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Abstract

Early detection of antibiotic resistance is a crucial task, 
especially for vulnerable patients under prolonged 
treatments with a single antibiotic. To solve this, ma­
chine learning approaches have been reported in the 
state of the art. Researchers have used MALDI-TOF 
MS in order to predict antibiotic resistance and/or sus­
ceptibility in bacterial samples. Weis, et al. imple­
mented LR, LightGBM and ANN to study the an­
tibiotic resistance on bacterial strains of Escherichia 
Colt, Staphylococcus Aureus, and Klebsiella Pneu­
moniae. Despite promising results, the models have 
not achieved perfect accuracy, specifically when the 
classes are unbalanced. On the other hand, Extreme 
Learning Machine (ELM) is a training algorithm for 
forward propagation of single hidden layer neural net­
works, which converges much faster than traditional 
methods and offers promising performance along with 
less programmer intervention. In this way, this study 
introduced improved ELMs, including two weighted 
ELMs proposed by Zong, and the SMOTE technique 
in order to create new synthetic samples of the minor­
ity class. After heuristic optimization of ELM hiper- 
parameters, results demonstrated 85% in accuracy and 
85% in geometric mean for the classification problem 
in the case of weighted ELM 1 subject to the SMOTE 
technique of oversampling.

Keywords: Antibiotic Resistance Prediction, MALDI- 
TOF Mass Spectrometry, Machine Learning in 
Medicine, Extreme Learning Machines, Weighted 
ELM

Resumen

La detección temprana de la resistencia a los an­

tibióticos es una tarea crucial, especialmente en el 
caso de pacientes vulnerables sometidos a tratamien­
tos prolongados con un único antibiótico. Para resolver 
este problema, se han utilizado métodos de aprendizaje 
automático. Los investigadores han utilizado MALDI- 
TOF MS para predecir la resistencia y/o susceptibili­
dad a los antibióticos en muestras bacterianas. Weis, 
et al. aplicaron LR, LightGBM y ANN para estudiar 
la resistencia a los antibióticos en cepas bacterianas 
de Escherichia Goli, Staphylococcus Aureus y Kleb­
siella Pneumoniae. A pesar de los prometedores re­
sultados, los modelos no han logrado una precisión 
perfecta, concretamente cuando las clases están de­
sequilibradas. Por otro lado, Extreme Learning Ma­
chine (ELM) es un algoritmo de entrenamiento para 
la propagación hacia delante de redes neuronales de 
una sola capa oculta, que converge mucho más rápido 
que los métodos tradicionales y ofrece un rendimiento 
prometedor junto con una menor intervención del 
programador. De este modo, este estudio introdujo 
ELMs mejorados, incluyendo dos ELMs ponderados 
propuestos por Zong, y la técnica SMOTE para crear 
nuevas muestras sintéticas de la clase minoritaria. Tras 
la optimización heurística de los hiperparámetros del 
ELM, los resultados demostraron un 85% de precisión 
y un 85% de media geométrica para el problema de 
clasificación en el caso del ELM ponderado 1 sujeto a 
la técnica SMOTE de sobremuestreo.

Palabras claves: Enter previous key words or phrases 
in alphabetical order in Spanish, separated by com­
mas.

1 Introduction

Bacterial antibiotic resistance is considered one of the 
most significant challenges in global health [1]. De-
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spite significant advances in contemporary medicine, 
this phenomenon continues to be an alarming concern. 
The ability of bacteria to adapt and develop antibiotic 
resistance has led to a critical situation, putting the suc­
cess of medical treatments at risk and compromising 
the effectiveness of existing medications. This resis­
tance impacts treatment effectiveness, increases the 
complexity of infections, prolongs hospital stays, and 
raises healthcare costs. In this context, the search for 
effective strategies to address this problem has become 
essential to ensure successful treatment of infectious 
diseases and preserve long-term public health [2, 3]. 
This issue has not only involved healthcare profession­
als. It has also led to interdisciplinary collaborations 
with engineering and data analysis experts, thus driv­
ing significant advances in various areas of medicine.

Early detection of antibiotic resistance is of vital 
importance, especially in patients with delicate con­
ditions or those who have been exposed to long-term 
treatments with a single type of antibiotic. The po­
tential of advanced technologies, such as Machine 
Learning (ML), has been leveraged to address this 
issue [4, 5]. Recently, the field of medicine has ap­
plied ML-based methods to analyze MALDI-TOF 
(Matrix-Assisted Laser Desorption/Ionization Time- 
Of-Flight Mass Spectrometer) Mass Spectrometry 
(MS) data in order to identify different type of biomark­
ers [6, 7, 8,9, 10, 11,4],

Currently, in the fight against antibiotic resistance, 
techniques utilizing MALDI-TOF MS have been im­
plemented to predict antibiotic resistance or suscepti­
bility in bacterial samples [12]. In this work [13], three 
key bacterial strains were focused on: Escherichia 
Coli, Staphylococcus Aureus, and Klebsiella Pneumo­
niae. In their research approach, Weis applied three 
machine learning methods: logistic regression (LR), 
gradient-boosted decision trees (LightGBM), and a 
deep neural network classifier (multi-layer perceptron, 
MLP). Despite promising results, all models reached 
the threshold of 0.8 ± 0.03 precision in the area un­
der the receiver operating characteristic curve and the 
area under the precision-recall curve. This challenge 
is partly attributed to the imbalance between positive 
(resistance) and negative (susceptibility) values in the 
databases used, with bacterial resistance being the mi­
nority class.

The results obtained in Weis’s study demonstrated 
an excellent ability to predict the antibiotic resistance 
and susceptibility of the database samples. However, 
despite the good results obtained in Weis’s research, 
the existence of an imbalance between positive (antibi­
otic resistance) and negative (antibiotic susceptibility) 
classes was not taken into account, with the latter being 
the class that even quintuples the number of cases over 
the positives, as seen in Fig. 1. The data imbalance 
leads to unsatisfactory performance of machine learn­
ing models, as they tend to favor the majority classes, 
ignoring or underestimating the minority classes. This

disparity in the distribution of samples can severely 
distort the results, leading to biased and inaccurate 
models when predicting or classifying the less repre­
sented classes [14]. Because this is a constant prob­
lem in antibiotic resistance analysis, it is necessary to 
study different methods for antibiotic resistance anal­
ysis or ML techniques for working with imbalanced 
databases.

Given that class imbalance in antibiotic resistance 
is a constant, exploring and comparing various strate­
gies to improve these results and ensure more accurate 
detection is imperative. In this context, the evaluation 
of two variants of ELM to address the class imbalance 
problem is presented, applied to the Antibiotic Re­
sistance Information and MALDI-TOF Mass Spectra 
Database A (DRIAMS-A) used by Weis: Unbalanced 
1 and 2 [15]. Additionally, the Synthetic Minority 
Over-sampling Technique (SMOTE) has been applied 
to the databases, aiming to counteract the effect of 
the natural class imbalance: (1) Resistance and (2) 
susceptibility.

2 Materials and Methods

2.1 Database selection and metrics

Bacterial resistance development continues to be a 
pressing issue, necessitating the identification of rapid 
and effective strategies for detecting antibiotic resis­
tance in patients suffering from bacterial pathologies. 
Focusing on this need, the World Health Organiza­
tion compiled a list in 2017 of the most important 
bacteria needing better identification of antibiotic re­
sistance to facilitate the development of new drugs 
and treatments for affected patients [16]. This list in­
cludes three globally common bacteria: Escherichia 
coli. Staphylococcus aureus, and Klebsiella pneumo­
niae, which will be used as sample types in this study. 
For each species, a relevant antibiotic has been tested 
based on its clinical use: Ceftriaxone for £. coli and K. 
Pneumoniae, Oxacillin for S. Aureus. The DRIAMS-A 
database provides MS data and defines the antibiotic 
resistance or susceptibility of the different samples for 
each bacterium.

The DRIAMS-A database has the drawback of be­
ing imbalanced, where positive cases (antibiotic re­
sistance) will always be a minority compared to the 
negatives (antibiotic susceptibility). For further details, 
refer to Fig. 1.

To construct the datasets used in the models, a ma­
trix was formed using the raw mass spectra, which 
were subjected to a binning process considering a 
range of 2,000 Da to 10,000 Da with a bin size of 
2 Da to obtain a vector of 4,000 features applicable 
to our model. The bin size was selected according to 
previous work[4], Subsequently, the data were normal­
ized between 0 and 1 and finally divided into 80% for 
training, and 20% for testing the final model.
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Figure 1: Distribution histogram of E. coli, K. pneumoniae, S. aureus bacteria samples. DRIAMS-A database.

Two metrics have been used to search hyperparam­
eters: the geometric mean (G-Measure), as seen in 
equation (1), where TP, TN, FP, and FN define true 
positives, true negatives, false positives, and false neg­
atives, respectively. The second metric corresponds 
to accuracy, equation (2), considering the main diag­
onal of the confusion matrices divided by the total 
samples. To achieve more reliable results, the five­
fold cross-validation technique was employed when 
applying the ELMs to the databases. This involved cal­
culating the average and standard deviation across the 
five iterations. In addition to accuracy and G-measure 
metrics, the complexity of the presented methods has 
been analyzed, applying the Monte Carlo technique 
with 100 iterations and calculating the average and 
standard deviation of the iterations.

After the hyperparameter search, the models were 
evaluated using G-measure, accuracy, sensitivity, and 
specificity. Sensitivity equation (3), also known as 
“recall” or true positive rate, measures the proportion 
of positive cases (antibiotic resistance) correctly iden­
tified among the total positive cases. Specificity, equa­
tion (4), indicates the proportion of negative cases (an­
tibiotic susceptibility) among the total negative cases.

/ TP TN 
►Measure = \ ----------- •-------------, (1)V TP + FN TN + FP

TP+TN
Accuracy =---------------------------, (2)

TP+TN + FP + FN
TP

Sensitivity = ------------, (3)
TP + FN 

TN 
Specificity =------------. (4)

2.2 Unbalanced ELM
Conventional ELMs, defined as single-layer feedfor­
ward neural networks, appear in their most basic form 
in equation (5) [17].

/Cl) = ¿ PMwí • xj+b¡), (5)
1=1

in the equation, xj represents the j-th input data, and 
Pi = )Pi\,Pi2, ...'Pin)7 is the output weight matrix con­
necting the output layer to the hidden layer. The ac­
tivation function is denoted by ”g,” while w,- is the 
weight vector between the input node and the i-th hid­
den node. No indicates the number of hidden neurons. 
For simplification, the equation can be described as 
follows:

HP = T. (6)

in equation (6), T is the target data matrix with No 
samples, P is the output weight matrix, and H is the 
output matrix of the hidden layer, specified respec­
tively in equations (7), (8), and (9):

T= [ii, • • • ,tNo\T, 

p = VPi<--,pNf,

(7)

(8)

g(wi-Ai +by) ••• g(wL-Xi + bL)

_g(wi -x^+b^ g(wL-xNo+bL)
(9)

The solution of minimum norm the least squares is 
determined analytically to calculate the output weights 
P using the ’’generalized” Moore-Penrose inverse 
H.[18], as seen in equation (10):

P =H]T , H] = {HTH)-XHT. (10)

This ELM format tends to overfit, which is a sig­
nificant drawback. To counteract this problem, a reg­
ularization parameter, C, is added to better balance 
empirical risk and structural risk, as detailed in [19].
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The mathematical description of parameter C appears 
in equation (11):

lol omin-||/3||2 + -C||De||2, (11)

where £ represents the training error that regulates 
the parameter C, denoted as £ = [ei, £2, • • • , £vo]. Ad­
ditionally, D is defined as the diagonal matrix D = 
diag(vi, i'2, • • • , Vjvo), which accounts for both empir­
ical risk and structural risk. Zong proposes their 
weighted ELM in two sections, binary and multiclass 
classification, of which only the first will be ana­
lyzed, given the classification nature of the DRIAMS- 
A database. For handling imbalance, Zong proposes 
the integration of a diagonal matrix W, associated with 
each sample training. Finally, for the weighted ELMs, 
equations (14) and (15) are defined:

When N is small: (3 = HT^+whht^ -1 
wr,

(12)

When N is large: ¡3 = HT +HtWhA Vw.
' (13)

To calculate the weight of the matrix W, an auto­
matic weight generation scheme is defined, as detailed 
in equations (16) and (17):

Weight scheme Wl: W# = —. (14)
#r

Weight scheme W2: W# = 0^8 (15)
#r

Where #r represents the number of samples belong­
ing to a class, another proposed weighting aims to 
adjust the balance step to a ratio of 0.618 : 1. This 
ratio, chosen because it corresponds to the golden ratio 
(often considered a standard of perfection in nature), 
helps balance the minority and majority classes. For 
this study, the weighting without the golden ratio ad­
justment will be referred to as IVI (unbalanced one), 
and the weighting incorporating the golden ratio will 
be labeled IV 2 (unbalanced two).

2.3 SMOTE oversampling technique
Oversampling is a technique that balances imbalanced 
datasets, where some classes have many more samples 
than others. This is important in machine learning and 
data mining applications. Imbalanced data can lead to 
classification problems, especially for minority classes. 
In the review on ’’handling imbalanced data using un­
dersampling and oversampling technique” [20], one 
of the techniques with the best approximation perfor­
mance and widely used in the literature is the SMOTE 
technique [21], which has been successful in a vari­
ety of areas and has inspired different approaches to 
addressing the class imbalance problem. Its impact

extends to new learning methods and has become an 
essential reference when working with imbalanced 
data. SMOTE generates synthetic data for the minority 
class by taking samples from the nearest neighbors in 
feature space and creating new weighted data points. 
This approach helps balance the class distribution by 
increasing the number of samples in the minority class, 
thus improving the classification model performance 
[22]. In the context of this research, the minority class 
corresponds to samples that exhibit antibiotic resis­
tance: as shown in Fig. 1, the positive class (antibiotic 
resistance) is, on average, up to 4 times smaller than 
the negative class (antibiotic susceptibility), which is 
why it will be sought to increase the number of posi­
tive samples synthetically by 250%, aiming for a much 
more stable database.

3 Results

3.1 Hyperparameter sub-optimization

Effective implementation of different ELMs requires 
careful tuning of their hyperparameters. An exhaustive 
search is conducted to identify suboptimal values. The 
first hyperparameter, regularization (C), is specified as 
a vector C = [2”], with n ranging from —20 to 20 in 
regular increments. The second hyperparameter, the 
number of hidden neurons (A^), is defined as a set 
as a vector of 100 columns, ranging from 100 hidden 
neurons up to 80% of the total samples in each respec­
tive database (E. coli, Hidden Neurons max=3900; K. 
pneumoniae. Hidden Neurons max=2280; S. aureus, 
Hidden Neurons max=3000). The third hyperparame­
ter, the activation function, remains constant across the 
ELMs analyzed, employing the sigmoid function. This 
function is widely used in machine learning models to 
map values between 0 and 1, proving especially valu­
able in binary classification tasks that require probabil­
ity estimates, such as predicting outcomes in scenarios 
with two possible results [23].

To compare different ELMs and their results, esti­
mating the suboptimal values of the hyperparameters 
is necessary. Finding these values is achieved by creat­
ing contour plots in each case: the analysis is achieved 
by locating a combination of parameters that achieves 
the best results, where the graphs labeled as ’’Test­
ing” correspond to testing accuracy and ’’Measure G” 
corresponds to the geometric measure (equation 1). 
The approach to sub-optimizing the parameters of all 
applied ELMs involves visually seeking a value that 
balances optimal performance and reduced complexity. 
It has been considered that the hyperparameter C does 
not add complexity to the system. Hence, the prior­
ity is to find a value that ensures good performance 
without increasing the model’s complexity, so the fo­
cus will be on finding the fewest number of neurons 
with the best possible result. This approach allows for 
identifying a balance point that optimizes the model’s 
performance without overloading it with unnecessary
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complexity.

3.1.1 Bacteria Escherichia Coli

Fig. 2 and Fig. 3 display contour plots representing 
the predictions of the ELMs on the resistance of Es­
cherichia coli bacteria to the antibiotic Ceftriaxone. 
Figure 2 pertains to unbalanced ELM 1, and Figure 
3 to unbalanced ELM 2. Figure 2 shows that the re­
sults for accuracy and geometric measure exceed 0.7 
with hyperparameters C « 210 and No « 1200. How­
ever, it is important to note that unbalanced ELM 1 
exhibits erratic and disordered results when the pa­
rameter C < 2 5 affects both accuracy and geometric 
measure metrics. Fig. 3 presents the contour plot for 
unbalanced ELM 2, showing improved performance 
in both metrics starting from C « 215 and No « 2000, 
achieving scores of 0.6 in both accuracy and geomet­
ric measure. Notably, the geometric measure proves 
to be more demanding than testing accuracy for both 
ELM configurations. Specifically, unbalanced ELM 
1 reaches approximately 0.8 in accuracy, while unbal­
anced ELM 2 achieves 0.69.

3.1.2 Bacteria Klebsiella Pneumoniae

Similar to earlier observations. Fig. 4 and Fig. 5 illus­
trate the performance of unbalanced ELM 1 and 2 in 
predicting the resistance of K. pneumoniae bacteria to 
the antibiotic Ceftriaxone. In Fig. 4, accuracy results 
around 0.7 are achieved with parameters C « 210 and 
No ~ 500. However, higher demands are noted for the 
geometric measure, requiring No ~ 800 to exceed a 
value of 0.69. Additionally, the geometric measure 
exhibits less stability in maintaining its optimal values 
than the accuracy metric. Fig. 5 shows the perfor­
mance of the unbalanced ELM 2 algorithm, which 
generally falls below that of unbalanced ELM 1. The 
optimal parameter combination for accuracy appears 
to be C « 215 and No ~ 1700, producing an accuracy 
of approximately 0.65. Interestingly, the geometric 
measure reaches a higher value of 0.7 with C ~ 216 
and No ~ 2000. However, this result should be inter­
preted with caution, as it does not demonstrate a clear 
linear trend.

3.1.3 Bacteria Staphylococcus Aureus

In Fig. 6 and Fig. 7, unbalanced ELM 1 and ELM 2 
performance is depicted for Staphylococcus Aureus, 
presenting contour plots highlighting notable differ­
ences. Fig. 6 focuses on unbalanced ELM 1, where 
a significant disparity is observed between the test­
ing metric and the geometric measure compared to 
previous cases. The testing metric achieves stability 
with an accuracy of around 0.78, using hyperparame­
ters C « 210 and No ~ 1700. However, the geometric 
measure displays evident instability at these parame­
ters, indicating that it is more demanding and varies

more widely in its values, leading to more noticeable 
changes in the colors of the plot. The optimal values 
for the geometric measure are achieved with C « 215 
and No ~ 2700, resulting in values fluctuating between 
0.7 and 0.8; however, this requires doubling the num­
ber of hidden neurons, adding complexity to the al­
gorithm when selecting suboptimal parameters. Fig. 
7 examines the performance of unbalanced ELM 2, 
which again shows lower accuracy in both the testing 
metric and the geometric measure compared to unbal­
anced ELM 1. The optimal parameter values for ELM 
2 are also C « 215 and No ~ 2700.

3.1.4 SMOTE technique application

Significant performance improvements were noted 
with unbalanced ELM 1. Given these results, applying 
the SMOTE oversampling technique to the databases 
offers an opportunity to reassess the performance of 
the ELM. Fig. 8 displays the improved results for un­
balanced ELM 1 after applying SMOTE to the E. coli 
bacteria database, with noticeable enhancements in the 
algorithm’s metrics and a clearer linearity compared 
to Fig. 2. The performance begins to optimize with 
hyperparameters C « 212 and No ~ 2000, achieving up 
to 0.87 in both accuracy and Geometric Mean. More­
over, Fig. 9 presents the outcomes for unbalanced 
ELM 1 using SMOTE in the K. pneumoniae bacteria 
database. These results show significant improvements 
and a more distinct trend than Fig. 4. Optimal perfor­
mance is observed with hyperparameters C « 216 and 
No ~ 600, reaching up to 0.9 in accuracy and 0.87 in 
Geometric Mean.

Similarly, the application of SMOTE to the S. au­
reus database enhances the performance of unbalanced 
ELM 1, as shown in Fig. 10. The results show no­
table improvements in the algorithm metrics, showing 
a clear progression relative to Fig. 6. The best re­
sults are achieved with the hyperparameters C « 212 
and No ~ 2000, reaching up to 0.87 in precision and 
geometric mean.

Comparing the results in Table 1 and Table 2, it is 
evident that unbalanced ELM 1 performs best on the 
unbalanced database, achieving a maximum accuracy 
and geometric mean of 0.77 for the Staphylococcus 
Aureus bacteria database. Additionally, unbalanced 
ELM 1 maintains a lower complexity level than unbal­
anced ELM 2, which is more complex. In the rest of 
the paper, complexity associates to the training time. 
However, as noted in Table 3, using the SMOTE over­
sampling technique to balance the databases improves 
performance with unbalanced ELM 1, reaching an ac­
curacy of up to 0.87. This increase in performance 
comes with a higher complexity in the E. coli bacteria 
database due to a greater number of hidden neurons 
utilized. Despite this, unbalanced ELM 1 shows bet­
ter performance and less complexity in the S. aureus 
bacteria database than other models. When applied 
to a synthesized database, unbalanced ELM 1 signif-
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Figure 2: Contour Plot - Unbalanced ELM 1 for the Prediction of Ceftriaxone Resistance in Bacterial E. coli.
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Figure 3: Contour Plot - Unbalanced ELM 2 for the Prediction of Ceftriaxone Resistance in Bacterial E. coli.

icantly outperforms its unbalanced version, with all 
metrics converging at 0.86 for both geometric mean 
and accuracy. Note that for the application of the dif­
ferent algorithms, the following characteristics of the 
equipment used should be taken into account: Matlab 
2023a software, desktop computer with Windows 10 
operating system, Intel(R) Core(TM) Í7-2600 CPU @ 
3.40GHz processor, 16 GB RAM, and AMD Radeon 
HD 6700 Series graphics card.

3.2 Model Evaluation

After identifying the studied algorithm’s suboptimal 
hyperparameters, we conducted tests using the values 
specified in Tables 1, 2, and 3. We present the re­
sults of these evaluations in Table 4. The results have 
been reported using the following metrics: accuracy, 
geometric mean, sensitivity, and specificity.

Table 1: Hyperparameters used in the unbalanced 
ELM model 1 with unbalanced databases.

E. coli K. pneumoniae S. aureus

Antibiotic Oxacillin Ceftriaxone Ceftriaxone
Hidden Neurons 2500 700 2500
Parameter C 2“° 215 216
Accuracy 0.78 ±0.086 0.70±0.0237 0.77±0.010
G-Measure 0.75 ±0.017 0.68 ±0.024 0.77±0.170
Training Time (s) 14.71 ±0.69 1.4±0.17 9.66±0.31

Table 4 presents the evaluation results for three vari­
ants of the ELM model: Imbalanced ELM 1, Imbal­
anced ELM 2, and Imbalanced ELM 1 with the ap­
plication of the SMOTE oversampling method. In 
particular, the Imbalanced ELM 1 variant performs 
better in the S. aureus dataset and is superior in all four 
performance measures: accuracy, geometric mean, sen-
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Hidden Neurons

Figure 4: Contour Plot - Unbalanced ELM 1 for the Prediction of Ceftriaxone Resistance in Bacteria K. pneumoniae.
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Figure 5: Contour Plot - Unbalanced ELM 2 for the Prediction of Ceftriaxone Resistance in Bacteria K. pneumoniae.
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Table 2: Hyperparameters used in unbalanced ELM 2 
with unbalanced database.______________ ______

E. coli K. pneumoniae S. aureus

Antibiotic Oxacillin Ceftriaxone Ceftriaxone
Hidden Neurons 3600 2200 2800
Parameter C 220 220 220
Accuracy 0.70±0.012 0.63 ±0.0128 0.73 ±0.0092
G-Measure 0.73 ±0.018 0.69 ±0.0085 0.69 ±0.0091
Training Time (s) 13.95 ±0.61 5.65±0.19 11.79 ±0.48

when applying SMOTE.
Table 3: Hyperparameters used in unbalanced ELM 1

E. coli K. pneumoniae S. aureus

Antibiotic Oxacillin Ceftriaxone Ceftriaxone
Hidden Neurons 3000 1000 2000
Parameter C 2*6 2*6 2*6
Accuracy 0.86 ±0.0068 0.87 ±0.0071 0.86±0.0091
G-Measure 0.86 ±0.0072 0.85 ±0.0062 0.86±0.01
Training Time (s) 35.13 ± 1.16 3.27±0.13 5.64±0.15

sitivity, and specificity.
On the other hand, Imbalanced ELM 2 performs 

worse in most metrics; however, its sensitivity is better, 
implying that this method can better detect the positive 
class, i.e., resistant bacteria. This result is particu­
larly striking given that positive samples constitute the 
minority class in the datasets.

Applying the SMOTE technique to the datasets 
and reevaluating Imbalanced ELM 1 significantly im­
proved accuracy and geometric mean, confirming the 
trend in Table 3. Although sensitivity did not improve, 
specificity increased, indicating a better balance in de­
tecting both classes of both resistant and susceptible 
bacteria. The above reinforces that using the SMOTE
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Figure 6: Contour Plot - Unbalanced ELM 1 for the Prediction of Oxacillin Resistance in S. aureus Bacteria.
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Figure 7: Contour Plot - Unbalanced ELM 2 for the Prediction of Oxacillin Resistance in S. aureus Bacteria.

Table 4: Model evaluation results: Unbalanced ELM 1, Unbalanced ELM 2, Unbalanced ELM 1 when applying 
SMOTE technique.

E. coli K. pneumoniae S. aureus

ELM unbalanced 1 Accuracy 0.69 0,69 0.82
G-Measure 0.71 0,71 0.82
Sensitivity 0.73 0,73 0,79
Specificity 0.68 0,68 0,83

ELM unbalanced 2 Accuracy 0.64 0,64 0,71
G-Measure 0.70 0,70 0,74
Sensitivity 0.83 0,83 0,81
Specificity 0.59 0,59 0,68

ELM unbalanced 1 Accuracy 0.86 0,86 0,85
When applying SMOTE G-Measure 0.86 0,86 0,85

Sensitivity 0.73 0,76 0,77
Specificity 1.00 0,96 0,93
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Hidden Neurons

Figure 8: Contour Plot - Unbalanced ELM 1 for the Prediction of Ceftriaxone Resistance in Bacterial E. coli with 
SMOTE technique applied.
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Figure 9: Contour Plot - Unbalanced ELM 1 for the Prediction of Ceftriaxone Resistance in Bacterial K. pneumoniae 
with applied SMOTE technique

oversampling method improves results compared to 
imbalanced datasets.

4 Conclusions

MALDI-TOF MS combined with ELM and the 
SMOTE has demonstrated significant potential for 
predicting bacterial antibiotic resistance in E. coli, 
K. pneumoniae and S. aureus. Despite initial chal­
lenges with data imbalance and model accuracy, imple­
menting weighted ELMs and applying SMOTE signifi­
cantly enhanced the predictive performance, achieving 
up to 85% accuracy and a similar geometric mean. As 
future work, we propose the implementation of deep 
learning in order to explore a multilabel approach.
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