
Methodology to Define a Static Allocation Mapping based

on Memory Access Patterns and the Signature of MPI

Applications in HPC Systems
Metodología para Definir una Política de Asignación Estática de Procesos basada en

Patrones de Acceso a Memoria y la Firma de Aplicaciones MPI en Sistemas HPC

Gerard Enrique1 , Eva Bruballa1 , Remo Suppi2 ,
Alvaro Wong 2 , Emilio Luque2 and Dolores Rexachs2 .

1 Escoles. Universitaries Gimbernat, Computer Science School, Universitat Autonoma de Barcelona, Spain
{gerard.enrique, eva.bruballa}@eug.es

2Dept. Arquitectura de Computadors i Sistemes operatius, Universitat Autònoma de Barcelona, Spain
{remo.suppi, alvaro.wong, emilio.luque, dolores.rexachs}@uab.cat

Abstract

Tools for identifying problems and improving MPI
applications performance running on an HPC system
require information from both the application and the
system. In this work, we will focus on defining a
methodology to analyze how memory usage affects
an MPI application’s performance running on an HPC
system. This methodology will obtain valid and
comparable data based on different memory access
patterns, which will allow us to define key
performance values used to characterize the HPC
system behaviour facing these access patterns, as well
as to characterize the Application Signature
behaviour. This is obtained from Parallel Application
Signatures for Performance Prediction (PAS2P) tool
which obtains the representative phases of the MPI
application, facing these same access patterns. With
this methodology, we will be able to detect memory
access application problems, suggest improvements
and define a mapping policy for this application in
this HPC system, in order to improve its performance
and to determine limits to these improvements.

Keywords: Cache memory, HPC performance, MPI
parallel applications, Process mapping.

Resumen

Las herramientas para identificar problemas y
mejorar el rendimiento de las aplicaciones MPI que
se ejecutan en un sistema HPC requieren información
de la aplicación y del sistema. En este trabajo nos
centraremos en definir una metodología para analizar
cómo el uso de la memoria afecta el rendimiento de

una aplicación MPI que se ejecuta en este sistema
HPC. Esta metodología obtendrá datos válidos y
comparables basados en diferentes patrones de acceso
a la memoria que permitirán definir valores clave de
rendimiento utilizados para caracterizar el
comportamiento de un sistema HPC frente a estos
patrones de acceso y para caracterizar el
comportamiento de la Firma de la Aplicación,
(obtenida de la herramienta Parallel Application
Signatures for Performance Prediction (PAS2P) que
obtiene las fases representativas de la aplicación MPI)
frente a estos mismos patrones de acceso. Con esta
metodología, podremos detectar problemas de la
aplicación de acceso a la memoria, sugerir mejoras y
definir una política de mapeo para esta aplicación en
este sistema HPC para mejorar su rendimiento y
determinar los límites de estas mejoras.

Palabras claves: aplicaciones paralelas MPI, mapeo
de procesos, Memoria caché, rendimiento HPC.

1. Introduction

The wide diversity of parallel architectures and the
constant evolution of processors, memory, storage,
and interconnection systems all require programming
techniques to adapt to parallel systems and improve
their performance.
The increasing complexity of these systems produces
a decoupling in the development of applications from
the hardware. This results in avoiding a part of system
complexity and transferring the efficient use of
hardware resources to the parallel execution systems.
Tools to improve application performance require
information about the system and the running

- ORIGINAL ARTICLE -

Journal of Computer Science & Technology, Volume 24, Number 2, October 2024

- 120 -

mailto:dolores.rexachs,%20remo.suppi%7d@uab.cat
https://orcid.org/0000-0002-4991-2196
https://orcid.org/0000%e2%88%920002%e2%88%925094%e2%88%923563
https://orcid.org/0000-0002-0373-8292
https://orcid.org/0000-0002-8394-9478
https://orcid.org/0000-0002-2884-3232
https://orcid.org/0000-0001-5500-850X

application. This information is obtained through
instrumentation tools for defining key parameters in
order to identify problems that may suggest
improvements in its development and to plan the
machine resources in a way that we can optimize its
performance.
The characterization of a complete MPI parallel
application, considering the multiple factors that may
affect its performance, takes considerable time. In this
work, we propose a methodology to characterize the
HPC system and model the relevant phases of the
application, considering that these phases represent
the complete application and require much less
computation.
Parallel scientific applications are typically
composed of a set of phases that are repeated
throughout the application. These phases were written
in the application code using specific communication
and computation patterns. PAS2P [1] identifies the
application phases transparently and automatically
generates the Application Signature (PAS2P
Signature), This contains only the most representative
application phases, the phases that have an impact on
the application performance, and their repetition rates
(weights).
It is also important to characterize the HPC system on
which we are going to run this application. Many
aspects of the system architecture and organization
will affect its performance, so we propose to
characterize the system based on performance indices
obtained from running a characterization program
with different functional patterns. Each case pattern
analyzed allows us to know which operations have
more impact on system performance and how they
condition its performance when they are executed
sharing the Cache memory with each case pattern.
This process only needs to be carried out once for
each HPC system and the patterns to be analyzed can
be extended or changed in order to attain a more
accurate characterization.
Once we have the Application Signature, we will run
the characterization program with each memory
access pattern sharing the Cache memory with each
process of each phase of the Application Signature.
Thus, we obtain the performance values associated
with the characterization program.
By comparing performance values obtained by
sharing the Cache memory with the characterization
program itself as well as with each process of the
Signature phases, we will be able to determine which
case patterns of the characterization program are
more similar to each process of each phase. With this
information, together with the performance values
obtained by running the characterization program
with itself, we can determine what would be the
effects on performance due to the interaction between

the application signature sharing the Cache memory,
and this information will allow us to define the
mapping in this system in order to maximize its
performance (see Fig. 1).
Other studies propose methodologies which allow us
to define mapping policies by analyzing other factors
that also affect performance, such as message passing
[2],[3]. These process allocation policies can generate
conflicts amongst themselves, so it will be necessary
to redefine these policies to consider all these factors
and minimize their effects to obtain a better overall
performance [4],[5].
In the following section, we present related works.
Section 3 presents the main steps of the methodology,
and the last section presents conclusions and future
work.

2. Previous and Related Works

Analyzing parallel applications to accurately predict
their performance facing changes in the system,
scaling, workload, or other aspects, are all
increasingly complex. In addition, the time and
resources required can be very high. It is especially
important in those applications that run frequently to
obtain an efficient use of resources, due to
considerations of cost, power consumption or pay-
per-use functions.
The information obtained will be essential to allocate
resources to improve application performance, but it
can also be valuable for programmers and the HPC
system configuration.
Analyzing the application itself usually requires an
excessive workload, especially in order to predict the
performance of different systems.
Therefore, we propose a tool that allows this analysis
to be carried out at a reduced cost and wich is
applicable to different systems. Scientific
applications usually have highly repetitive behavior
and parallel applications are not an exception [6], [7].
PAS2P [1] is the proposed methodology, based on
characterizing the dynamic behavior of parallel
SPMD scientific applications that use message
passing (MPI) during their execution for a specific
workload and HPC system. The PAS2P methodology
has 2 stages: In the first stage, there is the analysis of
the application and generation of the signature, and in
the second stage, a performance prediction is carry
out.
The signature is associated with the behavior of a
specific application. For example, if we want to
predict the execution time of another parallel
application or change the data set, the signature must
be generated again. Therefore, the application
analysis must be carried out in a short time to perform
the analysis, the application is instrumented using

Journal of Computer Science & Technology, Volume 24, Number 2, October 2024

- 121 -

dynamically linked libraries, and traces are generated
with the computing volume with PAPI [8], and the

MPI message passing events of each process are
captured.

Figure 1. Methodology overview. Ci (Case i of the Characterization program), fi (phase i of the Application signature), pi
(process i of a phase of the Application signature). As an HPC system example: C (CPU with a L1 Cache, first level Cache).

L2 (second level Cache shared between 2 CPUs). L3 (third-level Cache share between 4 CPUs).

It assigns a global logical clock to the event to obtain
the application model by interrelating the
communication events using an algorithm inspired by
Lamport and Time [9]. This ensures the correct
logical ordering of events in a distributed system,
where events across different nodes must be
sequenced correctly relative to each other so as to
maintain the causality and consistency of the system’s
state. Event sequence patterns with a relevant impact
on performance are identified by the defined
application model, which will be the phases of the
application signature. A weight is assigned to each
phase based on the number of times that pattern is
repeated.
Once the phases that model the behaviour of the
application have been identified, PAS2P generates
what we call the application signature. This is formed
by a set of phases from the parallel application code
delimited by the events of the MPI communications
and along with its weight and execution time.
In the performance prediction stage, the execution of
the signature is instrumented in order to obtain the
execution times of each phase which, multiplied by
the weights of that phase, is defined as Predicted
Execution Time (PET).
With PAS2P, we can characterize the behaviour of an
MPI application based on a reduced set of phases.
This allow us to focus the performance and efficiency
analyses on executing the signature so that the
execution time of the entire application can be
predicted with a reduced computational, less than
10%, and high reliability, more than 95%, for

different HPC systems. Fig. 2 shows an overview of
the methodology.
Other research has been developed on the PAS2P
methodology, including a Parallel Program
Scalability (P3S) methodology [10] based on the
PAS2P signature. This allows us to analyze and
predict the behaviour of MPI applications with strong
scalability on a specific machine and estimate the
execution time, using a limited execution time and a
reduced set of resources.

Figure 2. PAS2P methodology overview.

Step 3 Step 2 Step 1

HPC System

Static
mapping

policy

MPI
parallel

application

...

p0

pq

p1

pq-1

HPC System

Charact. tool
behaviour
data

HPC System

Interaction influence
charact.
data

Characterization tool
…

c0 cn

HPC System

System interaction
charact.
data

Application interactions
character.
data

ci

Select
Character. tool

cases

Characterization
tool

Characterization
tool

PAS2P tool

Application Signature

(relevant
... phases) ...

f0

 ...
p0

pq

fm

 ...
p0

pq

fi

 ...
p0

pq
Similarities
character.
data

Characterization
tool

Interactions between
Applic. processes
data

HPC System

...

C C L2

C C L2

L3

C C L2

C C L2

L3

C C L2

C C L2

L3

C C L2

C C L2

L3

M
E

M
O

R
Y

C C L2

C C L2

L3

C C L2

C C L2

L3

C C L2

C C L2

L3

C C L2

C C L2

L3

M
E

M
O

R
Y

Journal of Computer Science & Technology, Volume 24, Number 2, October 2024

- 122 -

We analyze and characterize the communication
pattern, between two communication events, and the
weight of each phase of the PAS2P signature. From a
set of small-scale executions, the behaviour
information of the phases is obtained, in addition,
how the application scales, generating the Scalable
Logic Trace (SLT).
Finally, with P3S methodology, the Synthetic
Signature (SS) is generated to obtain the performance
of the application, using the PAS2P prediction
equation, based on the performance prediction of the
relevant phases.
In other research, its performance has been improved,
as has the time required for the analysis and
management of trace data that generates memory
overload problems when scaling the application by
parallelizing part of the tool [11]. The parallel
approach has been developed with the message
passing (MPI) standard for using the same application
resources for analysis. The analysis of the traces is
parallelized to extract the phases and generate the
tables that will allow us to build the application
signature and then be able to predict the execution
time of the application, thus reducing the execution
time and providing a better distribution of memory
use. This parallel version allows the PAS2P
methodology to be used on a large scale, achieving
efficient analysis using the same resources allocated
when running the parallel application.
In other work, an extension has been developed for
applications with irregular behaviour [12]. During the
analysis, PAS2P may reduce its efficiency due to the
time used by inter-process synchronization
mechanisms. This issue is more important when the
application scales due to increased MPI
communications.
In order to achieve this, an independent model is
generated for each process, where each process has its
own set of phases to minimize communications. This
model fits the characteristics of SPMD applications,
since all processes have similar behaviour.
The PAS2P version performs the global analysis in
parallel for all processes and requires a global logical
clock to order the events so as to search for similar
patterns that characterize the parallel application in a
single phase that represents all the processes of the
application. This proposal builds an independent
model for each process in order to eliminate event
dependencies between processes, without the need of
the global clock. The information obtained is stored
by each process independently.
In the second stage, an identification of
communication patterns for each process is carried
out, grouping them into phases and assigning them a
weight. There is an elimination of inter-process

communication events due to the identification of
patterns at a global level for all processes.
Considering all this background, from the execution
of the application signature obtained with PAS2P and
the characterization of the machine communications,
the aim is to obtain information to define a
methodology that allows us to select a better mapping
in a limited time, reducing application execution time,
minimizing application inactivity [2].
This research aims to add to the information obtained
by PAS2P the memory usage and the incidence of
Cache misses on application performance in order to
improve the static allocation of processes in an HPC
system based on a hierarchical model using clustering
methods.

3. Analysis of memory access behaviour.

3.1. Instrumentation and data analysis

In order to analyze data, we have designed a
benchmark to obtain the parameters using PAPI
library instrumentation.
We analyzed the instrumentation incidence on
performance and validate the parameters values that
will be used for the analysis with the obtained indices.
So as to avoid the effect of instrumentation and data
collection between each array access, we read the
PAPI counters just before and just after the array
access and consider the differences between them.
The parameters analyzed are cycles, instructions, L1
Cache misses, L2 Cache misses, and number of array
accesses. Based on these parameters, the performance
indices defined are instruction per cycle, cycles per
L1 miss, instructions per L1 miss, cycles per array
access, instructions per array access, L1 misses per
array access (see Fig. 3).

Figure 3. Parameters and performance indices analyzed.

Due to the great variability observed in the
parameters analyzed in specific executions (see Fig.
4), we repeat each array access 100 times in order to
consider each parameter as a variable with a Normal
distribution (Central limit theorem). This alow us to

Journal of Computer Science & Technology, Volume 24, Number 2, October 2024

- 123 -

define the mean and standard deviation factors for
each parameter (see Fig. 5), for cycles, instructions,
array accesses and Cache misses, as well as for
performance indices for different volumes of data,
memory access traces and operations between
memory accesses (see Table 1), thus allowing us to
analyze their behaviour and make the obtained data
comparable.

Figure 4. L1 misses reading a 4KB array using 16-byte step
and an integer operation between each access to the array,
values for 4000 times.

Figure 5. Factor f is applied to the deviation σ to have a

probability greater than 90%. The mean µ of another sample
is within the interval [µ-fσ, µ+fσ].

Data size (v):
• Size of the array used based on the size of L1,

L2, L3 Cache and RAM memory.
• Data type used to declare and access the array:

from 1 byte (char) to 8 bytes (long long).
Step distance (t):
• Regular steps, we always make the same step:

step distance from 1-byte to distances higher
than the Cache line (64 bytes), until the size L1.

• Irregular steps, making steps with the same
average as in regular steps, but with a certain
variance.

• Read and write the array.
Operations (o):
• Integer operations: from 1 to 106 operations

between each two accesses to the array.
• Floating point operations: from 1 to 106

operations between two accesses to the array.
Table 1. Factors that affect Cache performance

3.2. Factors that influence performance

The representative cases can be extended in case a
more precise characterization is necessary or when it
is considered to introduce a new relevant factor
having impact on the application performance.
Based on this test program, we define a benchmark,
which we call the characterization program, to cross
the most representative cases of each factor
generating all cases of the memory access patterns
and obtain the performance indices we will analyze.

Figure 6. First chart changing array size (v), blue line
cycles/memory access, orange line instructions/memory
access, writing on the array. Second chart changing step (t),
blue line cycles/memory access, orange line
instructions/memory access, writing on the array. Third
chart changing the number of operations between array
access (o), blue line cycles/ L1 misses, orange line
instructions/L1 misses, writing on the array.

4. Methodology

In this section, we explain the 3 steps of this
methodology. Step1: Sections 4.1, 4.2 and 4.3, to
characterize the system behaviour using known
memory pattern access. Step 2: Sections 4.4, 4.5 and
4.6, the applications characterization extracting its
relevant phases using the PAS2P tool. Step 3: Section
4.7, define the mapping policy.

4.1. System Characterization without
sharing the Cache

We run the characterization program as a lone
process, without sharing resources with other

Journal of Computer Science & Technology, Volume 24, Number 2, October 2024

- 124 -

programs, to obtain the most representative values of
each factor pc(vi,tj,ok). It is configured for testing all
the combinations, analysing n*m*p cases.
With this program, we can generate an m(vx,ty,oz)
matrix of means and deviations of the performance
indices (see Fig. 3), with one dimension for each
representative factor, where ‘n’ would be the number
of representative cases for data size, ‘m’ the step
distance and ‘p’ the number of operations (see Fig. 7).
The data from this matrix will characterize the
behaviour and performance based on each case of the
memory access patterns.
This will allow us to detect which access patterns
have better performance and which ones penalize the
machine’s performance more. In addition, we know
what the improvement that we can obtain will be
when this access pattern obtains a worse performance
when competing with other applications sharing the
Cache.

Figure 7. Matrix of means and deviations of each
performance index m(vx,ty,oz) produced by the
characterization.

4.2. System Characterization by sharing the
Cache

Using the same characterization program, now
running in parallel and sharing the Cache (from cache
L2). An hnmp(vi,tj,ok) hypermatrix of means and
deviations of the performance indices (see Fig. 3).
This hypermatrix is obtained from the
characterization program, where each individual case
of the characterization program is executed in parallel
with all the cases of the characterization program
sharing the Cache memory.
The data from this hypermatrix will make it possible
to determine which cases generate more conflicts
between them by sharing the Cache memory (see Fig.
8).
The data from this matrix will allow us to see where
the most significant performance drops occur when
sharing the Cache and it will generate the

hinmp(vx,ty,oz) influence hypermatrix that specifies
how it is penalized with respect to running without
sharing the Cache.

4.3. Define the influence of sharing the
Cache

From the differences between running the
characterization program without sharing the Cache
with other processes, m(vx,ty,oz) matrix, and running
it sharing the Cache, hnmp(vi,tj,ok) hypermatrix, the
hinmp(vx,ty,oz) influence hypermatrix is generated,
which will determine how it is affected, with each
case being executed in parallel with another (see Fig.
9).
The data from this hypermatrix will make it possible
to determine which cases most penalize performance
and if they are more sensitive by sharing the Cache,
in what proportion their performance decreases
compared to running without sharing the Cache.
With these 3 matrices, m(vx,ty,oz), hnmp(vx,ty,oz) and
hinmp(vx,ty,oz), we characterize the system, the
behavior of an applications using known memory
access patterns in this system where we want run our
MPI applications. Moreover, it will not be necessary
to generate them again if the characteristics of the
system do not change.

Figure 8. Matrix of means and deviations of each
hnmp(vx,ty,oz) performance index produced by the
characterization program sharing the Cache with other
cases.

4.4. Application characterization by sharing
the Cache

Now, we want to characterize the behaviour of the
application by analysing how this application
interacts with the characterization program.
First, we generate the Application Signature with the

m(vi,tj,ok)

S
iz

e

Step

Operations

pc(vn,tm,op) pc(vo,to,oo) pc(vi,tj,ok)

Parallel execution of each pc(vi,tj,ok) case against all the cases
of the pc(vx,ty,oz) characterization program sharing the Cache.

h0(vi,tj,ok)

(n*m*p) cases

h0(vx,ty,oz)

hq(vx,ty,oz) h(n*m*p)(vx,ty,oz)

pc(vx,ty,oz)

S
iz

e

Step

Operations

S
iz

e

Step

Operations

pc(vx,ty,oz) pc(vx,ty,oz)

S
iz

e

Step

Operations

Execution of each pc(vi,tj,ok)

without sharing resources,
(n*m*p) cases.

m(v0,t0,o0)

Hypermatrix hnmp(vx,ty,oz) of means and deviations executed in
parallel with other cases

m(vn,tm,op)

pc(vi,tj,ok)

m(vx,ty,oz)

Matrix of means and deviations of each performance index with
one dimension for each factor (size, step and operations)

Journal of Computer Science & Technology, Volume 24, Number 2, October 2024

- 125 -

PAS2P tool to identify the most representative phases
(the phases that have an impact on the performance of
the application) and their repetition rates (weights).

Figure 9. Hypermatrix of influence with hinmp(vx,ty,oz)
performance indices by comparing the matrix of means and
deviations of m(vx,ty,oz) performance indices executed
without sharing the Cache with other processes and the
hnmp(vi,tj,ok) hypermatrix of means and deviations sharing
the Cache with other cases.

Figure 10. Hypermatrix of means and deviations of the
hfl(vx,ty,oz) performance indices executing in parallel all the
cases of the characterization program with each process of
an application signature phase sharing the Cache.

Then, for each process of a signature phase, a
hypermatrix is generated of means and deviations of
the hfl(vx,ty,oz) performance indices, sharing the
Cache with each case of the characterization program,

where ‘q’ would be the number of processes in which
the execution of one phase of the application is split
(see Fig. 10).
Comparing this hypermatrix with the hnmp(vi,tj,ok)
hypermatrix, which shows how each case of the
characterization program affects performances of all
cases of the characterization program, we will find
similarities between the behaviour of a phase process
and the cases of the characterization program with
known memory access patterns.

4.5. Analyze similarities between the
application behaviour and the
characterization program behaviour

By comparing each submatrix of the hypermatrix of
means and deviations of the performance indices
obtained for each process of an hfl(vx,ty,oz) phase with
the values of the hypermatrix of means and deviations
of the hnmp(vx,ty,oz) performance indices for all the
cases of the characterization program, the
hsnmp(vx,ty,oz) similarity hypermatrix is generated
(see Fig. 11).

Figure 11. Similarity hsnmp(vx,ty,oz) hypermatrix is obtained
by comparing each submatrix of the hypermatrix of means
and deviations of each performance index obtained for each
process of a phase hfl(vx,ty,oz) with the values of the
hypermatrix of means and deviations of the hnmp(vx,ty,oz)
performance indices for all the cases of the characterization
program.
The submatrices of the hnmp(vx,ty,oz) hypermatrix of
all the cases of the characterization program that have
smaller differences with the hfl(vx,ty,oz) submatrix of

process0 process l

Parallel execution of each phase with each case of the characterization
program sharing the Cache.

(q) processes

pc(vx,ty,oz) pc(vx,ty,oz) pc(vx,ty,oz)

Processes of a phase of the Signature of the application.

phasef

S
iz

e

Step

Operations

Differences between the performance indices of the characterization
program cases sharing the Cache between them and the indices of the
characterization program cases sharing the Cache with one of the
processes of a signature phases.

Differences between hfl(vx,ty,oz)
and h0(vx,ty,oz)

(n*m*p) cases

hs0(vx,ty,oz

)

hsq(vx,ty,oz) hs(n*m*p)(vx,ty,oz

)

h(n*m*p) (vx,ty,oz) h0(vx,ty,oz) hq(vx,ty,oz)

S
iz

e

Step

Operations

S
iz

e

Step

Operations

Hypermatrix of similarities of the performance indices comparing
the execution sharing the Cache with all the cases and with a
process of a phase.

hfl(vx,ty,oz) hfl(vx,ty,oz) hfl(vx,ty,oz)

S
iz

e

Step

Operations

process q

Process 0
sharing the cache with

pc(va,tb,oc)

Hypermatrix of means and deviations of the performance indices
hfx(vi,tj,ok) executed in parallel each process of a phase with all
the cases.

hf0(vx,ty,oz) hfl(vx,ty,oz) hff(vx,ty,oz)

S
iz

e

Step

Operations

S
iz

e

Step

Operations

S
iz

e

Step

Operations

m(vx,ty,oz)

Differences between indexes running without sharing resources with respect
to indexes that share the Cache.

Differences between
m(vi,tj,ok) and
h0(vi,tj,ok)

Hypermatrix of influence with means and deviations comparing
the execution without sharing resources and sharing the Cache.

(n*m*p) cases

hi0(vx,ty,oz) hiq(vx,ty,oz) hi(n*m*p)(vx,ty,oz)

h0(vx,ty,oz)

m(vx,ty,oz) m(vx,ty,oz)

S
iz

e

Step

Operations

S
iz

e

Step

Operations

h(n*m*p) (vx,ty,oz) hq(vx,ty,oz)

Journal of Computer Science & Technology, Volume 24, Number 2, October 2024

- 126 -

each process of a phase will determine the cases that
have more similarities. The mean of the case ‘x’
executed, sharing the Cache with process ‘q’, is in the
range [µ-f.σ, µ+f.σ] of each case of the

characterization program. It is executed sharing the
Cache with the same case x (see Fig. 14).
The data from this hypermatrix of similarities will
allow us to see the cases of the characterization
program whose performance is affected in the same
way, indicating which cases have a similar behaviour
to that process of the phase.
A submatrix of the hfl(vx,ty,oz) hypermatrix indicates
how each case ‘x’ of the characterization program is
affected when it is executed sharing the Cache with
the process ‘q’ of an application signature phase. We
compare this with all the submatrices of each cases of
the hnmp(vx,ty,oz) hypermatrix, where case ‘x’ has been
executed in parallel sharing the cache with all the
possible cases of the characterization program, as
shown in Fig. 14.
To summarize, the similarity hypermatrix is
generated for each process of a phase, which allows
us to define a similarity factor, a mean weighted with
each of the performance indices within the range [µ-
fσ, µ+fσ], executed in parallel with each case of the
characterization program sharing the cache, in order
to generate the ms(x,y) similarity matrix (see Fig. 12).

Figure 12. Similarity Matrix between processes of each
phase and the cases of the characterization program.

4.6. Analyse interactions between the
application processes of one phase

With the ms(x,y) matriz we know the similarities
between each process of a phase and the cases of the
characterization program, as well as having the
hnmp(vx,ty,oz) hypermatrix in order to know how
performance is affected when two cases of the
characterization program share the Cache.
With this information we can generate the mipf(x,y)
interactions matrix between processes of one phase
from the means and deviations of the performance

indices of the hnmp(vx,ty,oz) hypermatrix, where each
individual case of the characterization program is
executed in parallel with all the cases of the
characterization program to determine their
performance when sharing the Cache and the weight
of each case according to the ms(x,y) similarity
matrix between the processes of a phase and the cases
of the characterization program (see Fig. 13).

Figure 13. Similarity Matrix between processes of each
phase and the cases of the characterization program.

The data from this matrix will make it possible to
determine which processes in each phase can generate
greater performance drops if they are executed in
parallel, sharing the Cache.

4.7. Define the mapping policy

Now, we are able to define the assignment of
processes based on the data gathered.
We define a communication model of the system
based on the transmission time grouped into 2 main
categories: "Map-By-Cluster" (nodes in a cluster
interconnected by a high-speed network) and "Map-
By-Node" (cores in a node/socket that share the
memory). We define this hierarchy to reduce the
mapping complexity algorithms, and to improve
application throughput. Considering the process
attraction due to communications patterns (more
communication volume, more proximity), and the
processes repulsion due to memory patterns (more
memory used, more repulsion).
In the first step, we generate groups of processes in
the "Map by cluster" category using a the K-means
clustering algorithm O(n2). This is based on the
communication pattern (message size and phases
weight), where ‘k’ is determined by the number of
clusters. In each group we will join processes that
have more communications between them. These
communication events will be managed within a
node/socket, and fewer communications between
processes from other groups, this communication
events are managed by the node/socket
interconnection network with a lower bandwidth. In
this first step, we do not consider inter-process

P
ro

ce
ss

es
 o

f a
 p

ha
se

Processes of a phase

mipf(g,h)

Matrix generated from the values of
the hnmp(vx,ty,oz) performance
hypermatrix of the characterization
program cases in which the
processes of a phase are similar to
those given by the ms(x,y) similarity
matrix.

mipf(q,q)

mipf(x,y)

Interactions matrix between processes of a phase

Similarity matrix between processes of a phase and the cases of
the characterization program

P
ro

ce
ss

es
 o

f a
 p

ha
se

cases of the characterization program

ms(g,h)

Matrix generated from the
values of the hypermatrix
of similarities between the
processes of an
application phase and
each case of the
characterization program.

ms(q,(n*m*p))

ms(x,y)

Journal of Computer Science & Technology, Volume 24, Number 2, October 2024

- 127 -

memory interaction hence one process in one node (a
group) does not affect the performance of another
process assigned to another node (another group), or
the effect is negligible compared with
communications due to the fact that they don't share
the memory, or the memory cache.
In the second step, we assign processes to cores in the
“Map by Node” category. For each group (processes
assigned to a cluster) using a K-means clustering
algorithm O(n2), based on the interactions matrix

between processes of a phase, mipf(x,y), weighting
the values of each phase with the weights obtained
from the application signature shown in Fig. 15, k is
determined by the cluster memory architecture, the
number of NUMA nodes, and controlling the number
of processes assigned to each centroid.
The static mapping policy will be defined by
minimizing performance drops due to
communications patterns and the interactions when
sharing the Cache memory.

C
as

e
x

da
ta

in
 p

ar
al

le
l w

ith
 Process q

Case1 Case2 Case3 Case4 Case5 Case6 Case7 Case8 Case9 Case10 Case11 Case12

Size1 Size1 Size1 Size2 Size2 Size2 Size3 Size3 Size3 Size4 Size4 Size4

Step1 Step2 Step3 Step1 Step2 Step3 Step1 Step2 Step3 Step1 Step2 Step3

 si = ƒ - | µx - µi | / σ
Є [0 , ƒ]
(for ƒ=2)

Instructions 1.5 -1.0 1.5 -1.0 -1.0 -1.0 -1.0 0.5 -1.0 -1.0 -1.0 1.0
Cycles 1.0 0.0 -1.0 2.0 1.0 0.25 1.0 1.75 2.0 0.0 0.5 1.0

 L1 misses 2.0 0.75 -1.0 1.75 1.0 -1.0 1.5 1.5 0.0 0.75 2.0 0.75

Similarities of
process q with case i

Σ (weighti . si)

(weighti = 1)
4.5 -0.25 -0.5 2.75 1 -1.75 1.5 3.75 1 -0.25 1.5 2.75

Figure 14. An example is shown for 2 dimensions (size/step) and 3 indices (Instructions, Cycles and L1 misses) to facilitate
visualization. Positive values of (similarity) indicate that the index of one of the cases (case x) executed in parallel with a
process (process q, left side) is similar (within the range [µ-fσ, µ+fσ] in each case) to that same index of each case of the
characterization program executed in parallel with that same case (case x, right side). Negative values indicate that they are out
of range.

Figure 15. Interactions matrix between application
processes for all phases.

5. Conclusions

We have proposed a methodology to analyze
application behaviour and define a static mapping to

improve application performance.
It has been possible to validate that the data obtained
from the instrumentation correspond to the theoretical
values and are representative for identifying memory
access patterns, also it has been possible to verify that
working with means and deviations of the analyzed
indices give more stable and comparable results,
essential factors for this methodology.
The first step in this methodology is to characterize
the system, this data can provide important
information for software developers to know which
memory access patterns achieve better performance
when the application runs alone and when it shares
memory with other processes.

In the second step, we characterize the application
based on known memory access patterns. This
information will let us know if the basic access
patterns of this application obtain good performance
on this system, which can allow us to improve the
design of the application. It will also allow us to know

mip(pp,pp,fq)*weight phase q

ap
pl

ic
at

io
n

pr
oc

es
se

s

application processes

Application phases

Matrix generated from the
values of the performance
mipf(x,y) matrix with the
interactions between
processes in each phase and
weighted with the weights of
each phase provided by the
application signature.

Interactions Matrix between processes for all phases of the
application

mip(pi,pj,fk)*weight phase k
mip(px,py,fz)

Instructions

cycles

L1 misses

µ+ƒ.σ

µ-ƒ.σ

µ

Journal of Computer Science & Technology, Volume 24, Number 2, October 2024

- 128 -

the conflicts generated by sharing the Cache and to
know the room for improving performance if these
conflicts are minimized. This improvement can be
obtained by changing the design of the application,
but also with the mapping policy to allocate processes
in this system which is where this methodology is
focused.
Finally, in the third step, with the data obtained in the
first two steps about the interactions between
application processes, we can define a static mapping
policy to minimize performance drops due to
communication patterns and process interactions
when the Cache is shared.
Future lines will be focused on finishing
implementing all the steps in this methodology based
on the benchmark prototypes developed to define the
methodology. Another important aspect of this
methodology is that it allows changes to be made in
the weighting of the indices used to give more
emphasis to different aspects of the application or
system performance.

Competing interests

The authors have declared that no competing interests
exist.

Funding

This research has been supported by the Agencia
Estatal de Investigacion (AEI), Spain and the Fondo
Europeo de Desarrollo Regional (FEDER) UE, under
contract PID2020-112496GB-I00.

Authors’ contribution

GE designed the methodology and conducted the
empirical studies to refine the preliminary version of
the model, developed the code, results analyzed and
wrote the manuscript. EL and AW conceived the
research proposal and defined the preliminary
methodology. EB defined the statistical model to
analyze data and validate dataset. RS and AW
technical and code development support and system
configuration. DR made the analysis and review the
proposal. EL and DR were responsible of the
computing resources. All authors reviewed and
approved the final manuscript.

References

[1] A. Wong, D. Rexachs, and E. Luque, “Parallel
Application Signature for Performance Analysis and
Prediction", IEEE Transactions on Parallel and
Distributed Systems, 2015, vol. 26, no. 7, pp. 2009-
2019

[2] C.R. Rangel, A. Wong, D. Rexachs and E. Luque,
“Using the application signature to detect

inefficiencies generated by mapping policies in
parallel applications”, International Conference on

High Performance Computing Simulation (HPCS),
2017, pp. 534–540, doi: 10.1109/HPCS.2017.85.

[3] J. Panadero, A. Wong, D. Rexachs, and E. Luque, “A

tool for selecting the right target machine for parallel
scientific applications”, Proc. Int. Conf. Comput. Sci.,
2013, pp. 1824–1833.

[4] Agung, M., Amrizal, M. A., Egawa, R., & Takizawa,
H. (2020). Online MPI process mapping for
coordinating locality and memory congestion on
NUMA systems. Supercomputing Frontiers and
Innovations, 7(1), 71-90.

[5] I. Chung, Ch. Lee, J. Zhou, and Y. Chung,
“Hierarchical mapping for HPC applications”. Parallel
Processing Letters, 2011, Vol. 21, No. 03, pp. 279-
299.

[6] T. Sherwood, E. Perelman, and B. Calder. “Basic
block distribution analysis to find periodic behavior
and simulation points in applications”. In Proceedings
of the International Conference on Parallel
Architectures and Compilation Techniques (PACT),
2001, pp. 3-14.

[7] E. Perelman, M. Polito, J.-Y. Bouguet, J. Sampson, B.
Calder, and C. Dulong. “Detecting phases in parallel
applications on shared memory architectures”. Parallel
and Distributed Processing Symposium, International,
2006, pp. 0-10.

[8] D. Terpstra, H. Jagode, H. You, and J. Dongarra.
“Collecting performance data with papi-c. In Tools for
High Performance Computing” Springer, 2010, pp.

157–173.
[9] L. Lamport and C. Time, “The ordering of events in a

distributed system,” Commun. ACM, 1978, vol. 21,

no. 7, pp. 558–565.
[10] J. Panadero, A. Wong, D. Rexachs, E. Luque. “P3S: a

methodology to analyze and predict application
scalability”, IEEE Trans Parallel Distrib Syst, 2017, 29
(3):642–658.

[11] F. Tirado, A. Wong, D. Rexachs, E. Luque,
“Analyzing the data behavior of parallel application

for extracting performance knowledge”, IEEE 21th
International Conference on High Performance
Computing and Communications, 2019.

[12] F. Tirado, A. Wong, D. Rexachs, E. Luque, “Scalable
performance analysis method for SPMD applications.
The Journal of Supercomputing, 2022, 78, 19346–

19371. https://doi.org/10.1007/s11227-022-04588-z

Citation: G. Enrique, E. Bruballa, R. Suppi, A.
Wong, E. Luque and D. Rexachs. Methodology to
Define a Static Allocation Mapping based on
Memory Access Patterns and the Signature of
MPI Applications in HPC Systems. Journal of
Computer Science & Technology, vol. 24, no. 2,
pp. 120-129, 2024.
DOI: 10.24215/16666038.24.e12
Received: November 9, 2023 Accepted: May
31, 2024.
Copyright: This article is distributed under the
terms of the Creative Commons License CC-
BY-NC-SA.

Journal of Computer Science & Technology, Volume 24, Number 2, October 2024

- 129 -

https://www.worldscientific.com/doi/abs/10.1142/S0129626411000229
https://www.worldscientific.com/doi/abs/10.1142/S0129626411000229
https://www.worldscientific.com/doi/abs/10.1142/S0129626411000229
https://www.worldscientific.com/doi/abs/10.1142/S0129626411000229
https://www.worldscientific.com/worldscinet/ppl
https://www.worldscientific.com/worldscinet/ppl
https://www.worldscientific.com/toc/ppl/21/03
https://www.worldscientific.com/toc/ppl/21/03
https://doi.org/10.1007/s11227-022-04588-z

