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Resumen / Las eyecciones coronales de masa (ECM) son un factor determinante del clima espacial y, por lo 
tanto, pueden tener impactos tecnológicos y sociales negativos importantes. Para poder predecir su geoefectividad, 
es crucial su identificación en imágenes de coronógrafos. En la última década, las redes neuronales profundas 
(RNP) han experimentado enormes mejoras para resolver diversas tareas relacionadas con la visualization por 
computadora. Un problema al intentar utilizar RNP para la segmentación de una ECM, es que no existe un 
conjunto de datos grande y curado en la literatura que pueda utilizarse para el entrenamiento supervisado. Hemos 
creado un conjunto de datos sintético de imágenes de coronógrafos de ECM que incorpora las características 
principales de interés, combinando imágenes reales de coronógrafos, con ECM sintéticas obtenidas mediante el 
modelo geométrico Graduated Cylindrical Shell (CCS). Presentamos el entrenamiento y rendimiento preliminar 
de una RNP que permite identificar y segmentar la envoltura exterior de una ECM en imágenes de coronógrafos. 
La RNP se basa en un ajuste fino del modelo MaskR.-CNN, y produce una máscara de segmentación similar a la 
del GCS de la ECM presenté «n una única imagen diferencial del coronágrafo. Comparamos nuestros resultados 
con los de otros dos algoritmos clásicos usados para segmentar ECM.

Abstract / Coronal mass ejections (CMEs) are a major driver of space weather and thus can have important 
negative technological and social impacts. To assess their geoefiectiveness once they are ejected, it is crucial their 
prompt identification in coronagraph images. In the last decade, deep neural networks (DNN) have experienced 
enormous improvements in solving various machine-vision related tasks. One issue when trying to use DNN for 
CME segmentation, using coronagraph images, is that no large curated dataset exists in the literature that can be 
used for supervised training. We have produced a synthetic dataset of CME coronagraph images that incorporates 
the main features of interest, by combining actual quiet (no CME) coronagraph images with synthetic CMEs 
simulated using the Graduated Cylindrical Shell (GCS) geometric model. In this work, we present preliminary 
results of a DNN trained to identify and segment the outer envelope of CMEs. This is done by fine-tuning a pre­
trained MaskR.-CNN model, to produce a GCS-like mask of the CME, present in a single differential coronagraphic 
image. We compare our results with two other classic CME segmentation algorithms.
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1. Introduction

Given the current inability to forecast the occurrence of 
coronal mass ejections (CMEs), evaluating their geoef­
fectiveness is crucial. Accurate identification of CMEs 
in coronagraph images and the characterization of their 
morphology in three dimensions (3D) is essential for this 
task. However, up to date, CMEs have been imaged 
using coronagraphs located at only three different van­
tage points in the best case, e.g., those of the Solar and 
Heliospheric Observatory (SoHO) and Solar Terrestrial 
Relations Observatory (STEREO) space missions. To 
overcome this ill-posed problem, the Graduated Cylin­
drical Shell model (Thernisien et ah, 2009) uses a simple 
croissant-like shell that depends only on six parameters. 
The GCS model is widely used in the literature to ad­
just the outer envelope of CMEs observed in differential 
coronagraph images, acquired simultaneously from two

or three viewpoints. This procedure is almost exclu­
sively done manually, by comparing only morphological 
aspects. This given that an automatic fit by minimiz­
ing the difference between model and measured bright­
ness levels, is difficult because it requires: (a) modeling 
the rapidly changing CME internal density distribution 
and its associated brightness, and (b) identifying in the 
coronagraph images the sections (pixels) belonging to 
the CME structure and assessing their total brightness. 
Task (b) is particularly complicated because CMEs can 
be highly amorphous, and their brightness is noisy and 
faint compared to an also dynamic background, among 
other reasons. Moreover, when using differential images 
to reduce the background influence, different sections of 
the CME internal structure may appear at various dif­
ferential brightness levels due to the inhomogeneous 3D 
velocity field of the CME internal material. This makes
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it very difficult or even impossible to identify the true 
CME outer shell predominant morphology. In this work, 
we explore deep neural networks to tackle the identifi­
cation of CMEs using a GCS-based segmentation mask.

Automatic CME identification in coronagraph im­
ages and estimation of their basic morphological and 
kinematic parameters, such as angular width (AW), the 
central position angle (CPA), the apex distance, and 
velocity, have been approached using both manual and 
automated techniques. The manual identification relies 
on a trained operator, e.g., the Coordinated Data Anal­
ysis Workshop (CDAW) Large Angle and Spectrometric 
Coronagraph Experiment (LASCO) CME catalog, and 
is subjective and unsuitable for real-time applications. 
The automated approach groups various traditional and 
machine learning algorithms, which rely on identifying 
in a single image or a time series, the areas (pixels) 
belonging to the CME. Some examples of the auto­
mated approach are the Solar Eruptive Event Detection 
System (SEEDS) (Olmedo et ah, 2008) and Coronal 
SEgmentation Technique (CORSET) (Goussies et ah, 
2010) algorithms, and the CME Automatic detection 
and tracking with MachinE Learning (CAMEL) (Wang 
et ah, 2019) and Alshehhi(Alshehhi & Marpu, 2021) 
neural network-based methods. The automated meth­
ods are based on differential brightness changes and typ­
ically do not impose a strong constraint on the identified 
CME shape. This complicates modeling the identified 
region using a simply connected shape, like the one de­
rived from parametric models such as the GCS. We pro­
pose a DNN-based model to segment individual CME 
images that produce GCS-like segmentation masks.

2. Synthetic CMEs training dataset
It consists of 1.5 x 105 synthetic images [515x512] pixels, 
their associated masks, labels, and bounding boxes for 
CME and occulter, see Fig. 1. The synthetic images are 
formed by adding: (1) a background corona randomly 
selected from a curated database of STEREO/COR2 
differential images with no CME present in the field of 
view, (2) a synthetic occulter according to the back­
ground image, (3) a synthetic CME differential bright­
ness image, and (4) Gaussian noise. The image in (3) 
is obtained by applying ray tracing to the density dis­
tribution derived from the GCS model. Three model 
evaluations are used, the first (btot) is evaluated with 
random input parameters from a predefined range, the 
second (btot_inner) is evaluated as btot except that the 
GCS height parameter is multiplied by a random scaling 
factor in the [0.55-0.85] range, the third (btot_outer) is 
evaluated as btot_inner but using a second scaling of 
1.2. The relative intensities of all these components are 
randomized within a predefined range.

3. Deep neural network model for CME 
segmentation

We use the Mask R-CNN (He et ah, 2017) model, de­
signed to perform semantic detection and segmentation 
of multiple objects in a single image. The architecture of

this model is formed by combining a deep convolutional 
backbone for feature extraction, a ResNet-50-FPN 
(www.pytorch.org/vision/main/models), followed by 
a two-channel head. Channel one is a fully connected 
multilayer perceptron that outputs the object bounding- 
box location and its label. Channel two is a 2-to-4-layer 
convolutional network that outputs the object mask, 
i.e., one scalar score value per pixel within the bounding 
box that quantifies the probability of the pixel to belong 
to the object. The Mask R-CNN loss is a combination 
of errors in the inferred boxes, labels and masks. We 
use fine tuning to train the model. This means that we 
first load the 4.6 x 10' Mask R-CNN parameters pre­
trained on the COCO (Common Objects in Context) 
image dataset ( 8 x 105 images, 100 classes). After that, 
we freeze the first two layers, i.e., they are not trained, 
before doing supervised training in 90% of our synthetic 
CME dataset. We train for 1 x 105 batches of eigth im­
ages each, which are randomly rotated and normalized 
to the [0-1] range before feeding the model. We select 
the pixel threshold value of 0.5, which minimizes the 
model test loss (relative difference in the mask areas) 
on the remaining 10% of the dataset.

4. Preliminary Results
For each input image, the trained model produces mul­
tiple masks of varied accuracies. This can be due 
to highly dynamic background structures, slow and/or 
faint CMEs, or the presence of multiple CMEs simulta­
neously, see Fig. 2 and 3 . To select the appropriate 
mask for a given image, we do not rely solely on their 
score (as commonly done in other MASK R-CNN imple­
mentations) but use their morphological (AW and CPA) 
consistency among all the masks found in the images of 
a time series belonging to the same CME event, see Fig. 
2. .......

CPA and AW for each mask are taken as the median 
and 95-to-5 percentiles difference of the mask pixel an­
gular distribution around the occulter, respectively. If 
no consistent mask is found for a given image, then no 
detection is reported. If there are less than two masks 
per CME event, the event is left with no detection. As 
a first validation, we compare the event minimum AW 
and median CPA computed with our neural segmenta­
tion and the values given by the SEEDS and Vourlidas 
(VourIidas et ah, 2017) catalogs for 35 CMEs taken from 
the Coronal Mass Ejection Kinematic Database Cat­
alogue ( KINCAT) catalog (www.affects-fp7.eu), see 
Fig. 4. We expect Vourlidas to be more accurate than 
SEEDS because events are manually selected, and the 
CME is masked using the CORSET algorithm. The 
CPA correlation is high with both catalogs; with the 
outliers belong to cases where SEEDS (see an example 
in Fig. 5) or Vourlidas (see an example in Fig. 6) 
detections failed. The AW correlation is much lower, 
with our estimations being typically larger than Vourl­
idas and lower than SEEDS (which is generally unre­
liable because it is pixel-based). An extra comparison 
with AW in the KINCAT catalog using GCS estima­
tions will quantify AW estimation errors.

BAAA, 65, 2024

18

http://www.pytorch.org/vision/main/models
http://www.affects-fp7.eu


Iglesias et. al.

Fig. 1. Synthetic GCS-based differential brightness coronagraph image (left) and its associated binary masks for labels 
CME (center) and occulter (right).

Fig. 2. Masks found in real LASCO C2 differential images acquired on 24 April 2013 at 06:59 UT (a) and 07:23 UT (b). 
We show only masks with score > 0.25. The final selected masks are presented in panels (c) and (d). The corresponding 
rectangular bounding boxes are computed from the masks using the Python function Cv2.boundingRect().

Fig. 3. SOHO/LASCO C2 24 April 2013 at 04:23 UT showing the masks found for two CMEs

5. Conclusions and future work
Based on these preliminary results, we conclude:

• Our synthetic CME images do contain the main fea­
tures that allow the neural network to segment the 
CME outer envelope using a simple, fully connected 
geometric mask in most of the cases.

• The MaskR-CNN model architecture, particularly 
the depth of the convolutional backbone, seems 
enough to capture the relevant image features to seg­
ment CMEs.

• Basic morphological parameters such as CPA and

AW derived from our GCS-based mask are in agree­
ment with those derived from other methods. How­
ever, while the CPA correlation is high (> 85%), 
the dispersion of the derived AWs is more sensitive 
to the correct shape.

• Cases of wrong detections with our NN seem to be 
related to CMEs that present strong elements not 
included in the synthetic dataset, such as leading 
shock or deflected streamers.

To further improve the segmentation quality we plan to:
• Increase dataset size and include in the synthetic 

images other important elements, such as the leading
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Fig. 4. CPA (left) and AW (right) estimated with SEEDS and Vourlidas (see the legend) vs. our estimation (horizontal 
axis). The outliers in CPA are shown in Figs. 5 to 8.

Fig. 5. SECCHI/COR2-A 02 June 2008 at 06:37 UT. Our 
(left) and SEEDS (right) wrong detection (AW too large).

Fig. 6. SECCHI/ COR2-A 04 August 2009 at 22:07 UT. 
Vourlidas (left) failed detection vs. ours (right). Vourdilas 
reports outflowing background material, which is likely the 
cause of the false detection.

shock and deflected lateral streamers.
• Use a neural model that can ingest many time­

instants simultaneously.
• Compare the mask derived with our NN and the 

other algorithms with the masks derived by manual 
CCS fitting, considering the latter as a ground truth. 
This can help to devise wich method derives better 
CME properties such as the AW.
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