a) = 0 and deg(v) = 1 (a € A,
v € V). Then there ezists a natural homotopy equivalence of pro-mized complezes

XPs(V)~ XA {X¥I9S"TV @ X49S"T(AQ TV) :n 2 1}

Proof. By definition the power pro-algebra P4(V') is graded, and the gradation is given
by the prescription of the lemma. This gradation is reflected by the X-complex; we have
a degree decomposition: C = X(P4(V)) = {@22, X497 (Pa(V)nt1)}. We observe that
for ¢ < n the direct summand subcomplexes corresponding to degree 7 in the X complex
of Pa(V)p, = AxTV/ <V >" and of A * TV are isomorphic. Further the pro-complex
D = {®i3, +1C:ff"]=1} is the zero pro-complex, as the structure maps 72,, are all zero.
Therefore C is isomorphic to the pro-complex {X95"(4 x TV)}. Now the lemma is
immediate from 6.4. [

Remark 6.7. As the homotopy equivalence in the lemma above is natural, it extends au-
tomatically to pro-algebras. Since on the other hand the Hochschild, cyclic and related
homology groups of a tensor algebra are well known, one could conceivably write down
explicitly all the relative pro-homology groups for the projection P4(V) — A in any
characteristic. In the next proposition we calculate the negative cyclic group for the par-
ticular case when A is an algebra and V is a vector space. Since in characteristic zero
HHy(TV) = HH,(TV), our calculation can also be derived from [G2] in this particular

case.

Proposition 6.8. Let k be a field of characteristic p > 0, and let A be a quasi-free k-
pro-algebra. If V is a pro-vector space and f : Po(V) — A 1s the natural projection. then
SN(f) s an Eilenberg-Maclane space E(Y(A,V),1), where T(A,V) 1s an abelian group
which depends functorially on A and V. Ezplicitly if A is a quasi-free algebra and V is a
vector space, then T(A,V) = I3 ((Crn® €D, ¢ Dn,r) is the infinite product of the following
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co-invariant spaces:

Cn=(T"V)zn  and

Dar=( P AT"'V&---@AQT"V)y,
thh+-Fi,=n

Here Zinand Z/r act by v1 ®- - - Q@up 2 1, Q01 Q- - QUp_1 and by a; 921 - - Ra, Bz, —
ar VTr a1 VT Q> QaAr—1 @ Tr-1

Proof. By the cofinality theorem for hogm ([BK]), we may assume A and V" are indexed

by N. Thus for n > 1 we have an exact sequence:
(10) 0 — lim' HNu(fi) — ma(SN(f)) — lim Ha(fi) = 0

Since P4(V) is quasi-free, the inverse system {HN.(f;) : ¢ € N} is isomorphic to the
inverse system { H N, (X(f)) : ¢ € N} (here X is regarded as a mixed complex). Thus both
ends in the exact sequence above are zero for n > 2. Furthermore SN(f) is connected
by definition; this concludes the proof of the first assertion. Assume now A is a quasi-
free algebra and V is a vector space. It follows form 6.6 that we have an isomorphism of
pro-vector spaces

(11) {HNi(fa):n e N} = {PT'Vz}e

1=0

@@ @ (A®Tilv®“'®A®Vir)Z/r:TLEN}

i=0 r>0 ji+...jr=i

As every map in the pro-vector space of the right hand of (11) is a surjection. the lim’

term in (10) is zero, and the second assertion of the proposition follows. U

Corollary 6.9. The functor A — SN(A) s not Poincaré, regardless of the characteristic
of k. The functor A — SN'(A) of 6.1.1 above is Poincaré (in any characteristic; and its
left derived functor 1s null homotopic. U
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