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Resumen / En este trabajo se analizó el origen físico de las inhomogeneidades primordiales durante la era 
inflacionaria. El marco teórico propuesto está basado, por un lado, en el contexto de gravedad semiclásica donde 
solamente se cuantizan los campos de materia y no la métrica espacio-temporal. Por otro lado, se incorpora un 
mecanismo de colapsos objetivos basado en el modelo de Localización Continua Espontánea (CSL por sus siglas 
en inglés), el cual es aplicado a la función de onda asociada al campo inflatón. Esto es introducido para atender la 
relación cercana entre la cosmología y el llamado “problema de la medición” en Mecánica Cuántica. En particular, 
para romper las simetrías asumidas para el vacío de Bunch-Davies inicial y así obtener las inhomogeneidades 
observadas hoy, la teoría necesita de algo similar a una “medición”, ya que la evolución lineal dada por la ecuación 
de Schrodinger no rompe simetrías iniciales. El colapso dado por el modelo CSL provee un mecanismo satisfactorio 
de ruptura de las simetrías iniciales del vacío de Bunch-Davies. El aspecto novedoso en este trabajo es que el 
modelo CSL propuesto surge a partir de las elecciones más simples para el parámetro y operador de colapso, 
obteniéndose un espectro primordial que tiene las mismas características distintivas del espectro estándar, y que 
es consistente con las observaciones del Fondo Cósmico de Microondas.

Abstract / In this work we analyzed the physical origin of the primordial inhomogeneities during the inflation 
era. The proposed framework is based, on the one hand, on semiclassical gravity, in which only the matter fields 
are quantized and not the spacetime metric. Secondly, we incorporate an objective collapse mechanism based on 
the Continuous Spontaneous Localization (CSL) model, and we apply it to the wavefunction associated with the 
inflaton field. This is introduced due to the close relation between cosmology and the so-called “measurement 
problem” in Quantum Mechanics. In particular, in order to break the homogeneity and isotropy of the initial 
Bunch-Davies vacuum, and thus obtain the inhomogeneities observed today, the theory requires something akin 
to a “measurement” (in the traditional sense of Quantum Mechanics). This is because the linear evolution driven 
by Schrodinger’s equation does not break any initial symmetry. The collapse mechanism given by the CSL model 
provides a satisfactory mechanism for breaking the initial symmetries of the Bunch-Davies vacuum. The novel 
aspect in this work is that the constructed CSL model arises from the simplest choices for the collapse parameter 
and operator. From these considerations, we obtain a primordial spectrum that has the same distinctive features 
as the standard one. which is consistent with the observations from the Cosmic Microwave Background.
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1. Introduction

The current cosmological model provides a description 
of the evolution of the Universe, in which the seeds of 
structure originate from quantum fluctuations during an 
inflationary stage (Guth, 1981; Mukhanov et ah, 1992). 
The predictions have been tested with success in obser­
vations of the Cosmic Microwave Background (CMB) 
(Planck Collaboration et ah, 2020).

In this standard approach the primordial power spec­
trum is calculated quantizing both the metric and mat­
ter fields. The Universe is pretended to be in an ini­
tial symmetric state, and the usual choice is to adopt 
the Bunch-Davies (BD) vacuum. This initial symmetric 
state is found to evolve into an asymmetric one, with 
the inhomogeneities expected to be found in the matter 
and energy distribution today. The mechanism respon­

sible for this transition, in the standard model, is the 
fluctuations of the vacuum state of the inflaton field. 
In practice, the theoretical prediction is consistent with 
the CMB observations, and, in particular, for the large 
scale modes for which the Sachs-Wolfe effect is dom­
inant (Sachs & Wolfe, 1967). This corresponds with 
the so-called super-horizon modes, i.e. inhomogeneities 
that are not affected by microphysics since they are at 
scales bigger than the particle horizon at decoupling. 
The power spectrum obtained from standard inflation, 
denominated Harrison-Zel’dovich spectrum (Harrison, 
1970; Zel’dovich, 1972), is scale invariant and given by 
the following expression:

/ / /2 \ 2 n2
p^k^i^A = —(1) 
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where Hj is the Hubble parameter during inflation, ó is
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the scalar inflaton field, Mp is the Planck mass, and e 
is the slow-roll parameter. For a complete derivation it 
is suggested to check Sriramkumar (2009).

However, the physical origin for the primordial per­
turbations remains unclear, and in Sect. 2.1 we will 
discuss the standard explanation and why we find it in­
appropriate.

2. The measurement problem in Quantum 
Mechanics

In Sect. 1 we mentioned the fluctuations of the infla­
ton field in the vacuum state as the mechanism that 
originates the primordial inhomogeneities in the Uni­
verse. We find this argument difficult to justify and it is 
closely related to the so-called measurement problem in 
Quantum Physics (Maudlin, 1995; Okon, 2014; Norsen, 
2017). ' . - -

In Quantum Mechanics the equation that describes 
the temporal evolution of a system from an initial state 
is the Schrodinger equation:

inl\^ = H\<t^, (2)

where H is the Hamiltonian operator and h is the re­
duced Planck constant. On the other hand, if an exter­
nal agent (of ambiguous nature intended by the theory) 
makes a measurement of a property of the system, the 
wavefunction will collapse and the state will be an eigen­
state of the respective operator. This process is random 
with the probability given by Born’s rule.

The evolution given by the Schrodinger equation, by 
itself, is not capable of breaking initial symmetries*  and 
superpositions of a system. The theory needs the mea­
surement postulate in order to connect the formalism 
with the observations, and such a mechanism provokes 
the collapse of the wave function. This leads to the fol­
lowing questions: What is a measurement? Who can 
perform one? When does it happen? When do we have 
to use the evolution given by Schrodinger equation and 
when the random process that collapses the wavefunc­
tion i.e. the measurement postulate? This is the so 
called ‘‘measurement problem'’.

* Given that [Ó. // = 0, with Ô being the symmetry gen­
erating operator.

In Maudlin (1995) the measurement problem is ap­
proached formally, synthesizing it in the incompatibility 
of the following statements:
(i) The physical description provided by the state vector 

is complete.
(ii) Quantum states always evolve according to the 

Schrodinger equation.
(iii) Measurements always have definite results.

Any alternative to the standard quantum formalism 
that aspires to address the measurement problem must 
negate at least one of these points. In our case, we 
will explore a possibility that negates (ii). Alternative 
approaches that discard the other two statements can be 
seen in Bell (1982) for (i), in the known as de Broglie- 
Bohm model, and Schlosshauer-Selbach (2007) for (iii), 
where decoherence is explored.

By negating (ii) we need to explore theories in which 
the collapse of the wavefunction is self induced by some 
novel mechanism. These models are known as objecting 
collapse theories. This approach was first explored in 
works like Pearle (1976), Diosi (1984, 1987, 1989) and 
Penrose (1989), with the aim of obtaining a theory that 
maintains the successful predictions of Quantum Me­
chanics and can also describe macroscopic phenomena 
that do not exhibit superposition of states.

In particular, we will use a version of the model 
called Continuous Spontaneous Localization (CSL), 
which proposes an objective collapse of the wave function 
(Pearle, 1976, 1989). The quantum-to-classical transi­
tion of the perturbations is naturally explained by the 
CSL model.

2.1. The cosmological scenario

In cosmology the measurement problem is enhanced 
(Bell, 1981; Hartle, 1993; Perez et ah, 2006; Sudarsky, 
2011; Landau et ah, 2013; Bengochea, 2020). We will 
briefly describe the issue here.

At the beginning of the inflation stage, both space­
time and the quantum state of the inflaton field are as­
sumed to be isotropic and homogeneous. Then, as in 
any quantum system, the expected values and quantum 
uncertainties of the quantum field in that vacuum state 
can be calculated. On the other hand, until a “mea­
surement” is performed, the system will continue having 
the initial symmetries if its evolution is dictated by the 
Schrodinger equation, which does not break any symme­
try. However, today we see the initial symmetries bro­
ken, characterized in the anisotropies of the CMB, and 
also in the structure formation in the Universe. How do 
we arrive to an asymmetric state from a symmetric one? 
Usual Quantum Mechanics needs the measurement pos­
tulate in order to break symmetries but, in the early 
Universe, the same questions exposed before emerge: 
who can make a measurement that breaks symmetries? 
How is it made in that scenario?

Standard cosmology tries to answer this problem by 
invoking the Uncertainty Principle and the quantum 
vacuum fluctuations as the mechanism generator of the 
seeds of structure. This would mean that the quan­
tum fluctuations have a real existence in the Universe 
and that the quantum field have real, random but well- 
defined values at every time. We find this problematic 
since quantum fluctuations are uncertainties and, thus, 
the only thing they can provide is the range of the most 
probable values (together with Born’s rule) if a mea­
surement is made. Quantum fluctuations are not 
equivalent to inhomogeneities.

3. Continuous Spontaneous Localization
The Continuous Spontaneous Localization model con­
sists of a non linear modification of the Schrodinger 
equation, to which a stochastic term is added. This 
model is a generalization of the previously pro­
posed Quantum Mechanics of Spontaneous Localization 
(QMSL), or GRW model after its authors (Ghirardi, Ri­
mini and Weber ) (Ghirardi et ah, 1986). As the name
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suggests, in CSL the collapse of the wave function occurs 
continuously, whereas in GRW the collapse is discrete.

CSL has two main equations and their derivation can 
be found in Pearle (2012). Since we are interested in 
introducing the CSL mechanism in a cosmological con­
text, we will use an adaptation of them to this scenario. 
The first equation is a modification of the Schrodinger 
equation to which a non-linear stochastic term is added.
The modified evolution equation is:

|<I>, 77) = Texp ¿7Í

~ ^^^’^ 2AC(/7.x))2

In this expression $ represents the wavefunction asso­
ciated with the quantum state of the inhomogeneous 
part of the inflaton field, d^]d3x^y\g\ is the 4-volume of 
the background Friedmann-Lemaitre-Robertson-Walker 
(FLRW) metric, t —>• —00 the conformal time at the 
beginning of inflation and 77 is the Hamiltonian density 
of the system such that H = J d3xTL. C is the collapse 
operator to which one of its eigenstates will collapse the 
system. A represents the collapse rate and character­
izes the amplification mechanism of the theory, that is, 
the collapse being rare for microscopic systems as ex­
pected by standard Quantum Mechanics, and increas­
ing this effect to the level of being notable for systems 
with enough energy to be considered macroscopic. The 
choices for these two terms will be discussed in the Sect.
4. W is a scalar white noise field and its probability rule 
in this case is:

P(W)dW = ($,77^,77) n ^£^^ W

Since we are working with conformal time as the time 
coordinate, we can see that y/|gj = a4, with a the usual 
scale factor in FLRW geometry.

The random nature of W in (3) is needed because 
the collapse toward an eigenstate of the collapse opera­
tor needs to be random, in order to replicate the predic­
tions of Quantum Mechanics. Then, different systems 
starting each one in the same initial state will evolve 
toward different eigenstates. We are interested in the 
evolution of this ensemble of systems and, to describe 
it, we introduce the density matrix:

p= Í P(W)dW (5)
7-00 ($,771 $,77) v '

and, combining this expression with (3) the following 
evolution equation can be found:

||=-z[H,p]-/ d3x\C.\C.pfi (6)
1/7/ Z J

4. Collapse in Inflation
4.1. Semiclassical gravity

In this work we will employ the semiclassical gravity 
(SCG) framework, as in previous works like (Perez et ah, 
2006), where the collapse proposal for cosmology was 
originally introduced. The semiclassical Einstein equa­
tions are simply:

G^=8^G(T^), (7)

with G^v the Einstein tensor and T^v the energy­
momentum tensor. In this model only T^, is quantized 
and its expectation value acts as source of spacetime 
curvature. SCG presents two main advantages (León & 
Bengochea, 2021):

• It is not needed to justify the “quantum-to-classical” 
transition in the metric as the spacetime is always 
taken as classical. When including the CSL mech­
anism the collapse of the wave function is regarded 
as a physical process happening in time, and then is 
preferred to admit full spacetime notions.

• It facilitates presenting how the perturbations are 
born from the wavefunction collapse, since the ex­
pectation value of the energy-momentum tensor in 
SCG yields a geometry that will not be homogeneous 
and isotropic after the collapse has taken place.
Nevertheless, CSL calculations with the standard 

quantization of both spacetime metric and matter fields 
have been done, for example in León & Bengochea 
(2016) and Palermo et al. (2022). For a complete discus­
sion about the advantages and disadvantages of SCG ap­
proach the interested reader can check Bengochea et al. 
(2020). ~

4.2. Collapse parameter and operator

As mentioned before, A represents the collapse rate. 
Diosi (1984, 1987, 1989) and Penrose (1996) discuss that 
the collapse mechanism should be a dynamical process 
related to gravitational interaction. Taking this into ac­
count, Bengochea et al. (2020) and León & Bengochea 
(2021) consider that A has to be related to the space­
time curvature, and several parameterizations can be 
considered involving the different mathematical quan­
tities that emerge from the curvature. The simplest 
choice that we can do is to use the Ricci scalar and, 
thus, having the following expression:

X=X M
z "\L X°MP'

where Aq ~ ION1 is estimated from laboratory ex­
periments and Hi is the quasi constant Hubble param­
eter in slow-roll inflation.

Although the simplest, this choice for A is novel since 
in previous works like Cahate et al. (2013), León & Ben­
gochea (2016), León & Bengochea (2021) and Palermo 
et al. (2022) the parameter was not considered as a con­
stant and needed to be properly adjusted in order to be 
consistent with observations. On the other hand, more 
sophisticated parameterizations can potentially lead to 
better predictions for the primordial spectra.

We turn our attention to the collapse operator C 
in (3). Following the criterion of choosing the simplest 
quantity, we will use the field variable itself, this means 
the collapse operator will be the inhomogeneous part of 
the inflaton field:

C = Ñ. (9)

4.3. Primordial power spectrum

We will show now the relation between the primordial 
curvature perturbation and the CSL mechanism. For
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a complete derivation the reader is invited to see León 
& Bengochea (2021) and, in particular for this work, 
Ocampo (2023).

Using the perturbed Einstein equations in the lon­
gitudinal gauge (Mukhanov et ah, 1992; Mukhanov, 
2005), and the definition of the slow-roll parameter e, 
we can obtain (León & Bengochea, 2021):

xs + h-1^^^^-, (10)
y ¿ alVlp

where ’P is a scalar field corresponding to the scalar per­
turbations at first order and, in the longitudinal gauge, 
represents the curvature perturbation. TL is the co­
moving Hubble parameter and y = aS^>. This expres­
sion is exact, with no approximations made, and relates 
the quantum expectation value of the matter fields and 
the classical curvature perturbations. Since the matter 
fields follow the evolution driven by CSL equation, we 
have derived an expression that relates the CSL mecha­
nism (present in (y)) to the scalar perturbations of the 
metric (given by T}.

Next, we introduce the Lukash variable (Lukash, 
1980), and using the slow-roll approximation, we can 
relate it to the last expression as follows:

77~-(4rU>')---- (11)
e aMPV2e

The variable 77 also represents, in the comoving gauge, 
the curvature perturbation. The associated scalar power 
spectrum is defined in Fourier space as:

^kUq = PpfkW - q), (12)

where the bar indicates an ensemble average over the 
field 77k- Since 77 is a gauge invariant quantity, we can 
compute it in the Newtonian gauge and then switch to 
the comoving gauge in order to compute the resultant 
power spectrum. This will be:

^^-^-to^^w- (13>
Finally, using the CSL parameter and operator cho­

sen in the previous section, we can obtain the follow­
ing expression for the scalar power spectrum (Ocampo, 
2023): ' '

/ x / 4An7r\ , .W^U^)' (14>
this means, the same standard Harrison-Zel’dovich spec­
trum plus a factor dependent of Aq. This factor, in 
Planck units, results Aq ~ 10 1,1 Mp and, thus, we can 
neglect it recovering (1).

5. Conclusions
In this work we discussed the measurement problem in 
Quantum Physics and its relevance to the cosmological 
scenario, in which the lack of an external observer for 
the early Universe (or even a good definition for a mea­
surement) leads to a problem for breaking the primor­
dial symmetries. We explained why we find the stan­
dard approach unsatisfactory due to the inappropriate

treatment of quantum uncertainties as physical inhomo­
geneities.

Then, we introduced the CSL model which incorpo­
rates an objective collapse mechanism for the wavefunc­
tion and chose the simplest options for the collapse rate 
parameter A and the collapse operator C. With these 
choices we computed the primordial scalar power spec­
trum, obtaining an equal expression to the traditional 
one. This means that the CSL mechanism provides a 
plausible explanation for the quantum origin for the pri­
mordial perturbations and, with even the simplest pa­
rameterization, can lead to a spectrum consistent with 
observations.
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