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Abstract

We present an a posterior) error estimator for a mixed finite element method
for the Reissner-Mindlin plate model The finite element method we deal with
was analyzed in [16] and can also be seen as a particular example of the general
family analyzed in [13]. The estimator is based on the evaluation of the residual
of the finite element solution. We show that the-estimator yields locally lower and
globally upper bounds of the error in the numerical solution in a natural norm
for the problem. which includes the H! norms of the terms corresponding to the
deflection and the rotation and a dual norm for the shearing force. The estimates
are valid uniformly with respect to the plate thickness

1 Introduction

In the implementation of numerical methods for approximation of partial differential
equations, the definition of a posteriori error estimators is the basic tool for adaptive
mesh-refinement techniques, necessary when we are in presence of local singularities of
the solution.

In this paper we present an a posteriori error estimator for the finite element approxi-
mation of the Reissner-Mindlin plate model. which describes the displacement of a plate
with moderate thickness subject to a transverse load. The definition of the estimator is
based on the evaluation of the residual of the finite element solution.

Several a posteriori error estimators have been defined for different linear and nonlinear
elliptic problems by using the residual equations (see for example (3, 4. 5, 15. 20, 21})

For a fixed plate thickness the Reissner Mindlin plate model is a linear elliptic problem.
But for small thickness the ellipticity constant deteriorates and makes difficult the treat-
ment of the problem. In particular in the definition of an estimator the main difficulty is
the attainment of equivalence with an error norm, independently of the plate thickness.

For the numerical solution of the Reissner-Mindlin equations there are several mixed
finite element methods which present good approximation of the solutions (2, 6, 7, 9, 10.
11, 16, 18] and are free from locking (8, 12, 13, 16, 18].
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We present an a poeteriori error estimator for a method analyzed in {16] which can
also be seen as a particular example of the general family analyzed in {13].

We define the error estimator for the H' norm of the deflection and the rotation, and
for a sum of norms for the shear force which includes the Ho(rot)’ norm, and show that
it yields locally lower and globally upper bounds of the error in the numerical solution,
valid uniformly with respect to the plate thickness. It must be remarked that even though
these norms are natural for the problem: in particular the inf — sup condition holds for
the Ho(rot) norm [12] and. when t — 0, Hg(rot)' becomes the appropiatre space for the
shear, convergence for the shear force in this dual norm has not been proved, as far as we
know

The rest of the paper is organized as follows. In section 2 we introduce the Reissner-
Mindlin model and we analyze its approximation with the finite element method. We
also give an aditional a priori estimate related with the L? norm of the error in the rotor
of the shear force. In section 3 we define a weak norm for the error in the rotation and
in the shear force and obtain estimates for this norm. Finally in section 4, we define the
estimator for the whole error and show the corresponding relations beetwen the estimator
and the natural error norm.

2 The Reissner-Mindlin equations and mixed finite
element approximation
Let @ x [—t/2,t/2] be the region occupied by the undeformed elastic plate of thickness
0<t<]1, where Q C R? is a simply connected polygon.
Let us denote by w and 3 the transverse displacement of the midsection of the plate
and the rotation of fibers normals to it, respectively. Then, assuming for simplcity, that

the plate is clamped along the boundary of (2, the Reissner-Mindlin problem is:
Find w € Hy(?) and 8 € HY(Q) , such that

ta(8,1) + M(Vw - B,V¢—n) = (9,() Vn € Hy(Q) ,¥( € Ho(Q) (2.1)

where ( , ) denotes the scalar product in either L*(Q2) or L*(Q2), and a(f3,7) is a coercive
and continuous bilinear form, defined by

(8,7) = =3 [, D=8 =)

where =(n) is the symmetric part of the gradient of n, D is defined by
DY ={(1 = v)Y + vtr(T)I]

E is the Young modulus, v is the Poisson ratio, A = Ek/2(1 4+ v), where k is the shear
correction factor, and g represents the transverse load.

To analyze the problem for small values of t, ¢ is scaled in the form g = £3f |
that the solution tends to a nonzero limit as t tends to zero [12]. Taking, for the sake of
simplicity A = 1, and introducing,

N =t} (Vw - B) | (2.2)
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the equation (2.1) can be written equivalently as,
" a(B,m) + (7, V(-n) = (f,¢) VneHyQ), V(e Hy(Q)

| #0700 = (Vw—-B,x) =0 vy e LAQ)

which in the limit ¢ — 0 takes the form of a saddle point problem.
Let

Ho(rot, Q) = {x € L¥(Q) :rot(x) € L*(Q) and x.T = 0 on 9N}
where 02 denotes the boundary of (! and

“X“HO(rot,Q) = |Ixllo + lIrotxllo

The following Proposition, which is proved in [12), gives a descomposition for any
x € Ho(rot, ) , showing also that v € Ho(rot, ).

Proposition 2.1 Let B defined on HY(Q) x Hy(Q) by:

B:(n,¢)— (V(-mn)

The mapping B is surjective onto the space Ho(rot, 1) and for every x € Ho(rot, Q) there
ezists (n,¢) € HY(Q) x HY(Q) such that

x=V(-n
and
IV<llo + limlls < C{llxllo + lirotxlio}
with C independent of x. 0
Let

T = Ho(rot, Q) = {x € HY(Q)/divy € H ()}

with the definition of the norm

IxXIE = IxlZy + ldioxllZ,

which is equivalent to the dual norm.
From this follows inmediately that the following :nf — sup condition holds:

sup (V e
(71, () € H;(Q) X Hi(Q) _C__’X_)_

Y r '
(n,¢) # (0,0) Il ol = Xl Ve (2.4)

Let {Tn}gcne De a regular family of triangulations of (1, where h stands for the
maximum diameter of the elements in the triangulation 7,. In order to define a mixed
finite element approximation we have to give finite element spaces for the rotations, the



transverse displacement and the shear strain. Also we have to define an operator, usually
some kind of interpolation, in order to relax the discrete equation corresponding to (2.2).

We use the standard notation P,, for the space of polynomials of degree less than or
equal to m and set P,, = Pp, x Pp,.

Given an element T', let {A;}, ., <5 be its barycentric coordinates and T, be the tangential
vector to the edge 8T; where \; = 0. We define,

¢, = A2 3Ty, 4’2 = A3\ T, and, ¢3 = A AT3

then, the finite element spaces for the method , Hy C H(R2) for the rotations.
Wi, C Hy(Q)) for the transverse displacement and, I’y C L%*(Q) for the shear strain.
are defined as follows,

Hy={n, € Hy(Q) :n4ly € P ®span{d,,¢;,¢3},VT € Ty}

W"- = {Ch € H(]](Q) :Chl']‘ € Plav T € Th}
and T, is a rotation of the lowest order Raviart-Thomas space [12],
Th={n, € Ho(rot,Q) :myl; € Po®(23,~21)Po,VT € Ti}
In particular the inclusion,
VW, T (2.5)

holds.
We define the interpolation operator IT for this method by ITn|r = n; where n; is
such that,

n;.Ti :/ n.T; 1=1,2,3 (2.6)
aT, aT,

and which satisfies

|ln — Tnllo < Chilnll, Vn € Hy(Q) (2.7)
Therefore the approximate solution (8, ws,¥,) € Hx x Wi x Ty, is defined by.

( a(Br, ) + (o, VE = IImy) = (f,¢h),  Ymy € Hy, V(€ Wi

(2.8)
Yh = 7 (Vwn — I18,,)
Also the discrete inf — sup condition holds for || . ||r, defined in an appropiate way [13].
For this method, it is known {13], {16] that when Q is a convex polygon,

18 = Bully + tlly = vallo + llw — wally < CR{IBI, + tlivlly + lIvlio} (2.9)

and also [13],
v = vall.o < CR{IBN; + tlivlly + lvllo) (2.10)

with

181, + tlvll, + livllo < Clifl (2.11)



In [17] it is also proved that
18 = Billo < CR*|Iflfg (2.12)

Here and hereafter C' denotes a constant which could depend on the minimum angle
of the triangulation but is independent of the thickness ¢ and the meshsize h. and the
symbol ||.|| denotes a norm over the region (2, if no explicit reference to the region is made

We add to this a priori estimates an estimate related with |jrot(y — v, )llo.

Lemma 2.1 Let ) be a convezr polygon, then
t*llrot(y = vi)llo < Chllfllg (2.13)
PROOF. From de definition of 4 and 4, it follows that
t'rot(y — v) = —rot(B - I1B,)

Then,
t*|lrot(y — yu)llo < llrot(8 — I B)ljo + ||rot(I1B —~ I18,)|lo (2.14)

It is known [12] that for n € He(rot,Q?) ,

rot(ITn) = Prot(n) (2.15)

where P denotes the L? proyection operator into @ := rot(I's) and

lirot(n — IIn)ljo < Ch|nli, (2.16)

From (2.14), (2.15) and (2.16) we obtain

tlirot(y — yu)llo < C{RIIBIl2 + 1B = Bulli} < CRliflo (2.17)

where the last inequality follows from the a priori estimates in (2.9) and (2.11), so (2.13)
is proved. O

3 Preliminary Error Estimates

Our first estimates are for the errors in the rotation and the shear force.
Let k be a fixed integer, k > 1. The estimator is defined for any T € 7}, as:

er = || P*flloxITIM? + }Sancor Nvandlloar, 0T .
(3.1)
+ ”diVDE(ﬁh) + ’7&.||0.T|T|1/2 + §26T,caT II[DE(ﬂh)nJJIIo,aT,|3T,|’/2

where P* is the L? projection onto Py, |T'| and |0T;| are the area of T and the length of
dT,, n, is the normal vector to the edge 97; and [.]; denote de jump of the corresponding
function across 97;.

Next we define a weak norm for the error in B and +, as the dual norm in Hy(Q) x
H{(Q) of the operator a(B — By, m) + (7 — ¥4, V{ — n), that is:
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sup |
1(B = Bu)s (¥ = v)llea = (1,¢) € Hi@) x Hi@) la(B = Bu,m) + (v =7, V( —n)|

(n,¢) # (0,0) limll + 1<l

(3.2)
For each T ¢ T}, let ) )
wT={UT€ThZTﬂT750}

Theorem 3.1 There ezxist two constants C; and C,, depending on the minimum angle of
the mesh such that

1B = Br)s (v =)l £ Cu 3 {er +If = P* fllox|T['/?} (3.3)
TETh
er < Colll(B = B1): (¥ = Ty + 3 IT1/2UF = Pl 1) (3.4)
TEwT

PROOF. From (2.3) we have

a(B =B+ (v=7, V(=)= (f.{) —a(Br.n) — (7. V(—1n) (3.3

For w € Hi(Q) or HY(N) we denote by w; € Hy(2) or HL(Q) respectively. a
piecewise linear average interpolant as defined in (14, 19], satisfying

lv — ¥r1llo < CR||¥|1 (3.6}

and
%1l < Cllwlh (3.71
Taking 1, = n; and {» = {; in (2.8), and subtracting it from (3.5) we get

a(B=Bpm+ (-7, V(-1n) =

(fs¢=¢)—aBrn—mnp) = (74, (VC=n) = (VG =) + (ymy —

= Sren {(£,¢=C01 = 3 Tomcor Jom, [Yam (¢ = ¢r) + (divD=(B4) + v,.m — my)7
— 5 Yorcat Jor, [DZ(Bp)ni] (m— 1)} + (vuomy — Hmy)

< Sren (UIflorll¢ = llor + 3 Tamcar Nvamllloor i€ — Crllost,

+ ldivDE(B,) + Talloxlln = millor + & Tomcor NDEBa)n lloom, I — nylloor,)

+ (vomy — ny)

< C Treq I flloxTIM? + 5 Tonicor [vanlslloor, 0T + ||[divDE(By) + Yullox | T1*

+ 3 Zomcor |[DE(Br)nilslloor 0T 21 HIlmll + Ik} + (vaoms — ny)
(3.%)



We are going now to bound the term (+v,,n; — ITn,;).

It is known ([17], Lemma 3.3) that for 1, as defined above, there exists ¢ € H}(Q)
such that ¢|r € P, and

Vo =n,-In;

In [17] it is also proved that ¢ vanishes at all the nodes of the triangulation. Let ¢, the
Lagrange interpolant of ¢. Then,

(Ynomy — ;) = (74, VE) = Tret, § Totcor Jor, [Yanil (6 — o)
< Zre’r,. %ZaTiCBT H[‘Yh“-]J“o,aT.”(P = d1llo,5,
< CYren, {2 Tomcar Nvamilsllosn 0TIV elor

< C¥rer, {8 Tomcar Hvand lloor 0T AT mll1 1}

where we have used (2.7) and (3.7) to obtain the last inequality.

This shows that the last inner product in (3.8), can be bounded by the previous terms
of the same expression.

From (3.8) and (3.9) we obtain:

la(B - B, m) + (v — 1. V( — 1)l ) . |
C —_ P o1lT '
il +11C1 SC T fer+If = PlorlTP?) 310

from which it follows (3.3).

In order to proof the inequality (3.4) we need the following lemma:

Lemma 3.1 Let T € T,. Given q € L}T). p € L*(38T), there exists j; € Pyi3 such
that

- (fr,r)r =(q,r)r  Vr € Py(T)

\ faTi NS = faT-, ps Vs € Py (0T) (3.11)

Ny =0 at the vertices of T.

and

lizllor < Clllallor + Y. 18T:1"2||plloor, ) (3.12)
8T, caT

In particular if p = 0 then NlsT = 0.

PROOF. The proof follows with arguments similar to those given in [1]. O

In particular the previous result is also valid for scalar functions, that is:



Lemma 3.2 Let T € 7,. Given g € L*(T), p € L*(0T), there ezists {1 € Piy3 such that

(G =(gr)r VrePy(T)

Jor, rs= o1, ps Vs € Py (07) (3.13)

\ C:T =0 at the vertices of T.

and

Irllor < Clllgllor + Y. 18T:?|pllo.sr, } (3.14)
AT, caT

In particular if p = 0 then C-Tla’r =0. a

Now for fixed T € T, we take

g = P*f|T| € Pi(T)
(3.15)
plat, = ;|10T.[v,nils, p € Py(OT)

and we take the corresponding CT defined in Lemma 3.2, making appropriate modifications
when T intercepts 9); whereas foreach T € wy, T # T, (|5 is defined by the same Lemma
taking now
g=20
_J0faTnaT =10 (3.16)
Plat, = [ the same as in (3.15) if 0T, N OT # 0

Let Q defined such that (lT = CT if T € wr and 0 outside of wr. From its definition
we see that ( € Hy(f2) . and

IP*flla7IT] + § Zotcor [ vandd I3 o1, 110T]
) ) ) _ (3.17)
= ZTewT{(‘YhavC)'i‘ + (Pkf'C)T} = (‘7}1 -7 v()wT + ZTEwT(Pkf - f’C)T

For the same fixed T we proceed in the same way and determine 7, applying (3.11)
for

—(divD=(8;) + ¥,)IT| € Py(T)

(3.1
plaTn = %[DE(,Bh)n,M@T,I, P € P](dT)
and n4 for Tewr. T#T. making the corresponding modifications as in (3.16).
Let 7 € Hy(Q!) defined as |7 = 91 if T € wr and 0 outside of wr. Then.
IdivD=(84) + ¥ull5 2T + § Toncor HDE(Br)nilsli o7, 10T |
(3.19)

= ZTewT{a(IBh’ﬁ) YoMt} = alBr = B, Mur + (Vo =7 —M)ur



Adding (3.17) and (3.19) we obtain

i 2 <C { |a(B = Br, Mor + (v = Yo VE = 1) N ZTﬁEWT(P"f - 1,04
HC“LW‘I‘ + 'nl lLwr HCHLW’I‘ + I‘ﬁ“l.wr HCHL’-‘JT + Hﬁ“l-wr
Stewr IP*f = Flloalillos
<C {Il(ﬂ — B (Y = Vi) llwr + =2 AL (3.20)
1<l wr + 1192l w7
Replacing (3.15) in (3.14) and (3.18) in (3.12), we get the following bound
ICllox + li7llox < CIT?er, for T € wr
and by standard scaling arguments we also get,
1w + l11ll1wr < Cer

Using these bounds in (3.20) it follows that

er < C{IB = Br), (v = Yi)llewr + 2 ITI2IP*f = flloz}

TEWT

so the Theorem is proved. O

4 Error estimator

Now we are able to define an estimator for the whole error. For any T € 7, we define it
as:

nr = er + By — I Bullor + lIrot(By — IIBy)ox (4.1)

Proposition 4.1 There ezists a constant C, such that

IVw — Vwallo + 1B = Bills + tly = Wallo + tllrot(y = vi)llo

(1.2)
<C Trendnr +If = P*fllorIT?}
ProoOF. Consider the expression
- ) - 7v -
|a(B = Bwm) + (v — ¥, V(- 1)l (4.3)

7l + [I<1I:

If we replace in (4.3) ( = w — wy and p = 3 — 3,, we obtain

la(B — Br,B — Br) + Iy — vulla + (v — ¥4, B — 118,
18 = Bl + [IVw — Vwsllo

SB=Br), (y=u)ll. (4.4)



Taking into account that 3, — IT@3, € Ho(rot, ), and according to Proposition 2.1. there
exist ¢ € H}(?) and v € H)(N) such that -

B,—IB,=Vy—-¢ (4.5)

with
IV¥llo + i@l < C{lIBx — TIBullo + lIrot(B), — TIB4)ll0} (4.6)
Replacing again in (4.3) ( = % and n = ¢, and using (4.6) we get

la(B — B, @) + (¥ = 74, Br — 118,)| < Cla(ﬂ =B @)+ (v — v, Vv — 9)|

18, — I Byllo + lIrot(B, — OB,)o ~ Vol + 12l (4.7)
< Cl(B = Br) (v = ¥l
Then,

(¥ = ¥, Br = IIBy)| <
C LB = Bu) (v = YullliBn — T Byllo + [rot(By, — TIBy)lo] + 1B — Bullslidlii }
< C{NB = Bu), (v = ¥ull«[IIBr = I Byllo + |rot(B,, — TIB,,)llo]
+ [II8r — I Bulo + lIrot(B, — IIB})llo] I8 — Bulir}
< C{IB = Br), (v = )lls + 1185 — T Bylio + lIrot(By, — IT18,)llo]
1B = Bulli + IVw = Vwallo + |8y — I Bylo + [Irot(8, — IIB),)]lo]}
where we have used continuity of a(,) to obtain the first inequality. and (4.6) to b(()iri;

ll®6ll: in the second inequality.
Returning to (4.4) we can see that

a(B — By, B - By) + v —7ull§ <
1B = Br)s (v = Yl 1B = Bully + IVw = Vws|lo + |8, — 1B, lo + lirot(8, — I B,)llo}

+ (¥ = ¥4, B — II13,)]

so, using coercivity of a(,) and (4.8) we also have o
18 = Bull} + 1y — ¥llg
< CHIB = Bu) (v = v)lls + 1By, — B lo + [[rot(B), — I, ]lo} (4.10
{18 — Bulls + IVw = Vwallo + I8, — I Bylo + lrot(8, — IT8,,lo}
From the definition of 4 and 7, we have the following identity:
Vw — Vw, = t*(y = 7,) + (8 — B4) + (B, — I18,) (4.1
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from which it follows that

IVw — Vwllo < tlly = allo + 18 = Bill + {185 — I B4llo (4.12)
Adding ||8, — I B, |I2 + |lrot(B, — I18,)||2 to both members in (4.10) and making use

of (4.12) we arrive to
18, — B4 + llrot(By, — LB + 1B = Bullf + 21y — v4ll§
S CNB = Bu)s (v — vulls +11Br = I Bylo + lIrot (B, — I1B4)ll0} (4.13)

{I1Bx = I B)llo + llrot(B, = IIB,)llo + 1B = Ballr + tily = Yallo}

from which we obtain

18 = I Bullo + lIrot(8y — B )llo + [IB = Balir + tlly = ¥allo

(4.14)
S CHB =B, (v =)« +11Br = I Byllo + [rot(8, — I18,)llo}
Also from (4.11) we have
t’rot(y — 4,) = —rot(B — By) — rot(B, — I13,) (4.15)
from which
t|rot(y = vu)llo < 1B = Bl + lirot (8, — 1IB,)llo (4.16)
From (4.12) and (4.16) we see that
t¥lrot(y — u)llo + [IVw = Vo + 18 — Bill + Ly — vxllo
(4.17)
< C{lIBy = I Byllo + llrot(By, — I By)llo + I8 = Ballr + thly — Yrllo}
From this inequality and (4.14) we get
tlrot(y = yulllo + IVw = Vwnllo + 118 = Bl + tlly = vallo
(4.1%)
< C{IB = Br)s (v = ¥ulll- + 1B = H By llo + lIrot(8, — IIB,)ljo}
Finally (4.2) follows easily from (4.18), using (3.3) and the definition of n7. O

Theorem 4.1 There ezist two constants C; and C, depending on the minimum angle of
the mesh such that

IVw = Vwsllo + 1B = Bl + tlirot(y — yu)llo + tlly = illo + [I7v — Yulir
(4.19
< Cy Srendnr +If = P*fllor|TIM?}

and

nr < Co{ll(B = B)lhwr + IV = Vwnllowr + ¥lirot(y = ya)llowr + Ly = Yallo.ws

+ 117 = ulirwr + Srewr ITIIS = P fllo 1}
14.20)
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PROOF. For the proof of the first inequality, taking into account Proposition 4.1. we have
to bound only ||¥ — v,]|r. For fixed n

a(B = Bnm) | (Y=Y

~1) < (B = Ba), (v = 1)ll-

llnll llmllx
From this '
Iy = all-1 S CLIB = Bulls + (B = Br), (v = ¥u)ll-} (4.21)
Also
Idiv(y = ¥p)ll-1 < 1B = Br)s (v =)l (4.22)

Combining (4.21) ,(4.22) and the results in Proposition 4.1 and Theorem 3.1. we arrive
to (4.19).

To obtain (4.20). we consider the bound for ¢ from Theorem 3.1. and the following
inequality:

1B = Br). (¥ = Yullewr S B = Bilhwr + 117 = Yall-1.wr + lldev(y = yi)ll-10p (423
On the other hand we obtain from (4.11)
18y — Byllor < IVw — Vwallor + 18 = Ballrr + tly = allor (4.24)
and from (4.15)

Irot(By ~ I By)llox < t*llrot(y = vu)llor + 118 = Bullir (4.25]

The proof is completed by adding (3.4). (4.24) and (4.25) and making use of (4.23).

Acknowledgments

[ want to thank Dr. R. Duran for his helpful comments.

References

[1] D.N. ARNOLD AND F. BREZZI, Mized and non conforming finite element methods
implementation, postprocessing and error estimates, R.A.LLR.O., Model. Math. Anal.
Numer. 19, 1985, pp. 7-32.

[2) D. N. ARNOLD AND R. S. FALK, A uniformly accurate finite element method for
the Reissner-Mindlin plate, SIAM J. Numer. Anal. 26 (1989), 1276-1290.

(3] I. BABUSKA AND A.MILLER, A feedback finite element method with a posterior:
error estimation. Part I: The finite element method and some basic properties of the
a posteriori error estimator, Comp. Meth. Appl. Mech. Eng. 61(1987). 1-40.

(4] I. BABUSKA AND W. C. RHEINBOLDT, A posteriort error estimators n the finule
element method, Int. J. Num er. Methods Eng.12(1978), 1587-1615.

12



[5]

[6]

7]

8]

[9]

[10]

1]

[12]

(13]

R. E. BANK AND A. WEISER, Some a posteriori error estimators for elliptic partial
differential equations, Math. Comp.44, (1985), 283-301.

K. J. BATHE AND F. BREZzl, On the convergence of a four-node plate

bending element based on Mindlin-Reissner plate theory and a mized interpolation,
MAFELAP V (J. R. Witheman,ed.), London, 1985, pp. 491-503.

K. J. BATHE AND F. BREZZI, ,A simplified analysis of two plate bending elements
- the MITC4 and MITCY elements, NUMETA 87(G. N. Pande and J.Middleton.

eds.), Numerical Techniques for Engineering Analysis and Design, vol. 1, Martinus

Nijhoff, Dordrecht, 1987.

K.J. BATHE, F. BREzZI AND M. FORTIN, Mized-interpolated elements for
Reissner-Mindlin plates, Int. J. Numer. Methods Eng.28(1989). 1787-1801.

K. J. BATHE AND E. N. DVORKIN, A four-node plate bending element based on
Mindlin Reissner plate theory and a mized interpolation, J. Numer. Methods Engrg.

21(1985),367-383.

F. Brezzi, K. J. BATHE, AND M. FORTIN, Mized interpolated elements for
Reissner-Mindlin plates, Internat. J. Numer. Methods Eng.28(1989). 1787-13801.

F. BREZZI AND M. FORTIN. Numerical approzimation of Mindlin-Reissner plates.
Math. Comp. 47 (1986), 151-158.

F. BREZZI AND M. FORTIN. Hybrid and mized finite element methods.Springer-
Verlag New York (1991).

F. BrREzzI. M. FORTIN AND R. STENBERG, Quast-optimal error bounds for

approzimation of shear stresses in Mindlin-Reissner plate models, Math. Models
Methods Appl. Sci. 1 (1991), 125-151.

P. CLEMENT. Approzimation by finite element functions using local regularization.
RAIRO Anal. Numer., 9 (1975) 77-84.

E. DaRrI, R. DurAN, C. PADRA, V. VAMPA A posterior: error estimators for
nonconforming finite element methods, M2AN(RAIRO)bf 30(3) (1996), 385-400.

R. DURAN AND E. LIBERMAN. On mized finite element methods for the Reissner-
Mindlin plate model, Math. Comp.58, Num. 198(1992), 561-573.

R.DURAN,L.HERVELLA-NIETO.E.LIBERMAN,R.RODRIGUEZ AND J.SOLOMIN.
Approzimation of the vibration modes of a plate by Reissner- Mindhin equations
to appear in Math. Comp.

P. PEISKER AND D. BRAESS, Uniform Convergence of Mized Interpolated Flements
for Reiwssner-Mindlin Plates M2AN(RAIRO)bf 26(5) (1992), 557-574.

L.R. SCOTT AND S. ZHANG, Finite element interpolation of nonsmooth functions
satisfying boundary conditions, Math. Comp. 54 (1990) 483-493.

13



[20] R. VERFURTH, A posteriori error estimators for the Stokes Equations Numer. Math.
55 (1989), 309-325.

[21] R. VERFURTH, A posteriori error estimates for nonlinear problems. finite element
discretizations of elliptic equations Math. Comp.62, Num. 206(1994), 445-475.

14



