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Abstract. We consider one-parameter families of measure-theoretic 
and topological entropies associated with dynamical systems. These families 
are such that, for a particular parameter value, well stablished quantities in 
Ergodic Theory are recovered. Concerning the family of measure-theoretic en­
tropies, which was introduced by the authors in a previous work, we review the 
definition and some of its properties, particularly the isomorphism theorems, 
and also present new results and perform calculations for some particular dy­
namical systems. With respect to the topological entropies two families, which 
are shown to be equivalent for a set of values of their parameter, are defined and 
their properties, such as the topological invariance, studied. We also outline the 
relationship between the members of both, the topological and the measure- 
theoretic, families. Finally, within the same spirit, we introduce families of 
topological pressures.

1. Introduction

A family of entropies of a measure-preserving transformation which depends on a 
parameter q was introduced by the authors in[15]. In that work we have generalized 
a physically motived family of entropies[28] to abstract dynamical systems in a similar 
form as Kolmogorov[11] did with Shannon’s entropy[23] and have demonstrated the 
isomorphism invariance of the entropies so defined. Our family contains as a member 
(when ^ —> 1) Kolmogorov’s definition and the above mentioned results generalize 
meaningful theorems by Sinai, Melshalkin and Ornstein[24],[14],[17].

Here we continue with that study in diverse ways. In the first place, after re­
calling our definition of the measure-theoretic g-entropies and their invariance under 
isomorphisms, we calculate them for several dynamical systems. The entropies of i) 
measure-preserving transformations of finite spaces; ii) rotations of the unit circle: 
iii) rotations of compact metric abelian groups and iv) endomorphisms of compact

•Support of this work by the Consejo Nacional de Invetigaciones Científicas y Técnicas (CON- 
ICET) and the Universidad Nacional de La Plata is greatly appreciated. F.V. is a member of 
CONICET.
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groups are evaluated for arbitrary values of the parameter q so that standard results 
for g —> 1 are generalized.

In the second place we give two definitions for the topological ^-entropies of a 
continuous mapping from a compact topological space X to itself: one using open 
covers in the sense of[l] and the other one by generalizing to arbitrary gs, Bowen’s 
definition of topological entropy[3],[5]. We show the equivalence of both families for 
some values of q as well as their topological invariance and estimate bounds for the 
topological g-entropy of differentiable maps between compact Riemannian manifolds 
and specially of the geodesic flow in such a manifold. We also introduce within the 
same idea two families of topological pressures that reproduce, when the function of 
which they depend is identically null, one or the other of the above mentioned families 
of topological entropies, respectively.

Finally, we study the relationship between the topological and the measure-theoretic 
^-entropies following a variational approach.

2. Measure-theoretic ^-entropy

2.1. Reviewing A dynamical system or, more precisely, a measure-preserving dy­
namical system, also simply called a measure-preserving transformation, is a quadru­
ple (X, A, μ, Τ') where X is a set, .4 a σ-algebra, μ a measure on A and T is a mapping 
of the underlying set X to itself which is measurable and preserves the measure μ, 
i.e. for any A E A, T~1A G A and μ(Τ~1Α) = μ(Α) ( μ(.) denotes the measure of an 
element . of A).

Bernoulli schemes are particular cases of measure-preserving dynamical systems 
of great importance in ergodic theory. Thus, a Bernoulli scheme is also a quadruple 
(X, A^ μ, T,)where X is now a sample space associated with the possible results arising 
in a probabilistic experiment, say 1,2, ...n, having respective probabilities p^, p2, ....pn 
(we use the notation of [9]):

(1)

The σ-algebra 4 on X and the measure μ are the standard ones for this kind of 
probabilistic experiment. Thus, μ = (p^, p2, ....pn)z , assuming that the individual 
experiments are independent. Finally, the measure-preserving transformation T is 
the shift on X defined Tx = x' where i· = xl+i. As usual we denote the above 
Bernoulli scheme by BS(p).

Let also recall the concept of isomorphism between two dynamical system S = 
(Χ,Α,μ,Τ) and S' = (Χ',Α',μ,τΎ S and S' are isomorphic if there exists a
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measurable mapping f : X —> X' which is a bijection such that i) for any Á G 
A', p^f-1 Á) = μ (A') and ii) for all x, f(Tx) = T'(fx).

The Kolmogorov-Shannon entropy is constructed considering that, within Shan­
non’s information theory, the amount of information we have if we know that a point 
x E X belongs to some fixed set of a partition C = {Ci, G,......t^jof X is

(2)

A generalization of this magnitude has been given in[281. In our context it reads

(3)

where q is any real number. We observe that for g^ 1, Shannon’s expression (2) is 
recovered.

To define our one-parameter family of entropies we follow [9]. We firstly consider a 
k

finite partition B = {B^, B2,...., B^} of the sample space, i.e.,U Bi = X’, BiQBj = φ 
ί=1

Vz ^ j. Then we take n points on the orbit of X ’. x,Tx, T2x,.....,Tn~xx. Being B a 
partition, for each of these points there exists only one set Bi to which it belongs. We 
associate to each x a string I = (4,fi,....,4-i)) called the name of x, where Tzx E 
B^. From B we construct a new partition Bn = {Βη(ί) : £ is any name of length n} 
where Bn(£) is the set of x with name Λ

Thus, we define a mean entropy of the measure-preserving transformation T by

(4)

where

(5)

and

(6)

Eqs.(4)-(6) define a family of entropies depending on the parameter q.
In particular for a Bernulli scheme BS(p) we have μ(Βη(ί)) = p¿op^...... Ptn-i ^or 

each name I of length n. Therefore, using for the partition Bn the generator Bi = 
{x : Xq = i} with 1 < i < k, we obtain

(Ό
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which yields Tsallis’s entropy[28] for arbitrary q

(8)

and Shannon’s expression[23]

O)
for g —> 1.

The following results were proved in Ref. [15]
Theorem 2.1. If two measure-preserving dynamical systems are isomorphic then 

the associated family of entropies depending of the parameter q, as defined by Eqs.(4- 
6), are equal.

The complete isomorphism is proved just for Bernoulli schemes and reads as fol­
lows:

Theorem 2.2. Two Bernoulli schemes with the same associated family of en­
tropies depending of the parameter q, as given by Eq.(8) are finitarily isomorphic.

Remark 2.3. We recall that an isomorphism f between two Bernoulli schemes is 
finitary if, given an element x of the sample space X (see Eq.(l)), there exists two 
integers n^ < Ú2 such that for any other x G X that verifies x [711,712] = z [711,712], 
the zero coordinates [/(x)]0, [/(x)] and [/-1(z)]0, f/"^^)] are, respectively, equal. 

Here we denote with x [711,712] the word xnjxni+1....xn2_ixn2.

2.2. Results and calculations Here we present some results for the measure 
theoretic g-entropy.

i) hq(id : X —> X) = 0. It directly follows from the definition Eqs.(4-6) since 
Hq(Bn) = 0 for any partition B.

ii)For any integer positive & > 2 we have that
hq(Tk) < (g — 1)—1 [1 — exp (tóg(T))] for g > 1 and the corresponding result 

obtained by changing < and > by > and <, respectively.
Remark 2.4. For g = 1 we have hi(Tk) = k h-^T), a well known result.
Proof. Let Bk be the partition with names of length k obtained from a given 

partition B and the transformation T. Let call Hq (^Bk)n^ = 1 + (1 — q) Bq ^(Bk)n^ 

where now (Bk)n is the partition with names of length n obtained from the partition 
Bk and the transformation Tk. We have

(10)
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Here Bkn the partition with names of length kn constructed from the partition^ and 
the transformation T. It follows that k~hq(T) = k sup hq(B,T) =sup hq(Bk.Tk) <

hq(Tk). From this inequality the statement is proved. □

iii) We apply ii) to coment on the measure theoretic g-entropy of rotations of the 
unit circle.

Let Tg : S1 S1 with Tg(z) = gz and g = e2^^ for some positive integer 
r. Together with the σ-algebra of Borel subsets and the Haar measure it defines our 
dynamical system. It is not ergodic because ^ is a root of the unity. Since (Tg)r = idsi 
then by i) we have hq ((Tg)r) = 0 for any q. We also have that, for g < 1 and any 
measure-preserving transformation T is hq(T) > 0. Thus, in the present case, we see 
from ii) that hq{Tg) = 0 for q < 1.

iv) A bit more general situation can be considered if the rotation is taken in an 
abstract topological compact group instead of the unity circle, say Ts : Γ ^ Γ where 
^i(7) = £7 with g such that gr is the identity in Γ for some positive integer r. Let 
γ(Γ)={μ : Γ —> S1/ μ is a continuous homomorphism} (χ(Γ) is ussually called the set 
of characters of Γ). since Γ is compact, χ(Γ) is discret. We set χ(Γ) = {ρι. μ2, μ3-··} 

n
and we call Fn = Π ker(pt). T/Fn factorizes in the product of a finite group G and 

:=1
a torus T’n[8]. We now consider the induced application to the quotients

Because Πη is a rotation in T/Fn, it can be written as Πτ ξ llri] x IIn2 whith Πη] 
rotation in G and Πη2 rotation in T'n. In v) we shall see that hqGG) > \(Πηι) + 
Λ^Π^)· In particular, iii) implies that ^(Πη) > ^(Πη2) for ^ < 1.

v) Here we will prove, in general, the above mentioned inequality, say hq(G *T2) > 
hq(G) + ^(G)· To this end we consider two dynamical systems Si = (Xi. /1, μι. G). 
S2 = (X2, Ai M2, ^2) and define the product Si x S2 = (Xi x X2, .4, μ, G x T2). Here 
.4 is the σ—algebra generated by rectangles Aitx A2j where Aak € AQ (a = 1,2) and 
μ is the product measure μ (Au x A2j) = μι (Ah) · μ2(Α2^. Let B and B be 
partitions of Xi and X2, respectively, and B the product partition B * B . Thus 
Hq (jB(n'n^ = ^2 [μι (-^/n(^ )) ' M2 (B/ n(^ ))]g where the sum is extended over the 

names / and G, for G and T2, respectively. Let consider the partitions B and B
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such that (see Eq.(5) ) h'^) = h',(B',T2) and h"(T2) = h”(B",T2). We have

so that

(11)

For those values of q for which hq(T\ x T2) < 0 and hq(T\) = h”(T2) = 0 Eq. (11) 
obviously implies hq(T\ x T^ = 0. For example, let T = T^ x T2 x .... x Tn where 
T{ : S1 —> S^with Ti(z) = g{Z and gi a root of the unity (z = 1,2, ...n) so that T is a 
rotation on a n — Torus. By the previous result and iii) we conclude that for some 
values of q rotations on the n — Torus have zero entropy.

3. Topological ^-entropy

3.1. Definition using open coverings In order to define topological g-entropies 
we start specifying what we will understand, in the following, by a dynamical system. 
It will be a pair (X^T) with X a compact topological space and T a continuous map 
from X to X.

Let U = (^α)α€Λ be an open covering of X and N (¿/) be the number of sets in a fi­
nite subcovering of U with the smallest cardinality, i.e.TV (U) = min ^k : (ί/α,)^!^..^} 
is a finite subcovering of IT From U we obtain a new covering

(12)

Analogously to Eq.(3) we set, for any covering U and arbitrary g/ 1,

(13)

Thus we define

(14)

where

(15)

and

(16)
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We call the quantity hq(T} defined by Eqs.(14-16) the topological q-entropy asso­
ciated to the dynamical system (X, T).

Remark 3.1. For 9 = 1 we have H^^U) = limF^W) = log TV (¿/); h\(U,T) = 

Jim 1 {log [T/ι(¿/n)]} and h^T) = sup {h^UfT) :U is a covering of X}

Bernoulli schemes and Markov systems We use previous definition to calcu­
late topological g-entropies for a couple of basic dynamical systems, namely Bernoulli 
schemes (BS) and Markov systems (MS).

A Bernoulli scheme associated to k points (0,1, ....& — 1),denoted by BS(Q, l,..i- 
1), is defined in the same way as in Section 1 but now the measure is misleading. Like 
before, sample space X is X = {z = (in)n6z : ^ € {0,1, k — 1} , Vz € z}. The 

given topology is the product of the discret topology in {0,1, fc — 1}. A basis for 
this topology are the ’’cylinders”

The transformation is again the shift σ : X —> X with (σ?)η = rn+i which is an 
homeomorphism.

Notice that this space is metrizable by

(17)

Here 6Xiy denotes the Kroenecker delta.
For calculating the topological g-entropy we take as the covering the partition 

U = {^o, Ui,.....Uk-i} where Ui = {x : x0 = i] (i = 0,1, ....k — 1). Thus, N (Un) = kn 
and

(18)

In Section 4 we shall prove that, for g < 1, hq(V,a) < hq(U^a) for any covering V. 
Therefore

(19)

and

(20)

For g = 1 [Ai(<t)]bs(0 1; Λ_υ = log (έ).
A Markov system is defined in a similar way. We take bi-infinite sequences and 

we add a k x k matrix A with entries 0 or 1, so the phase space is
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(21)

The transformation and the topology are the same as for BS.
Remark 3.2. When the entries of A are all 1, we have BS (all sequences are 

allowed).
RemarkS.S. By Perron-Frobenius theorem, the matrix A has a positive eigenvalue 

E such that E > |FJ where Ei is any other eigenvalue of A.
We take again the partition U = {Εο,Ει,......£4-1} where Ui = {x : x0 = ¿} 

(i = 0,1,....A: — 1). Let F C Σ^ a closed subset and cr(F) = F (We shall only 
consider transitive subshifts of finite type). Let An (F) be the cardinality of the set 
of n-uples (4,/i,...4_i) such that there exists a point x = (xn)nez ^ ^ with 
Xi = 4(¿ = 0,1,...n — 1). Therefore, N (¿^n, σ \^) = An(F) and hq(U ,σ \f ) = 
lim ^ {log [(An (F))1-?]} = hq(a |p) where the second equality holds for g < 1.

For the n-uples (4,fi, -A-i), the existence of a bi-infinite'sequence (zn)nez with 
n—2

Xi = 4 is equivalent to Π Α^·+1 = 1. Then, if F = Σ^ we have

(22)

(23)

Thus,

(24)

and

(25)

whereas hi(a) = log(F). First equality in Eq.(23) will be justified later.
The final result in Eq. (23), say hq(a) = (1 - g)log(F) for q < 1, can be alterna- 

tively obtained if, instead of growth rate of || A™-11| ” as given by the second equality.
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we use the growth rate of some expression related with distribution of fixed points of 
ση.

Let Pn (σ) = Card{x € Σχ : σηχ = τ}. We have σηχ = x iff xn = xn+j for each 
η € Z. So

(26)

Then, we see that Pn (σ) goes assymptotically as En. Therefore

(27)

We know that the expression in the right side member equals hq(a) for ^ < 1. For 
9 = 1, we have Jim ^ {log[Pn (σ)]} = log(£) = Αι(σ).

3.2. Definition using span sets Another family of topological g-entropies can 
be defined following Bowen’s ideas[3]. Let (X, d) be a compact metric space and 
T : X —^ X ά continous map. We define a metric

(28)

η—1
The open ball of radius R with respect to dn is Π T~l (Br(T*x)) where Br(x) 

i=0
means the open ball with respect to d.

Definition. A subset Tof X is said (n,c)-span respect to T if, for each x E AT 
exists an element y E Y such that dn (x,y) < e. Here n € Z+, t > 0.

We call αηι£ = min {Card(Y) : Y is (n, e) — span respect to T } and put. for q ^ 
1.

*29)

Thus we define

(30)

where

(31)

with
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(32)

Remark 3.4. For q — \ we have HiiThe = limHq;ni£ = log (an)C)so we recover

h-. = lim - {log [Z7i n J] and h\(T) = limAi.,. a known result. 
n-»oo n 1 j j e—►□ '

Remark 3.5. If X is not compact, we take, for a compact subset K of X,

(33·

where Hq.n^ is defined in the same way as before, but using (n, e)-span sets for A 
and then

(34)

We call the quantity h'q(T) given by Eqs.(30-32), for q ^ 1, and by Remark 1 for 
q = 1, the topological q-entropy defined by using span-sets.

Another definition, dual to the above one, can be given by using (n, e)-separated 
sets.

Definition. A subset V of X is said (n, ¿^-separated respect to T if, for each 
z,y €Y, with X / y, dn (x, y) > e.

We now call βη<ί = ma.x {Card(Y) : Y is (n,e) — separated respect to T } and 
put, for q ^ 1,

(35)

Then we obtain the dual to equations (30-32) and Remarks 1 and 2 by changing an^ 
by βη,<·

The following relations hold[3] :
1) ^n,e — βη,ί < ^n,e/2·

ii) If ci < e2, then βη^ > βη^2.
Remark 3.6 With these definitions, it is directly proved that, if T is an isometry 

in (X, d), its entropy is zero.
At this point a natural question arises: is the entropy invariant with respect to 

the metric considered ? The answer is affirmative in case of considering uniformely 
equivalent metrics.

Proposition 3.7. If id : (X, di) —► (X, ¿2) and id : (X,¿2) ~► (X, di) are conti- 
nous, then hq(T,di) = hq(T,d2), where we have explicitly indicated the dependence 
of the entropy on the metrics.

Proof: We choose 61, 62, 63 > 0 and 62 > 63 such that di(x,y) < 61 whenever 
d2(x,y) < e2 and d2(x,y) < 62 whenever dx(x,y) < 63.
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A (n, C2)-span set for X with respect to ¿2 is a (n, €i)-span set for X with respect 
to di. So αη,£1Λ < ^n,t2,d2 and an,£2,d2 < αη^Λ· Forg> 1 we have (αη,£1Λ)1-9 
(^Ti^da)1-9 and (^n.ta.dz)1-9 > («η,^)1-9. Therefore,

(36)

and hq·^ > hq.,i2 > hq.i3 (For g < 1, inequalities invert). If e» —► 0, then hq (T,di) = 
hq(T,d2) and hq(T,d·^ = hq(T,d2). □

3.3. Relationship between both two definitions Here we shall gather for 
which values of the parameter q previous definitions are equivalent.

The diameter of a covering U is defined by diam(U) = sup {diam(A)}. Notice 

that, for U and V open coverings of X (compact) and <5 a Lebesgue number for V , 
if diam (K) < δ then ZY is a refinament of V.

Proposition 3.8. Let g < 1 and let {Wm}m=1 be a family of coverings of X with 
diam^Um) —> 0, then lim hq(Um^T) = hq(T).

Proof: Let g < 1 and suppose firstly that hq(T) < oo. For each 6 > 0 there exists 
a covering V with hq(V,T) > hq(T) — e. Let ¿ be a Lebesgue number for V, since 
diam(Um) —> 0, there is a natural X such that for m > X, diam(Km) < δ. So 771 OO
Km -< V whenever m > X . It follows that X (K^) > X (Vn) and, because g < 1, 
hq(Um,T) > hq(V,T) > h^T) - e. Then hq(T) > hq(Um,T) > hq(T) - e and Jirn 

hq(Um,T) = hq(T). So Jim /i?(Wm,T) = hq(T).

If hq(T) = oo for each M arbitrarily large we can choose a covering V such that 
hq(y, T) > M and we follow like before.

For g = 1 we proceed similarly by using the definition for this value.□
RemarkSS). For any value of q we have hq(T) < (q — I)-1 {1 — exp Jirn^ hq(Km,T) }.

Lemma 3.10. (c.f. [29]) Let T : X —> X continous with (X, d) a compact metric 
space.

i) If ¿/ is an open covering of X and ó is a Lebesgue number for K, then

(37)

ii) For each e > 0 and V an open covering with diam (V) < 6, we have an,£ < 
/ke< Wn)·

Corollary 3.11. (c.f. [29]) Let T : X —* X continous with (X^d) a compact 
metric space. Let Ke be a covering by open balls of radius 2e and let V£ be another 
covering by open balls of radius e/2, then
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■38 i

Based on the previous results we can state the
Theorem 3.12. If (X, d) is a compact metric space and T . X X ά continous 

map, then
i) for g < 1 is hq(T) = h'q(T)
ii) for q > 1 is hq(T) < h'q(T),
where hq(T) and h'q(T) are the topological ^-entropies defined by coverings and 

span sets, respectively.
Proof: i) For q < 1, by the Lemma 3.11, h^U^T) < h^ < hq(Vc,T). If we put 

t = ^n with rn —> 0, we have, by the Proposition 3.8, hq(T) = h' (T) because h^U,. Tt 
and hq(V¿,T) tend to hq (T) and hq.e goes to hq(T). For q = 1 the result follows by a 
similar argument but using the special definition for this case.

ii) From Eq.(38) we have

(39>

so

(40)

□
3.4. Properties and calculations We define now what we understand bv an 
isomorphism between two topological dynamical systems.

Definition. Let S{ = (Xi,Ti), i = 1,2 be two dynamical systems. We say that 
Si is isomorphic to S2 if there exists an homeomorphism ^ : Xi -> X2 such that the 
following diagram commutes:

Theorem 3.13. Topological g-entropy defined by coverings is an isomorphism 
invariant.

Proof: Let Si = {Xí,Tí) , ¿ = 1,2 be two isomorphic dynamical systems and U be 
an open covering of Xi. We consider the subcovering (L(Ql)i=1 2 j^y As before

Let the covering V = φ (U) (φ is horneo) and
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If A is a member of Un then A = UaiQ Q^ 1 (t^) Π····Π^ι ^ (^ln_]) for

some sequence (¿0, ¿1, - - ·, ¿n—i)- Therefore A C UaiQ and φ(Α) G φ (^a*o) = ^“o: ^^ 
A) C UQii and T2 [φ(Α)] C Va^ (for some j^ but T2 [ψ(Α)] = φ[Ί\( A)] so ¿1 = jj. 
By continuing in this way we finally get (¿0,¿1, —>¿η-i) = (joj'i,- Jn-i)·

Ν(^) = Card{(¿0,¿i,...,¿n-i) : ^ΠΤΓ1 (^,) n--nTr(n·” ^ 0}·

Let x e yπτγ1 (¿/«J n-.n^"'11 KJ-®e y i«v(X) e ^(¡/.J =
Besides Τι (ζ) 6 Uaii iff^[Ti(i)] = Τ2[φ(χ)] G ψ^α^ι then^(r) 6 Τ?1 (VQ,Jand 

soon. Thusjf (¿o, ¿1,..., ¿n-i) is such that ί4ώ pTf1 ([/Ο|]) Π····Π^ι~(η~1) (^J 0 

0 then K., n T^ (kJ n.... ητ?1"’1’ (V^,) / 0 so N (W") = N (V") and h,(U, T,) = 

hq(V,T2). From this we have hq(1\) > h^V^T^ i.e. hq(T\) is an upper bound of 
hq(V,T2) and hq(T\) > hq(T2). Anagously hq(T\) < ~hq(T2) by symmetry.O

Remark 3.14. If φ is continous and surjective then just holds hq(Ti) > hq(T2) for 
q>l and hq(1\) < hq(T2) for g < 1.

Remark 3.15. Since for g < 1 the topological ^-entropies defined by the two ways 
previously introduced are equivalent the statement of the theorem is true also for 
the definition using span sets. For ς > 1, the theorem can be proved for this last 
definition by using a similar idea.

Now we find a bound for the topological g-entropy using span sets for a dif­
ferentiable map f : Md —> Md where M is a compact, Riemannian, ¿-dimensional 
manifold.

Remark 3.16. The calculation will be done using the metric induced by the Riema- 
niann structure. However, it is not relevant due to the compactness of the manifold. 
In case that the manifold were not compact, the bound works but, of course, it will 
depend on the metric.

Let Oxf : TX(M) —> Tj^ (M) be the differential map at the point x E M and

K = sup ||Pr/||. Suppose K finite (otherwise the result that we will show would be 
xEM

trivial). If/f<l, by the mean value theorem, dn (x,y) < d(x,y) for each n. and so 
λ',ω = ο·

For /< > 1 we use a Bowen’s construction. Let U = {f\(B)}XeA a covering 
obtained by selecting differentiable maps: fy. B M where B = Br(6) G Rd with 
the radius R convenently choosen.
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Let now |hJ(5)^_1 be a finite subcovering ofW. We consider a constant C such 

that d [/a/z), Aj(y)\ < C\\x - y\\ for x,y E BR'(0), it < R and ; = 1.2......V.

For 0 < r < 1, we put H (r) = ^(n1r,n2r, ....,ndr) : η, E Z. |nt-| < R'/rj. So. 

Card(H (r)) < (2R /r] . Let G (r) = Q fx (H (r))’, G(r) is a (n. KnCr)-span set 

respect to f.
For any e > 0, we set r = e/KnC and then αηΛ < N (2R’ KnC I^ = (Κη]ά *

N [2RC ¡e) .
For q > I

μι.

So

f 12 >

and

143)

For (? < 1 Eq.(43) also holds because the unequality in Eq.(42) inverts.
For q = 1 we have h^f) < max {0, dlog (/<)}
Remarks.17. For g < 1, the topological ^-entropy by coverings hq(f) is equivalent 

to h'q(f)\ for g > 1 we have hq(f) < h'q(f) (c.f. Theorem 3.12. ii). the bound works 
but we do not know if there exists a better one.

Flows Here we present some results about the g-entropy of flows. First we 
relate topological g-entropy of a geodesic flow in a manifold M with a volume in the 
universal covering M by using Manning’s constructions[12].

Let Af be a closed Riemannian manifold, and let Br(x) = ^y : d(x, y) < R^ where 

d is the metric in M inherited from the Riemannian structure of M. We call VXtR the 
volume of the ball Br(x).
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Fact. L = lim ή log (K,λ) exits and is independent of x. For proving this R—^oo n ’
claim let F a fundamental domain in M, i.e. M = (J 7 (?), Γ C Isom(M) and

7 (f) Π A (f) = 0 for A / 7. Let D de diameter of F (the metric can be normalized 
in order to do D = 1). For each y E F

and for all x,y E M

because the translation of the point from or towards F is by isometries. So the limit 
in case of existing is independent of x. For the existence we have[12]

and the Fact follows. □

If M has constant sectional curvature £ < 0, is a standard result VXir ~ const x 
exp [(n — 1) y/\^\R^ (n = dimM), so in this case

(44)

Let Φ = {φι : Μ —^ M /1 E R} a flow in a compact manifold. The topological 
g-entropy (using span or separated sets) of Φ is defined by

An alternative definition can be given for flows:
Definition. Let t and e two real strictly positive numbers. A set Y C M is (t,e)- 

span respect to Φ if for any y E Y there exists a. x £ M such that d ((^s(x),(^s(y)) < e 
for 0 < s < L

Definition. Let t and e two real strictly positive numbers. A set V C M is (/, g)- 
separated respect to Φ if for x, y E Y , x y^ y is d ((ps(x), φ3^)) > e for some s € [0, t].

We call r\t^ = min {Card(Y) : Y is (t, e) — span respect to Φ } and put, for q ^ 1

(45)

with
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(46)

where gx\s the bilinear form in TX(M) which gives the Riemaniann structure.
We particulary considerer the geodesic flow on S(M): φ^χ^υ) =7υ (t) where 7,. 

is a geodesic in M with 7„(0) = x and 7 is its derivative such that 7υ (0) = v. Now 
we use Manning’s ideas. For any small ó > 0, let fl = Br+8/2(x) — Br(x) and for any 
arbitrary small e we have

(47)

We can choose a sequence of values of R = (Rn)^^^ such that if we slightly 
increase one value of the sequence (say Rn) we haveC

(48)

We take a set Trn (maximal) in the annulus Ω whose points are pointwise 2¿ 
apart, C ard(TRN) > const, x exp [(£ — e) Ryv]·

Considering the unitary initial vectors of the geodesics (with length between Ó/2 
and ¿) which join x with any point of Trn, we get a set T C S(M) that is(^,ó)- 
separated for the geodesic flow on S(M) (Manning). These geodesics exist because 
M is complete. We have so

49)

where φ is the flow and d is a metric in S(M). The image of these vectors by the 
natural map S(M) —> S(M) gives a (R^j, δ) — separated set for φ in S(M) (Manning).

Let βηΝ = max {Card(E) : E is (Rn,8) — separated}. Thus for <7 > 1,

(50)

Then, Λ^(Φ) < (1 — q)(L — e). Therefore, since 6 is arbitraly small:

(51)
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For 9 < 1 unequality (50) inverts and. consequently, Eq.(51) also holds for g < 1.
When 9 = 1, ^(Φ) > L.
Remark3A8. If M has all sectional curvatures equal zero, the bound is irrelevant. 

However, we believe that for a flow of a Hamiltonian system in the 2n-dimensional 
euclidean space a genuine bound could be obtained. We expect to report results on 
this matter elsewhere.

Now we consider a geodesic flow in a manifold with all sectional curvatures nega­
tives (in particular the flow is Anosov).

In S(M) we take the metric:

(52)

where 71,72 are geodesics in M parametrized by arc length. The main argument used 
here is that two geodesics apart one other exponentially in negatively curved spaces.

One span set for φ in S(M) is obtained by taking the images of tangent vectors to 
geodesics in M by the map S(M) —> S(M). Again we use a Manning’s construction 
for these types of spaces.

Let flfl = {z E M : R — D < d(x, F) < 7?} C Br+d(x). Here F is as before 

a fundamental domain in M and D = diam(F). We work in a similar way as 
above: we can find a maximal set ΉηΝ in the annulus fl/?, with ϋα/Γά(ΉκΝ) < 
const, x exp [(L — e) (R^ + D + Ó/2)] for small positve δ, e. We take again geodesics 
parametrized by arc length which join any point in a maximal δ — separated set G in 
F with any point in Ήην (Rn a sequence selected like before). The image of the ini­
tial vectors to such geodesics by the map S(M) —> S(M) forms a (R^ — 1,46) — span 
set. The result used for prooving this is the following:

Lemma 3.19. ([12]): If 71,72 are geodesics in a negatively curved manifold M. 
parametrized by arc length, then d(7i(Z), 72^)) < ¿(71(0),72(G)) + ¿(71 (A),72(A)) 
where 71,72 : [0, A] —> M.

By taking the metric defined by Eq.(52), and by using the previous Lemma, it can 
be proved that the tangent vectors to the initial points of the geodesics mentioned 
in the paragraph just before the Lemma 3.4.1, are within distance 4ό apart, so the 
corresponding vectors in S(M) are 4Ó apart too.

Let &rn = max {Card(E) : E is (R^ — 1,40) — span set}. Therefore for g > 1.

(53)

where G is the maximal set in F mentioned above. Thus Λ^(Φ) > (1 — q)(L — e) for 
any arbitrary small c. So
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(54)

For 9 < 1, the unequality is true because Eq.(53) inverts, and with the previous result 
we have

(55)

in manifolds with all sectional curvatures negatives.
Remark 3.20. Let Σ a surface with constant negative curvature K, and let call

C(R) = Card {7 : is a closed geodesic in Σ with length(7) < 7?} .

Inmediatly from Margulis[13] and Eq.(44) we have

(56)

so

(57)

The result that two geodesics apart exponentially is valid in geodesic spaces (not 
necessarily manifolds) negatively curved in the sense of Gromov. A good program, 
we think, could be trying to work with flows in this kind of spaces in order to obtain 
bounds for the g-entropies. As a first step let, for example, Σ = 772/Γ where H2 is the 
hyperbolic plane and Γ is the triangle group, i.e. the orientation preserving subgroup 
of the group generated by reflections in the sides of a triangle in H2 with angles τ/p. 
π/q, π/r with l/p + l/g + 1/r < 1. This group is usually denoted by A(p,g.r). Σ 
is an orbifold with three singularities which are cone points with angles 2π/p, It/q. 
2π/τ, i.e. points with neighborhoods respectively homeomorphic to R2/Zp, R2/Zq. 
R2/Zr; and it is a base of a Seifert bundle. Besides, Σ has a hyperbolic structure 
except in the cone points. For a very nice account in this matter see, for example, Ref. 
[22]. The geodesic flow, in the generalized sphere tangent bundle 5(Σ), is Anosov 
and 5(Σ) is a manifold[6].

One interesting consequence of these results is the relation between ^-entropy and 
a limit which involves the number of words in a presentation of πγ(Μ) with a given 
length.

Let F a compact fundamental domain in M and let 5 = {7 17 € π^Μ), 7(F) Q F ^0} 
S is a system of generators for Ti(M). We call 23$ (7?) = Card^ : 7 € π-^Μ), ¿(7) < R} 
where £(7) is the minimal n such that 7 can be expressed as a word 7 = 71.72 -- ^n 
with 7t· 6 <S.
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The limit W = lim I log (Bs(R))exists by J. Milnor[16]. If ^(7) < § — 1 (D = R—>00
diam(F)) it follows that d(x,7y) < R for y E F, so ^(F) C Br(x). Thus. L > W 
and

(58)

Therefore if IV / 0 we have a genuine bound for the g-entropy in terms of the limit 
W.

For any group Γ finitely generated by a subset 5 the limit Ws (Γ) is invariant by 
quasi-isometries respect the word-metric, which is defined as ds (71,72) = ^(7i-1 -72)[7]

Remark 3.21. W$ (Γ) does not depend on the system of generators , because if 
S is another finite system of generators for T,we have BS>(R) < Bs(kR)< where 
k = max {¿(7*) : 7' 6 5*}.

Remark 3.22. If M has negative curvature Γ = tti(M) , verifies Bs(R) > abR. 
for some constants a,b.Ws (Γ) can be 00, it happens for example when Γ = Fm (a 
free group in m generators with m > 2).Because W^ (Zn) = n, Zn and Fm cannot be 
quasy-isometrics.

Recall that a map f is a quasy-isometry between two metric spaces (X1J1) and 
(X2,¿2) if there exits two constants Ci( estrictily positive) and C2 > 0, such that

(59)

Therefore to get a bound for A'(Φ) can be used the limit W corresponding to any 
group quasy-isometric to πι(Μ).

We finish this Subsection with an approach for working in a more general context: 
Let X a geodesic space, i.e. a metric space such that for any x,y E X, there exists 
an isometry g : [0, a] —► X, with a = dist(x,y) and g(0) = a,g(a) = y. Complete 
Riemannian manifolds are a such spaces.

We consider a group Γ,which acts discretelly and isometrically on X, in such way 
that X/Γ is compact, let ττ : X —> X/Γ the natural projection . A metric in X/Γ can 
be given setting

(60)

Where (/is the metric in X. Let D = {d(p,g) : p,q € X/Γ} ,D is finite because Χ/Γ 
is compact. As a fundamental domain can be taken F = Bd(z),x € X.

If X is simply connected Γ and 717 (X/Γ) are isomorphic, Γ is finetelly generated 
and it is quasy-isometric to X. (Γ with the word metric).
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For the case of a closed constant negativeley curved surface Σ it is presented as 
Σ = X/Γ, where X = E2,S2 or B2,and Γ Clsom(X) which acts discretelly.

3.5. (/-entropy and symbolic dynamics The (/-entropy can be related with the 
’’complexity ” of a set of symbols. In this subchapter we present a brief description 
of the method for discretizing an hyperbolic flow in order to obtain these symbols, 
and the relationship between the q-entropy of the original flow and the q-entropy of 
the space built from bi-infinite sequences of symbols endowed with a topology.

Let Φ ^S^heR a flow *n compact differentiable manifold M , which has a Rie­
mannian stucture.

We recall standard concepts:
Definition. A set Θ C M is a basic set if:
i) Is φ^-ίη variant and closed.
ii) φι I ©is topologically transitive.
iii)The set of periodic points contained in Θ is dense in Θ , and it does not have 

fixed points
iv) There esists an open set U D Θ, such that Θ = Π Vt(U). 

t>o
v) The tangent bundle to M restricted to Θ can be splitted as a Whitney sum of 

three ^-invariant sub-bundles:

such that
(61)

and
(62)

A set Θ which satisfies condition v) is usually called hyperbolic and the flow 
restricted to it ,is called an hyperbolic attractor.

Notice that if Θ = M, and conditions i)-iv) are not assumed we have the definition 
of Anosov flow .

The non — wandering set Ω of the flow <pt is defined by

Ω = {x E M : if , for U a neigborhood of x and t > Q, there exits a t0 > t.
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The flow φι satisfies Smale’s Axiom A if Ω can be written as a disjoint union of 
a hyperbolic set which fulfills condition iii) and a finite number of hyperbolic fixed 
points.

In [4]Bowen construed bi-infinite sequences of symbols for Axiom A flows. In fact 
the flow is taken restricted to a basic set. A Markov system Σλ is achieved . by 
finding a suitable partition of Θ ( a Markov partition) by ’’rectangles”.

Then a semi-conjugacy between the flow ^ : Θ -> Θ and the suspension flow of 
Σλ is obtained. We recall breifly the main facts:

Let ^={I?i^2) > 5 )^} a Markov partition , where each Ri is a closed rectangle 
contained in Θ, let

Where f is the first return time map for the rectangles ( they are cross-sections 
of the flow), ψ is continuos and the intersection is non empty by Markov condition 
and contains exactely a point by hyperbolicity, so let {j/} = Q f~1(RXn)· 

nEZ
Now another first return time map can be defined:

Let A = {(i,i)E Σλ xR : i € Pjf1)]} / ~, where ~ does the identifications 
(ι, τ(χ)) ~ (σ(τ),Ο), and σ is the shift corresponding to the Markov system Σλ ·

We refresh the definition of the suspension flow a map f : M —► M , it is a flow 
on the space :Susp(f, Μ) = Μ x I/ ~, with I a real interval and the identifications 
are (i, 1) ~ (/(z),0). Now the suspension flow of f is defined as :

(63)

where [a] is the integer part of a. Then we take the suspension flow of the shift σ on 
Λ = Λ(σ,τ) and defined in this case by:
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where I is such that y = t + s — Σ τ{σ'(χ)) satisfies : 0 < y < τ(σ'(ζ)). 
t=0

Vt and St are semi-topologically conjugated i.e. there exits a continuos and sur­
jective map Λ : A —► Θ such that the following diagram conmutes :

(64)

If the partition is Markov £a is a subshiht of finite type and St is hyperbolic.
Therefore a bound for the q-entropy of the flow Φ = {^}<€β, restricted to a basic 

set, can be obtained in terms of the q-entropy of the flow Ξ = (St)teR.
Remark 3.23. More or less at the same time of Bowen, Rattner constructed Markov 

partitions for Anosov flows, which became a particular case.

In the particular case of having diffeomorphisms which satisfie Smale’s Axiom A, 
a semiconjugacy with a Markov system is obtained [2]. Among the pioneers works in 
this matter we can mention: Sinai’s construction of Markov partitions [25]and Smale’s 
horseshoe. [26]

We follow now with some considerations about measure-theoretic q-entropy. Let 
Λ4(Ύ, Φ) the set of φΓ invariant measures (Borel normalized). If .A4(X) is the set of 
measures defined over the σ-algebra of Borel sets in a metric space, it can be endowed 
with the weak topology i.e. the smallest topology making the map f ।—> S fdp 

x 
continue. ( / € C(X,R)).

The filter of neigborhoods of μο is

(65)
With this topology, M(X) is compact[19], and a metric which induces the weak 

topology is

where {/n} is a dense set in C(X,R).
The map k which makes the semi-conjugacty between the flows {^t}^ and the 

discretizated flow {SJ^ induces a map
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where k is an isomorphism in the measure theoretic sense between the dynamical 
systems (Θ, {φ<},μφ) and (A, {S*} , μ^). Here μφ is the Bowen’s measure and μ= 
is the corresponding measure for the discretizated flow. Respect of μφ the periodic 
orbits of Φ are uniformly distribuited[4¡. In [18]W. Parry gave a weigthed version of 
Bowen’s result. So by topological invariance of the measure-theoretic g—entropy:

(66)

In the case of Axiom A diffeomorphisms f the measure is defined as a pull-back 
of the Parry’s measure μσ , specifically μ/(Ε) = p( μσ)(Ε) = μ^ρ^Ε)), where p is 
the semiconjugacy between Φ and the Markov system ^. Then, in this case, (/, μ/) 
is measure-theoretically isomorphic to (Ex,/iff)[2] and therefore

(67)

The periodic points of f are distribuited according to μ/ whereas the periodic 
points of the shift are distribuited according the Parry’s measure.

The measures μφ and μ/ have interesting interpretations for particular cases; for 
example let consider a flow {<pt : M —> M} in a manifold M such that M is a quotient 
Μ = Γ/Κ/Γο , where Γ is a Lie group, /f isa compact subset of Γ and Γο is a discret 
subgroup of T,and let define the flow as:

with μ is the element in the Lie algebra of Γ such that exp(/p) K = K exp(/p), for 
each t. A such flow is called algebraic. In this case μφ is the Haar measure

Respect to the particular situation of considering Axiom A diffeomorphisms f : 
M —► M, with M a nilmanifold i.e. M = V/D, with M a nilpotent, simply connected, 
connected Lie group and D a discret subgroup of Γ. Assume that f is induced by a 
continous automorphism μ : Γ —► T , such that g(D) = D and the non wandering 
set of f is hyperbolic, in this circumstance f is called an hyperbolic automorphism. 
Under these conditions μ; is the Haar measure.

Within a more general context: let / : Ύ —» X a continuos map, X locally 
compact; an approach to the problem of getting symbolic dynamics can be given 
by Conley’s index theory . We sketch here the main aspects of it. For details can 
see[27]and references therein.

Given a set E, the problem we adress is to find a partition {Ei,E2t.... , En} , such 
that f*(&) € E^ ({ij} C {1,2,...., n}) for each x E E. The approach to the solution 
is:
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i) £ is an isolated invariant set i.e. there exist a compact set K G E . such that

ii)Let M3 = |i € K/3(xk)keZ · Vz 6 Z, fi(xi) G E},i = 0,1. s — 1 and 
fs(xi) = r,+i}
Ms has a defined Conley index, and if it is non trivial Ms is non empty (see 

below); therefore the possibility of getting a sequence of symbolic dynamics, and so 
the knowledege of the dynamical complexity is close to the study of the Conley index.

The Conley index is defined as a class of objects isomorphic in a cathegory whose 
objects are pairs ((X, το), [/]), where (Xjo) is a pointed topological space and [/] 
are homotopy classes of preserving base point continuos map. Let Λ/’ the class of 
objects isomorphic to the pair (X, c)where X is a single point-pointed space and 
c : X —> X is the constant map. A set A has a non-trivial Conley’s index if it is 
different from Ai\ and this implies that Αψ^.

Then we have a continuos surjective map between (E, fr )(for some positive integer 
r )and a Markov system of k symbols (but with infinites sequences), and therefore a 
bound for the g—entropy of fr.

4. Generators.
We begin this section by recalling the concept of generator for partitions.

Definition. Let £ = {Gi, Gi,., G* } a partition of a space X, for a transforma­
tion T. ^ is a generator if x,y G X (i^ y), then x and y have different bi-infinite 
names respect T.

Alternatively we can give the following definition:
Let {i/}/eZ , a bi-infinite string of numbers , with z/ € {1,2,..... , k} ,Q = {Gi, G2,....... , Gk }

is a generator for T if < Q T~l (Gi¡) : Gtl € Q >contains at most a point of X. (The 

intersection of these sets is of course empty).
Notice that a finite substring of {ύ},€ζ ,(toji ¿n—1),gives the name of x of length 

n.
This definition is strengthened to coverings as follows:
Definition.Let X a compact metric space and Τ' : X —> X an homeomorphis. 

A finite cover ^ is a generator for T if, for every bi-infinite string {i/]/ez, the set

{Q T~l (GiA : G{t € Q> contains at most a point of X.

A basic concept for the matter of this section is expansiveness:
Definition. Let 71 : X —► X an homeomorphism, X compact metrizable. T is ex­

pansive if there exits a constant A > 0, such that for every x,y € X, (1 / y), exits an integer k 
with d ^Tkx,Tky^ > A
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Generators and expansiveness are related by mean the important following result:

Theorem 4.1 (cf [21],[10]): T is an homeomorphism expansive if and only if it 
has a generator.

Remark 4.2. The concept of generator does not depend on the metric

Another important result is :
Theorem 4.3. ([29]):Let T an homeomorphism from a compact matric space 

(X, ¿)to itself . Let Q a generator for T^ then for each e > 0 , there is a m > 0. such 
{m I

Π T~' (Gaj) : Ga< £ G ( has diameter less than c. 
i=—m j

In this subject our main result is
Theorem 4.4. Let T : X —> X an homeomorphism expansive. If (7 is a generator 

for T (Q exits by Theor 4.3.), we have :
i) hq(T,^) = hq(T) for q < 1
ii) hq(T,G) > hq(T) for g > 1
Proof. Let U an arbitrary open covering of X, and δ a Lebesgue number for U. Let 

m > 0 choosen in the way of the above theorem i.e. if

then each member of Q2m has diameter less than δ. So each member of Q2rn is contained 
in some set of U] thus Q2m is a refinament et of U and therefore N {Q2m} > Ar (U)

Thus for 9 < 1 :

(68)

with

(69)

(70)

The r.h.s. of Eq.(70) is equal to
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(71'
Therefore, for any open covering U and for 9 < 1, we have

i72)

and

(73)

For 9 > 1, we have now [TV (^2m)]1 9 < [^(¿Z)]1 9 and similarly

(74)

and hence for g > 1
(75?

Respect to definition using span and separated sets exits a particular value for 
which the g—entropy is attained. We consider the balls Br(xí), 1 = 1,2,......k . where 
Xi and R are choosen such that

with óo < ^/4 , where δ is the constant of expansiveness.So 2¿o is a Lebesgue number 
for the covering Q = {Bg/2(xi) : ¿ = 1,2,......,k^ and ^ is a generator. By Lemma
3.10:

(76)

and thus, for g < 1,

(77)

Recall that for, g < 1, hq(T) = h'q(T) , therefore h'q(T) = h'q(óOiT).
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We are now in condition of justifying the results of the subsection 3.1: if^ = {Ui : i = 0,1,... A: 
{i : io = 0) is the canonical generator for the shift, then

(78)

and
(79)

with the same justification for Markov systems.

5. Topological ^-pressure

In same spirit as along this paper , now we introduce one-parameter family of topolog­
ical g-pressures, associated to a dynamical system (X, T), which allows us to recover, 
in a particular case, the families of entropies defined.

Let / 6 C(X,R),W a covering of X and V a finite subcovering of ¿/.For each 
member ξ· 6 V, we consider: inf (exp ( ^ /(Τ’(ι/)))Ι, then we take 

yev, I \,=o / J

(80)

and then set :

(81)

where the infimun is taken over all the finite subcoverings of Vn. 
Let now :

(82)

and, for g / 1,

(83)

(for? = l,log(Sn(T,/,W))is considered). Then we call

(84)

Finally we put:

(85)
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Pq{T, f) is called the topological q—pressure of f and the map

is called the topological q—pressure associated to the dynamical system {X,T). 
Notice that if / ξ 0 we have Pq{T, f) = hq (T).

i η—1
For recovering the entropy h (T) we consider Σ /(T'M) and for e > 0,n > 1

7 i=0
we take

(86)

where the infimun is taken now over the (n, e) — span sets. For Ύ, analogously as 
before, let

(87)

and, for g / 1

(88)

Thus
(89)

and, in the same way as above, we obtain

(90)

so, for / = 0, we have Pq{T, f) = h'q {T).

Now we work in the level of symbolic dynamics, i.e. in the case of a Markov system 
(ΣΑ)σ)· We: recall from Subsection 3.1 that the g—entropy (definition by coverings), 
can be computed using the distribution of periodic points of the shift σ. As before we 
call Pn (σ) = Card {x : σηχ = x] = Card(Fix (ση)) = Tr (An).

With the canonical generator Q = {Ui : i = 0,1, ...k — 1} , Ui = {x : io=O , the 
calculation becomes:

where E is the eigenvalue of A given by Perron-Frobenius theorem, and we know 
that:

and
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We do not know if for an expansive operator, the value of the topological g-pressure 
is obtained with a generator , like as in the particular case of the entropy. We do the 
calculations for the canonical gnerator Q , but it will be omitted in the formulae.

Let / € C(Ex,R) (we can impose stronger condition of differentiability on /) , / 
is called an observable. In this case the Eq. (82) yields, for g / 1,

(91)

For q = 1 we consider log (Zn(f)).
Where Zn (f) is the partition function (in the context of Statiscal Machanics) 

for the space of configurations x = (in)nez which are allowed by the matrix A.For 
example, when the configurations are selected with periodic boundary conditions, we 
have

(92)

For / Ξ 0, Zn(0) = Pn (σ) = Tr(An). Then the g-entropy is recovered, in 
a particular case, as the trace of the potents of the tranfer matrix A when these 
configurations are considered.

For a general observable / 6 Ck(^A) with finite range, we have Zn(f) =Tr [(£ f)n] 
for a suitable trace-class operator £ : (^(Σα) C^Ea)· £ is known as the Ruelle 
operator. It is defined by

(93)

where x = (in)nez with io = ^t and Xi = i,_i for ¿ > 1.
Similarly to the particular case when we consider periodic conditions: hq(a,f) = 

log(A1-i) where A is the leading eigenvalue of £ as given by Perron-Frobenius theo­
rem. So, if g/ 1,

(94)

for the canonical generator Q.
Remarks.!. For infinite range observables /, £ can no longer be finite dimensional, 

which is the case, for example of the Kac model.

6. Relationship between measure theoretic and topological 
ρ-ENTROPIES

We do an attemp of relating both two families of entropies. Let fix a continous 
transformation T : X —> X with X a compact metric space. We denote B (X) the
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σ—algebra of Borel subsets of X, i.e. the smallest one containing the open and the 
closed sets of X.

We recall that A4(X) is the set whose members are probability measures in 
(X, B (X)), equipped with the weak topology, i.e. those one for which the filter 
of neighborhoods is given by Eq.(65). A relevant subset of M.(X) is A4(X.T) = 
{μ : μ is invariant by T}. A4(X,T) is a compact subset in the weak topology of 
A4(X) and also it is convex.

We introduce the q—entropy map:

Unfortunately for g/1, in general, is not true that

When this condition is fullfilled, it says that the function is affine. In fact for B.S 
the 9—entropy is not affine. Neither this map is in general continuos.

Each member of Λ4(Χ,Τ) can be represented in terms of ergodic members of it. 
Let

For each measure of Λ4(Χ, T), there is only one measure ω defined on β (A4(X. T))such 
that ω (S(X,T)) = 1 and :μ = f τάωτ by Choquet’s representation [20].

ε(Χ,Τ)
Therefore if φ : Λ4(Χ,Τ) —> R is an affine semi-continuos map, we have ^ (μ) = 

f φ (τ) dwT, so we can not use this representation for the 9—entropy map, i.e. we 
ε(Χ,Τ) 
can not expect in general that

Μμ,Γ) = f hq(r)foT.
ε(Χ,Τ)

We try to get any conclusion about the relationship between measure theoretic 
and topological g-entropies. We begin with an elementary fact:

Let φ (x) = i’ , 0 < ? < 1, then we have (x > 0)

k—l
with At· > 0 and E ^ = 1· So if At = 1/k and χί=μ(Α^ for each 1 and for at=0
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partition {Α0,Αι,....,Α^_ι} then and thus

therefore:

and finally
(95)

We consider Bernoulli Schemes. Let as ever the canonical generator Q = {L\ : i =0. l...i — 1} 
{x : z0 = i}. For each μ € Μ(Χ,σ) (X of course the phase space of the B.S.) . we 
have :

(96)

and, because the shift is expansive, if ^ < 1

(97)

Then, for 0 < g < 1,

(98·

Therefore, for 0 < q < 1,

(99.1

So, at least for the Bernoulli Schemes, and for some values of the parameter q. 
the topological ^-entropy bounds the measure theoretic one.

We show now a result in some special kind of spaces, which are called : Spaces 
with covering dimension k.

Definition. A metric space (X, d)has covering dimension k, if for any covering U of 
X, exits a refinament V, such that each point of x € X, belongs at most to A: -t- 1 
members of V.

This condition is fulfilled for any A:—dimensional manifold.
We begin by considering a covering of (X, d), with X compact Bc = { Bi B2. ...... Bi}. 

by balls of radius e/2, such that each point of X is an at most Hl members of Bf. 
and T : X —> X a, continuos map. We take also a measure μ E .M(X'T) ( notice 
that in a metric space every invariant measure is regular).
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Let Uc = {UitU2> -—,ϋι} a partition of X , with Üi C B,.For each x € X , there 
exists a neighborhood Vx of it, such that Vx intersects at most fc + 1 members of U^. 
So V = (Vx)x is a covering of(X, d), and let {14-}J=1 2 m a finite subcovering of V.

Let now R a (n,¿) — span set of X for T,with δ a Lebesgue number for V. Let 
z € R, for i = 0,1,..... , n — 1, we have Τ' (z) € VXi(z) € V , where VXt (z) is the 
member of the covering which contains the ball Βδ(Τ' (z)).

Then we call Hn the set of the strings (joji,......Jn-i); such that Ujt , intersects

VXt (z), with z 6 R , i = 0,1, , η — 1. Now if i 6 Q 71-’(f7Jt) ,and we choose 
i=o

z 6 R in order that d(T' (x), Τ' (z)) < δ , hence Τ'(x) G K,(z) A Uj, ,and so

Uoji,...... ,jn-i)belongs to Hn .Let Jn = ¿ (jQjlt.......Jn-i) : A T~' (Ujt) / 0 , there- 
l................................. i=0 J

fore Jn G Hn. By construction VXi (z) can intersect at most A: + 1 members of ¿4, 
then

and, in particular for the (η, δ) — span set of smallest cardinality,

We have, by the previous calculations,

because So for,

0<?<l,

and therefore

Then
(100)

So we have the topological q—entropy (0 < g < 1) with a” perturbation” as a bound 
for the measure theoretic ^—entropy, in a more general situation than B.S.

Using definition by coverings , the condition of covering dimension k over the 
space X, can be misleading . Let A ={Ai,Á2.... Ak} a partition of X, and let B

={Bq,Bi.... Bk} (Bq = X — U Bi) another partition with Bi G Ai. Because μ is 
t=l

regular, Bi can be chosen such that μ (Ai — Bi) < e, for each € > 0. We define a

covering U. ={Uo,Uit....Uk} by Ui= \ X — (J Bd U Bq.
\ /
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Similarly to above, for 0 < g < 1,

and
(101)

Thus
(102)

In this case the bound contains a term log 2 instead of log A:, for a predetermined 
k.

We finish with some considerations about measures for which the measure theo­
retic q—entropy equals the topological one. If μ is the I —,—,......,7- ¡-measure product

\k k kJ
in BS(po,pii....,pk-i), we have, for 0 < g < 1,

(103)

So, for the 7,..... iVmeasure product, topological and measure-theoretic
\k k kJ

9—entropies (with Q < q < 1) agree.
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