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Abstract 

Tools for identifying problems and improving MPI 
applications performance running on an HPC system 
require information from both the application and the 
system. In this work, we will focus on defining a 
methodology to analyze how memory usage affects 
an MPI application’s performance running on an HPC 
system. This methodology will obtain valid and 
comparable data based on different memory access 
patterns, which will allow us to define key 
performance values used to characterize the HPC 
system behaviour facing these access patterns, as well 
as to characterize the Application Signature 
behaviour. This is obtained from Parallel Application 
Signatures for Performance Prediction (PAS2P) tool 
which obtains the representative phases of the MPI 
application, facing these same access patterns. With 
this methodology, we will be able to detect memory 
access application problems, suggest improvements 
and define a mapping policy for this application in 
this HPC system, in order to improve its performance 
and to determine limits to these improvements. 

Keywords: Cache memory, HPC performance, MPI 
parallel applications, Process mapping. 

Resumen 

Las herramientas para identificar problemas y 
mejorar el rendimiento de las aplicaciones MPI que 
se ejecutan en un sistema HPC requieren información 
de la aplicación y del sistema. En este trabajo nos 
centraremos en definir una metodología para analizar 
cómo el uso de la memoria afecta el rendimiento de 

una aplicación MPI que se ejecuta en este sistema 
HPC. Esta metodología obtendrá datos válidos y 
comparables basados en diferentes patrones de acceso 
a la memoria que permitirán definir valores clave de 
rendimiento utilizados para caracterizar el 
comportamiento de un sistema HPC frente a estos 
patrones de acceso y para caracterizar el 
comportamiento de la Firma de la Aplicación, 
(obtenida de la herramienta Parallel Application 
Signatures for Performance Prediction  (PAS2P) que 
obtiene las fases representativas de la aplicación MPI) 
frente a estos mismos patrones de acceso. Con esta 
metodología, podremos detectar problemas de la 
aplicación de acceso a la memoria, sugerir mejoras y 
definir una política de mapeo para esta aplicación en 
este sistema HPC para mejorar su rendimiento y 
determinar los límites de estas mejoras. 

Palabras claves: aplicaciones paralelas MPI, mapeo 
de procesos, Memoria caché, rendimiento HPC. 

1. Introduction

The wide diversity of parallel architectures and the 
constant evolution of processors, memory, storage, 
and interconnection systems all require programming 
techniques to adapt to parallel systems and improve 
their performance.  
The increasing complexity of these systems produces 
a decoupling in the development of applications from 
the hardware. This results in avoiding a part of system 
complexity and transferring the efficient use of 
hardware resources to the parallel execution systems. 
Tools to improve application performance require 
information about the system and the running 
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application. This information is obtained through 
instrumentation tools for defining key parameters in 
order to identify problems that may suggest 
improvements in its development and to plan the 
machine resources in a way that we can optimize its 
performance. 
The characterization of a complete MPI parallel 
application, considering the multiple factors that may 
affect its performance, takes considerable time. In this 
work, we propose a methodology to characterize the 
HPC system and model the relevant phases of the 
application, considering that these phases represent 
the complete application and require much less 
computation.  
Parallel scientific applications are typically 
composed of a set of phases that are repeated 
throughout the application. These phases were written 
in the application code using specific communication 
and computation patterns. PAS2P [1] identifies the 
application phases transparently and automatically 
generates the Application Signature (PAS2P 
Signature), This contains only the most representative 
application phases, the phases that have an impact on 
the application performance, and their repetition rates 
(weights). 
It is also important to characterize the HPC system on 
which we are going to run this application. Many 
aspects of the system architecture and organization 
will affect its performance, so we propose to 
characterize the system based on performance indices 
obtained from running a characterization program 
with different functional patterns. Each case pattern 
analyzed allows us to know which operations have 
more impact on system performance and how they 
condition its performance when they are executed 
sharing the Cache memory with each case pattern. 
This process only needs to be carried out once for 
each HPC system and the patterns to be analyzed can 
be extended or changed in order to attain a more 
accurate characterization. 
Once we have the Application Signature, we will run 
the characterization program with each memory 
access pattern sharing the Cache memory with each 
process of each phase of the Application Signature. 
Thus, we obtain the performance values associated 
with the characterization program. 
By comparing performance values obtained by 
sharing the Cache memory with the characterization 
program itself as well as with each process of the 
Signature phases, we will be able to determine which 
case patterns of the characterization program are 
more similar to each process of each phase. With this 
information, together with the performance values 
obtained by running the characterization program 
with itself, we can determine what would be the 
effects on performance due to the interaction between 

the application signature sharing the Cache memory, 
and this information will allow us to define the 
mapping in this system in order to maximize its 
performance (see Fig. 1). 
Other studies propose methodologies which allow us 
to define mapping policies by analyzing other factors 
that also affect performance, such as message passing 
[2],[3]. These process allocation policies can generate 
conflicts amongst themselves, so it will be necessary 
to redefine these policies to consider all these factors 
and minimize their effects to obtain a better overall 
performance [4],[5]. 
In the following section, we present related works. 
Section 3 presents the main steps of the methodology, 
and the last section presents conclusions and future 
work. 

2. Previous and Related Works

Analyzing parallel applications to accurately predict 
their performance facing changes in the system, 
scaling, workload, or other aspects, are all 
increasingly complex. In addition, the time and 
resources required can be very high. It is especially 
important in those applications that run frequently to 
obtain an efficient use of resources, due to 
considerations of cost, power consumption or pay-
per-use functions. 
The information obtained will be essential to allocate 
resources to improve application performance, but it 
can also be valuable for programmers and the HPC 
system configuration. 
Analyzing the application itself usually requires an 
excessive workload, especially in order to predict the 
performance of different systems.  
Therefore, we propose a tool that allows this analysis 
to be carried out at a reduced cost and wich is 
applicable to different systems. Scientific 
applications usually have highly repetitive behavior 
and parallel applications are not an exception [6], [7]. 
PAS2P [1] is the proposed methodology, based on 
characterizing the dynamic behavior of parallel 
SPMD scientific applications that use message 
passing (MPI) during their execution for a specific 
workload and HPC system. The PAS2P methodology 
has 2 stages: In the first stage, there is the analysis of 
the application and generation of the signature, and in 
the second stage, a performance prediction is carry 
out. 
The signature is associated with the behavior of a 
specific application. For example, if we want to 
predict the execution time of another parallel 
application or change the data set, the signature must 
be generated again. Therefore, the application 
analysis must be carried out in a short time to perform 
the analysis, the application is instrumented using 
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dynamically linked libraries, and traces are generated 
with the computing volume with PAPI [8], and the 

MPI message passing events of each process are 
captured.

Figure 1. Methodology overview. Ci (Case i of the Characterization program), fi (phase i of the Application signature), pi 
(process i of  a phase of the Application signature). As an HPC system example: C (CPU with a L1 Cache, first level Cache).  

L2 (second level Cache shared between 2 CPUs). L3 (third-level Cache share between 4 CPUs).

It assigns a global logical clock to the event to obtain 
the application model by interrelating the 
communication events using an algorithm inspired by 
Lamport and Time [9]. This ensures the correct 
logical ordering of events in a distributed system, 
where events across different nodes must be 
sequenced correctly relative to each other so as to 
maintain the causality and consistency of the system’s 
state. Event sequence patterns with a relevant impact 
on performance are identified by the defined 
application model, which will be the phases of the 
application signature. A weight is assigned to each 
phase based on the number of times that pattern is 
repeated. 
Once the phases that model the behaviour of the 
application have been identified, PAS2P generates 
what we call the application signature. This is formed 
by a set of phases from the parallel application code 
delimited by the events of the MPI communications 
and along with its weight and execution time. 
In the performance prediction stage, the execution of 
the signature is instrumented in order to obtain the 
execution times of each phase which, multiplied by 
the weights of that phase, is defined as Predicted 
Execution Time (PET). 
With PAS2P, we can characterize the behaviour of an 
MPI application based on a reduced set of phases. 
This allow us to focus the performance and efficiency 
analyses on executing the signature so that the 
execution time of the entire application can be 
predicted with a reduced computational, less than 
10%, and high reliability, more than 95%, for 

different HPC systems. Fig. 2 shows an overview of 
the methodology.  
Other research has been developed on the PAS2P 
methodology, including a Parallel Program 
Scalability (P3S) methodology [10] based on the 
PAS2P signature. This allows us to analyze and 
predict the behaviour of MPI applications with strong 
scalability on a specific machine and estimate the 
execution time, using a limited execution time and a 
reduced set of resources. 

Figure 2. PAS2P methodology overview. 
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We analyze and characterize the communication 
pattern, between two communication events, and the 
weight of each phase of the PAS2P signature. From a 
set of small-scale executions, the behaviour 
information of the phases is obtained, in addition, 
how the application scales, generating the Scalable 
Logic Trace (SLT). 
Finally, with P3S methodology, the Synthetic 
Signature (SS) is generated to obtain the performance 
of the application, using the PAS2P prediction 
equation, based on the performance prediction of the 
relevant phases. 
In other research, its performance has been improved, 
as has the time required for the analysis and 
management of trace data that generates memory 
overload problems when scaling the application by 
parallelizing part of the tool [11]. The parallel 
approach has been developed with the message 
passing (MPI) standard for using the same application 
resources for analysis. The analysis of the traces is 
parallelized to extract the phases and generate the 
tables that will allow us to build the application 
signature and then be able to predict the execution 
time of the application, thus reducing the execution 
time and providing a better distribution of memory 
use. This parallel version allows the PAS2P 
methodology to be used on a large scale, achieving 
efficient analysis using the same resources allocated 
when running the parallel application. 
In other work, an extension has been developed for 
applications with irregular behaviour [12]. During the 
analysis, PAS2P may reduce its efficiency due to the 
time used by inter-process synchronization 
mechanisms. This issue is more important when the 
application scales due to increased MPI 
communications. 
In order to achieve this, an independent model is 
generated for each process, where each process has its 
own set of phases to minimize communications. This 
model fits the characteristics of SPMD applications, 
since all processes have similar behaviour. 
The PAS2P version performs the global analysis in 
parallel for all processes and requires a global logical 
clock to order the events so as to search for similar 
patterns that characterize the parallel application in a 
single phase that represents all the processes of the 
application. This proposal builds an independent 
model for each process in order to eliminate event 
dependencies between processes, without the need of 
the global clock. The information obtained is stored 
by each process independently. 
In the second stage, an identification of 
communication patterns for each process is carried 
out, grouping them into phases and assigning them a 
weight. There is an elimination of inter-process 

communication events due to the identification of 
patterns at a global level for all processes. 
Considering all this background, from the execution 
of the application signature obtained with PAS2P and 
the characterization of the machine communications, 
the aim is to obtain information to define a 
methodology that allows us to select a better mapping 
in a limited time, reducing application execution time, 
minimizing application inactivity [2]. 
This research aims to add to the information obtained 
by PAS2P the memory usage and the incidence of 
Cache misses on application performance in order to 
improve the static allocation of processes in an HPC 
system based on a hierarchical model using clustering 
methods. 

3. Analysis of memory access behaviour.

3.1. Instrumentation and data analysis 

In order to analyze data, we have designed a 
benchmark to obtain the parameters using PAPI 
library instrumentation. 
We analyzed the instrumentation incidence on 
performance and validate the parameters values that 
will be used for the analysis with the obtained indices. 
So as to avoid the effect of instrumentation and data 
collection between each array access, we read the 
PAPI counters just before and just after the array 
access and consider the differences between them. 
The parameters analyzed are cycles, instructions, L1 
Cache misses, L2 Cache misses, and number of array 
accesses. Based on these parameters, the performance 
indices defined are instruction per cycle, cycles per 
L1 miss, instructions per L1 miss, cycles per array 
access, instructions per array access, L1 misses per 
array access (see Fig. 3). 

Figure 3. Parameters and performance indices analyzed. 

Due to the great variability observed in the 
parameters analyzed in specific executions (see Fig. 
4), we repeat each array access 100 times in order to 
consider each parameter as a variable with a Normal 
distribution (Central limit theorem). This alow us to 

Journal of Computer Science & Technology, Volume 24, Number 2, October 2024

- 123 -



define the mean and standard deviation factors for 
each parameter (see Fig. 5), for cycles, instructions, 
array accesses and Cache misses, as well as for 
performance indices for different volumes of data, 
memory access traces and operations between 
memory accesses (see Table 1), thus allowing us to 
analyze their behaviour and make the obtained data 
comparable. 

Figure 4. L1 misses reading a 4KB array using 16-byte step 
and an integer operation between each access to the array, 
values for 4000 times. 

Figure 5. Factor f is applied to the deviation σ to have a 

probability greater than 90%. The mean µ of another sample 
is within the interval [µ-fσ, µ+fσ]. 

Data size (v): 
• Size of the array used based on the size of L1,

L2, L3 Cache and RAM memory.
• Data type used to declare and access the array:

from 1 byte (char) to 8 bytes (long long).
Step distance (t): 
• Regular steps, we always make the same step:

step distance from 1-byte to distances higher
than the Cache line (64 bytes), until the size L1.

• Irregular steps, making steps with the same
average as in regular steps, but with a certain
variance.

• Read and write the array.
Operations (o): 
• Integer operations: from 1 to 106 operations

between each two accesses to the array.
• Floating point operations: from 1 to 106

operations between two accesses to the array.
Table 1. Factors that affect Cache performance 

3.2. Factors that influence performance 

The representative cases can be extended in case a 
more precise characterization is necessary or when it 
is considered to introduce a new relevant factor 
having impact on the application performance.  
Based on this test program, we define a benchmark, 
which we call the characterization program, to cross 
the most representative cases of each factor 
generating all cases of the memory access patterns 
and obtain the performance indices we will analyze. 

Figure 6. First chart changing array size (v), blue line 
cycles/memory access, orange line instructions/memory 
access, writing on the array. Second chart changing step (t), 
blue line cycles/memory access, orange line 
instructions/memory access, writing on the array. Third 
chart changing the number of operations between array 
access (o), blue line cycles/ L1 misses, orange line 
instructions/L1 misses, writing on the array. 

4. Methodology

In this section, we explain the 3 steps of this 
methodology. Step1: Sections 4.1, 4.2 and 4.3, to 
characterize the system behaviour using known 
memory pattern access. Step 2: Sections 4.4, 4.5 and 
4.6, the applications characterization extracting its 
relevant phases using the PAS2P tool. Step 3:  Section 
4.7, define the mapping policy. 

4.1. System Characterization without 
sharing the Cache 

We run the characterization program as a lone 
process, without sharing resources with other 
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programs, to obtain the most representative values of 
each factor pc(vi,tj,ok). It is configured for testing all 
the combinations, analysing n*m*p cases.  
With this program, we can generate an m(vx,ty,oz) 
matrix of means and deviations of the performance 
indices (see Fig. 3), with one dimension for each 
representative factor, where ‘n’ would be the number 
of representative cases for data size, ‘m’ the step 
distance and ‘p’ the number of operations (see Fig. 7). 
The data from this matrix will characterize the 
behaviour and performance based on each case of the 
memory access patterns.  
This will allow us to detect which access patterns 
have better performance and which ones penalize the 
machine’s performance more. In addition, we know 
what the improvement that we can obtain will be 
when this access pattern obtains a worse performance 
when competing with other applications sharing the 
Cache. 
 

 

Figure 7. Matrix of means and deviations of each 
performance index m(vx,ty,oz) produced by the 
characterization. 

4.2. System Characterization by sharing the 
Cache 

Using the same characterization program, now 
running in parallel and sharing the Cache (from cache 
L2). An hnmp(vi,tj,ok) hypermatrix of means and 
deviations of the performance indices (see Fig. 3). 
This hypermatrix is obtained from the 
characterization program, where each individual case 
of the characterization program is executed in parallel 
with all the cases of the characterization program 
sharing the Cache memory.  
The data from this hypermatrix will make it possible 
to determine which cases generate more conflicts 
between them by sharing the Cache memory (see Fig. 
8).  
The data from this matrix will allow us to see where 
the most significant performance drops occur when 
sharing the Cache and it will generate the 

hinmp(vx,ty,oz) influence hypermatrix that specifies 
how it is penalized with respect to running without 
sharing the Cache. 

4.3. Define the influence of sharing the 
Cache 

From the differences between running the 
characterization program without sharing the Cache 
with other processes, m(vx,ty,oz) matrix, and running 
it sharing the Cache, hnmp(vi,tj,ok) hypermatrix, the 
hinmp(vx,ty,oz) influence hypermatrix is generated, 
which will determine how it is affected, with each 
case being executed in parallel with another (see Fig. 
9).  
The data from this hypermatrix will make it possible 
to determine which cases most penalize performance 
and if they are more sensitive by sharing the Cache, 
in what proportion their performance decreases 
compared to running without sharing the Cache. 
With these 3 matrices, m(vx,ty,oz), hnmp(vx,ty,oz) and 
hinmp(vx,ty,oz), we characterize the system, the 
behavior of an applications using known memory 
access patterns in this system where we want run our 
MPI applications. Moreover, it will not be necessary 
to generate them again if the characteristics of the 
system do not change. 

 

 

Figure 8. Matrix of means and deviations of each 
hnmp(vx,ty,oz) performance index produced by the 
characterization program sharing the Cache with other 
cases. 

4.4. Application characterization by sharing 
the Cache 

Now, we want to characterize the behaviour of the 
application by analysing how this application 
interacts with the characterization program.  
First, we generate the Application Signature with the 
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PAS2P tool to identify the most representative phases 
(the phases that have an impact on the performance of 
the application) and their repetition rates (weights). 

 

 
 

 

 
 
 

Figure 9. Hypermatrix of influence with hinmp(vx,ty,oz) 
performance indices by comparing the matrix of means and 
deviations of m(vx,ty,oz) performance indices executed 
without sharing the Cache with other processes and the 
hnmp(vi,tj,ok) hypermatrix of means and deviations sharing 
the Cache with other cases. 

 
 
 

 

 

Figure 10. Hypermatrix of means and deviations of the 
hfl(vx,ty,oz) performance indices executing in parallel all the 
cases of the characterization program with each process of 
an application signature phase sharing the Cache. 

Then, for each process of a signature phase, a 
hypermatrix is generated of means and deviations of 
the hfl(vx,ty,oz) performance indices, sharing the 
Cache with each case of the characterization program, 

where ‘q’ would be the number of processes in which 
the execution of one phase of the application is split 
(see Fig. 10). 
Comparing this hypermatrix with the hnmp(vi,tj,ok) 
hypermatrix, which shows how each case of the 
characterization program affects performances of all 
cases of the characterization program, we will find 
similarities between the behaviour of a phase process 
and the cases of the characterization program with 
known memory access patterns. 

4.5. Analyze similarities between the 
application behaviour and the 
characterization program behaviour 

By comparing each submatrix of the hypermatrix of 
means and deviations of the performance indices 
obtained for each process of an hfl(vx,ty,oz) phase with 
the values of the hypermatrix of means and deviations 
of the hnmp(vx,ty,oz) performance indices for all the 
cases of the characterization program, the 
hsnmp(vx,ty,oz) similarity hypermatrix  is generated 
(see Fig. 11). 

 

Figure 11. Similarity hsnmp(vx,ty,oz) hypermatrix is obtained 
by comparing each submatrix of the hypermatrix of means 
and deviations of each performance index obtained for each 
process of a phase hfl(vx,ty,oz) with the values of the 
hypermatrix of means and deviations of the hnmp(vx,ty,oz) 
performance indices  for all the cases of the characterization 
program. 
The submatrices of the hnmp(vx,ty,oz) hypermatrix of 
all the cases of the characterization program that have 
smaller differences with the hfl(vx,ty,oz) submatrix of 
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each process of a phase will determine the cases that 
have more similarities. The mean of the case ‘x’ 
executed, sharing the Cache with process ‘q’, is in the 
range [µ-f.σ, µ+f.σ] of each case of the 

characterization program. It is executed sharing the 
Cache with the same case x (see Fig. 14).  
The data from this hypermatrix of similarities will 
allow us to see the cases of the characterization 
program whose performance is affected in the same 
way, indicating which cases have a similar behaviour 
to that process of the phase. 
A submatrix of the hfl(vx,ty,oz) hypermatrix indicates 
how each case ‘x’ of the characterization program is 
affected when it is executed sharing the Cache with 
the process ‘q’ of an application signature phase. We 
compare this with all the submatrices of each cases of 
the hnmp(vx,ty,oz) hypermatrix, where case ‘x’ has been 
executed in parallel sharing the cache with all the 
possible cases of the characterization program, as  
shown in Fig. 14.  
To summarize, the similarity hypermatrix is 
generated for each process of a phase, which allows 
us to define a similarity factor, a mean weighted with 
each of the performance indices within the range [µ- 
fσ, µ+fσ], executed in parallel with each case of the 
characterization program sharing the cache, in order 
to generate the ms(x,y) similarity matrix (see Fig. 12). 

 
 

Figure 12. Similarity Matrix between processes of each 
phase and the cases of the characterization program. 

4.6. Analyse interactions between the 
application processes of one phase 

With the ms(x,y) matriz we know the similarities 
between each process of a phase and the cases of the 
characterization program, as well as having the 
hnmp(vx,ty,oz) hypermatrix in order to know how 
performance is affected when two cases of the 
characterization program share the Cache.   
With this information we can generate the mipf(x,y) 
interactions matrix between processes of one phase 
from the means and deviations of the performance 

indices of the hnmp(vx,ty,oz)  hypermatrix, where each 
individual case of the characterization program is 
executed in parallel with all the cases of the 
characterization program to determine their 
performance when sharing the Cache and the weight 
of each case according to the ms(x,y) similarity 
matrix between the processes of a phase and the cases 
of the characterization program (see Fig. 13). 

 

 

 

 
 

Figure 13. Similarity Matrix between processes of each 
phase and the cases of the characterization program. 

The data from this matrix will make it possible to 
determine which processes in each phase can generate 
greater performance drops if they are executed in 
parallel, sharing the Cache. 

4.7. Define the mapping policy 

Now, we are able to define the assignment of 
processes based on the data gathered. 
We define a communication model of the system 
based on the transmission time grouped into 2 main 
categories: "Map-By-Cluster" (nodes in a cluster 
interconnected by a high-speed network) and "Map-
By-Node" (cores in a node/socket that share the 
memory). We define this hierarchy to reduce the 
mapping complexity algorithms, and to improve 
application throughput. Considering the process 
attraction due to communications patterns (more 
communication volume, more proximity), and the 
processes repulsion due to memory patterns (more 
memory used, more repulsion). 
In the first step, we generate groups of processes in 
the "Map by cluster" category using a the K-means 
clustering algorithm O(n2). This is based on the 
communication pattern (message size and phases 
weight), where ‘k’ is determined by the number of 
clusters. In each group we will join processes that 
have more communications between them. These 
communication events will be managed within a 
node/socket, and fewer communications between 
processes from other groups, this communication 
events are managed by the node/socket 
interconnection network with a lower bandwidth. In 
this first step, we do not consider inter-process 
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memory interaction hence one process in one node (a 
group) does not affect the performance of another 
process assigned to another node (another group), or 
the effect is negligible compared with 
communications due to the fact that they don't share 
the memory, or the memory cache. 
In the second step, we assign processes to cores in the 
“Map by Node” category. For each group (processes 
assigned to a cluster) using a K-means clustering 
algorithm O(n2), based on the interactions matrix 

between processes of a phase, mipf(x,y), weighting 
the values of each phase with the weights obtained 
from the application signature shown in Fig. 15, k is 
determined by the cluster memory architecture, the 
number of NUMA nodes, and controlling the number 
of processes assigned to each centroid. 
The static mapping policy will be defined by 
minimizing performance drops due to 
communications patterns and the interactions when 
sharing the Cache memory. 
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Case1 Case2 Case3 Case4 Case5 Case6 Case7 Case8 Case9 Case10 Case11 Case12 

Size1 Size1 Size1 Size2 Size2 Size2 Size3 Size3 Size3 Size4 Size4 Size4 

Step1 Step2 Step3 Step1 Step2 Step3 Step1 Step2 Step3 Step1 Step2 Step3 

 si = ƒ - | µx - µi | / σ 
Є [ 0 , ƒ ]  
(for ƒ=2) 

Instructions 1.5 -1.0 1.5 -1.0 -1.0 -1.0 -1.0 0.5 -1.0 -1.0 -1.0 1.0 
Cycles 1.0 0.0 -1.0 2.0 1.0 0.25 1.0 1.75 2.0 0.0 0.5 1.0 

 L1 misses 2.0 0.75 -1.0 1.75 1.0 -1.0 1.5 1.5 0.0 0.75 2.0 0.75 

Similarities of  
process q with case i

Σ (weighti . si) 

(weighti = 1) 
4.5 -0.25 -0.5 2.75 1 -1.75 1.5 3.75 1 -0.25 1.5 2.75 

Figure 14. An example is shown for 2 dimensions (size/step) and 3 indices (Instructions, Cycles and L1 misses) to facilitate 
visualization. Positive values of (similarity) indicate that the index of one of the cases (case x) executed in parallel with a 
process (process q, left side) is similar (within the range [µ-fσ, µ+fσ] in each case) to that same index of each case of the 
characterization program executed in parallel with that same case (case x, right side). Negative values indicate that they are out 
of range. 

Figure 15. Interactions matrix between application 
processes for all phases. 

5. Conclusions

We have proposed a methodology to analyze 
application behaviour and define a static mapping to 

improve application performance.  
It has been possible to validate that the data obtained 
from the instrumentation correspond to the theoretical 
values and are representative for identifying memory 
access patterns, also it has been possible to verify that 
working with means and deviations of the analyzed 
indices give more stable and comparable results, 
essential factors for this methodology. 
The first step in this methodology is to characterize 
the system, this data can provide important 
information for software developers to know which 
memory access patterns achieve better performance 
when the application runs alone and when it shares 
memory with other processes. 

In the second step, we characterize the application 
based on known memory access patterns. This 
information will let us know if the basic access 
patterns of this application obtain good performance 
on this system, which can allow us to improve the 
design of the application. It will also allow us to know 

mip(pp,pp,fq)*weight phase q 

ap
pl

ic
at

io
n 

pr
oc

es
se

s 
 

application processes 

Application phases 

Matrix generated from the 
values of the performance 
mipf(x,y) matrix with the 
interactions between 
processes in each phase and 
weighted with the weights of 
each phase provided by the 
application signature. 

Interactions Matrix between processes for all phases of the 
application 

mip(pi,pj,fk)*weight phase k 
mip(px,py,fz) 

Instructions 

cycles 

L1 misses  

µ+ƒ.σ 

µ-ƒ.σ 

µ 

Journal of Computer Science & Technology, Volume 24, Number 2, October 2024

- 128 -



the conflicts generated by sharing the Cache and to 
know the room for improving performance if these 
conflicts are minimized. This improvement can be 
obtained by changing the design of the application, 
but also with the mapping policy to allocate processes 
in this system which is where this methodology is 
focused. 
Finally, in the third step, with the data obtained in the 
first two steps about the interactions between 
application processes, we can define a static mapping 
policy to minimize performance drops due to 
communication patterns and process interactions 
when the Cache is shared.  
Future lines will be focused on finishing 
implementing all the steps in this methodology based 
on the benchmark prototypes developed to define the 
methodology. Another important aspect of this 
methodology is that it allows changes to be made in 
the weighting of the indices used to give more 
emphasis to different aspects of the application or 
system performance. 
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