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Abstract

High Performance Computing (HPC) applies different 
techniques to complex or large-volume applications, 
relying on both parallel software and hardware, to re
duce their execution time compared to running them on 
a simple computer. On the other hand. Quantum Com
puting (QC) emerges as a new paradigm that leverages 
the properties of Quantum Mechanics for computa
tion. QC has an inherently parallel nature and it is 
expected to solve some problems faster than classi
cal computing. This paper carries out a bibliographic 
review to examine the point of view of different au
thors regarding the relationship between HPC and QC. 
The objective is to determine the trend of this rela
tionship: Will QC replace classical HPC computing? 
or Will they complement each other? Also, if they 
were complementary tools, the aim is to answer: How 
could they be integrated? How will users access these 
resources?.

Keywords: High Performance Computing, HPC-QC 
Integration, Hybrid HPC-QC Architecture, Quantum 
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Resumen

La Computación de Alto Rendimiento (HPC) aplica 
diferentes técnicas a aplicaciones complejas o de gran 
volumen, apoyándose tanto en software como en hard
ware paralelos, para reducir su tiempo de ejecución 
en comparación con su ejecución en una computadora 
simple. Por otro lado, la Computación Cuántica (QC) 
surge como un nuevo paradigma que aprovecha las 
propiedades de la Mecánica Cuántica para la com
putación. La QC tiene una naturaleza inherentemente 
paralela y se espera que resuelva algunos problemas 
más rápido que la computación clásica. En este 
artículo se realiza una revisión bibliográfica para ex
aminar el punto de vista de diferentes autores respecto 
a la relación entre HPC y QC. El objetivo es determi
nar la tendencia de esta relación: ¿QC reemplazará a 
la computación HPC clásica? o ¿Se complementarán

entre sí? Además, si fueran herramientas complemen
tarias, se busca responder: ¿Cómo podrían integrarse? 
¿Cómo accederán los usuarios a estos recursos?.

Palabras claves: Arquitectura HPC-QC Híbrida, 
Computación cuántica. Cómputo de altas prestaciones. 
Integración HPC-QC

1 Introduction

High Performance Computing (HPC) is the practice 
of aggregating computational resources in order to im
prove the performance in solving large-volume prob
lems of science, engineering or business. For that, 
different programming techniques are applied to cre
ate parallel algorithms that will be executed on parallel 
architectures, with the aim of reducing the execution 
time of the application. In HPC, the cluster architec
ture is widely used, that is, computers connected by 
high-speed networks. Each computer (node) in the 
cluster can have multiple processing units (CPUs or 
cores) and eventually multiple graphics cards (GPUs), 
which are used as coprocessors for general-purpose 
computing. [1, 2, 3]

Quantum Computing (QC) began in the 1980s, 
when Paul Benioff, Richard Feynman and David 
Deutsch proposed to leverage the laws of Quantum 
Mechanics (QM) for computation. Their major pro
posals are the viability of quantum computers (i.e., 
computers that operate under the laws of QM) and the 
possibility of using such systems to tackle problems 
that are difficult to solve on classical computers (for 
example, simulation of quantum systems). [4]

In order to compare the computational power of 
quantum and classical computers, John Preskill pop
ularized the term quantum supremacy, which refers 
to the potential ability of quantum machines to solve 
problems that classical machines cannot deal with suf
ficient precision [5]. However, in practice, the term 
quantum advantage is used, which refers to the sig
nificant improvement in execution time achieved by a 
quantum algorithm compared to the best classical al
gorithm to solve a problem. In terms of computational
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complexity this means providing a superpolynomial 
speedup over the best possible classical algorithm [6]. 
An example of this is the quantum algorithm proposed 
by Shor in 1995 to factorize a large integer [7].

In QC, the unit of information is the quantum bit 
(qubit). Unlike a classical bit, which can only take 
the value 0 or 1, a qubit can take the value 0, 1, or 
both at the same time. That is, the qubit can be in a 
superposition of two quantum states. This quantum 
superposition enables large-scale parallel processing. 
Intuitively, those computations that must be applied to 
both states (0 and 1) can be done in a single operation 
using a qubit on a quantum computer, in contrast to 
a classical computer that needs to perform two opera
tions separately (one per state). [4, 8, 9]

Beyond computing, it is expected that in the near 
future quantum networks, which use the laws of QM 
to exchange quantum information between connected 
devices, will be developed. These networks rely on 
teleportation, a process that allows information to be 
transmitted from one place to another, even at very 
large distances. Teleportation is based on entangle
ment, a phenomenon by which two entangled particles 
behave identically regardless of the distance between 
them. It is said that both particles share the same state 
and any change in the properties of one instantly al
ters those of the other. Through superposition and 
entanglement of particles, a highly secure and efficient 
connection can be established, capable of overcoming 
the limitations of classical networks. [10]

Given the parallel nature of quantum computers and 
their potential ability to solve problems faster than 
classical computers, it is inevitable to establish a re
lationship between HPC and QC. This paper carries 
out a bibliographic review to examine the point of 
view of the different authors regarding the relationship 
between HPC and QC. Specifically, we selected sev
eral articles, from 2008 to the present, that introduce 
different proposals on the use of QC in HPC and we 
analyzed them seeking to answer questions such as: 
Will QC replace classical HPC? Can QC be integrated 
into existing HPC systems? How could such integra
tion be carried out if possible? How will users access 
these resources?

The rest of the paper is organized as follows. Sec
tions 2 and 3 summarize the fundamentals of HPC and 
QC respectively. Section 4 describes some works that 
relate HPC and QC. Section 5 analyzes those propos
als to clarify the current state of HPC and QC. Finally, 
Section 6 presents the main conclusions and future 
research.

2 Fundamentals of HPC

The idea of aggregating computational resources in 
order to improve the performance in solving large- 
volume problems dates back to 1971 [11]. However, 
commodity clusters became popular in the early 1990s,

thanks to a drop in computing/communication hard
ware prices, the extended use of the TCP/IP proto
col and the emergence of development tools such as 
PVM [12] (later replaced by MPI [13]). This section 
describes the evolution of HPC systems, from their 
beginnings to the present.

2.1 Clusters

An HPC cluster connects several computers (nodes) 
through a local network (Figure la). The interconnec
tion network may be Ethernet or a high-speed network 
such as Infiniband or Myrinet. To leverage the power 
of a cluster, applications must use the distributed- 
memory programming model. In this model, several 
processes are launched (one per cluster node) to solve 
the problem, which communicate among them by ex
changing messages. The most used message passing 
library is MPI.

A cluster is often shared by multiple users. To run 
an application, each user may employ all the nodes 
or a subset of them, but in an exclusive way. Thus, 
the application will execute without being interfered 
by other applications. When a user employs a subset 
of nodes, the remaining ones can be assigned to other 
users.

Resource Managers, such as OpenPBS [14], Torque 
[15] and Slurm [16], are used to manage cluster re
sources. Users ask the manager for the resources 
needed to run their applications. If the request can be 
satisfied, the manager allocates the demanded nodes 
and launches the execution of the application. On the 
contrary, it queues the request and serves it later, when 
resources become available.

2.2 Multicore and Multicore Clusters

In the past, the evolution of processors was based on 
increasing clock frequency, which automatically im
proved the performance of applications. However, this 
strategy also raises the temperature of the processor 
and leads to a higher energy consumption to dissi
pate the heat. Hence, this trend came to an end in 
the early 2000s, with the emergence of multicore pro
cessors. Multicores include several independent pro
cessing units (cores) and improve the performance of 
applications designed to exploit task-level parallelism.

Multicore cluster systems (Figure lb) benefit from 
having a higher number of processing units. To 
fully exploit multicore machines, applications should 
use the shared-memory programming model. In this 
model, several threads are created (one per core) that 
communicate with each other through shared memory. 
The most used tools for developing shared-memory 
applications are Pthreads [17] and OpenMP [18]. How
ever, as an alternative, the application can use the 
distributed-memory programming model (i.e. running 
one process per core and communicating them through
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Figure 1: HPC systems

messages). Applications that run on a multicore clus
ter can use both programming models (hybrid model) 
and combine different tools (i.e. MPI and OpenMP or 
MPI and Pthreads).

As mentioned above, cluster nodes are not shared 
among users. Users ask the Resource Manager for 
exclusive nodes. Therefore, if a user employs only a 
subset of cores from the requested node, the remaining 
cores cannot be employed by other users.

2.3 Hybrid GPU/CPU Clusters

Graphics cards (GPUs) were designed to acceler
ate graphics processing, freeing the CPU from that 
task. In the beginning, they were composed of non
programmable processors, dedicated to specific tasks 
(implemented by hardware). Nowadays, GPUs include 
programmable processors, allowing solving general
purpose problems, which gives place to the concept of 
GPGPU (General-Purpose Computing on GPUs).

GPUs have demonstrated to be more efficient than 
multicore processors and clusters for data-intensive 
computing applications, which exhibit a high degree 
of parallelism (SIMD) and work on regular data. How
ever, GPUs did not replace those architectures, but 
rather were included as coprocessors inside each clus
ter node (Figure 1c).

Applications that run on hybrid GPU/CPU clusters 
can use only the GPUs or use GPUs and CPU cores in 
a collaboratively way. Some articles [19, 20] show the 
advantage of this integration.

Regarding resource allocation, when a user asks for 
GPUs, the Resource Manager serves the request by 
assigning nodes that include them. If the user employs 
only one type of resource from each node (GPUs or 
CPU cores), the remaining resources cannot be em
ployed by other users.

3 Fundamentals of QC

The qubit is the unit of quantum information. A qubit 
can be in one of the basic states (0 or 1) or in the su
perposition state (0 and 1). A qubit in a superposition 
state has two associated probabilities, which repre
sent the probability of being 0 or 1 respectively. It 
should be taken into account that when ’’observing” or 
’’measuring” a qubit in a superposition state, its state 
collapses towards the most probable basic state (either 
0 or 1). For this reason, several runs (or shots) must 
be performed to obtain meaningful results when using 
a quantum algorithm. [4, 8, 9]

The superposition principle endows quantum com
puters with an inherent parallelism. Tn a quantum 
system of N-qubits, 2'v states can be simultaneously 
superposed, so that the effect of applying an operation 
to N-qubits is equivalent to applying it to all states in 
parallel.

The first quantum computers appeared in the 1990s 
and were limited to 2 or 3 qubits. Currently there 
are individual quantum machines with tens of qubits 
[21, 22, 23, 24]. These computers operate on qubits
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using quantum gates, which are analogous to the log
ical gates used by classical computers and allow to 
change the state of the qubit [25]. Quantum machines 
must be in a controlled environment to avoid or miti
gate decoherence, which arises from the interactions 
of a qubit with the environment and leads to errors in 
quantum information. For this reason, they require ex
tremely low temperatures, close to absolute zero (-273 
C), and need to be isolated from external signals (radio, 
light, electromagnetic). This explains why quantum 
machines are difficult to commercialize to the point 
that today they are provided by a few institutions and 
accessed through Cloud services [26].

In the same decade, the first quantum algorithms 
(QAs) were proposed [7, 27, 28]. A QA applies opera
tions to the qubits, with the objective of increasing the 
probability of the desired states and decreasing that of 
the undesired ones, and ends with the measurement, 
which collapses the state of the system to a basic state 
with a certain probability, producing a classical output 
(bits).

4 HPC-QC: a bibliographical review

In [29] the authors address the issue of large-scale 
quantum information processing and propose using a 
High Performance Quantum Computer as a generic 
resource for multiple-user quantum information pro
cessing. Specifically, they suggest to use a cluster 
that connects quantum computers (nodes) through a 
network with 3D topology. This topology allows to 
partition the cluster into isolated regions, which can 
be assigned to different users for simultaneous use. In 
this way, conflicts that arise with traditional topologies, 
where the quantum network is shared among users, are 
avoided. Those conflicts appear because in that shared 
context, a user could transport information from other 
users, leading to errors.

A similar idea was presented in [30], which pro
poses: connecting quantum nodes through a quantum 
interconnection, taking advantage of quantum telepor
tation, and extending MPI to support communication 
in this type of architectures.

Ian Foster, a leading researcher in the area of HPC, 
published a short article [31], in collaboration with 
other authors, which relates HPC, Artificial Intelli- 
gence/Machine Learning (AI/ML), QC and commu
nications. The authors mention that the infrastructure 
needed to support HPC and AI/ML shares many fea
tures. For example: GPUs originally used in HPC for 
general-purpose computing have become essential for 
AI/ML and, although QC has not reached sufficient 
maturity, it is expected to add a complementary com
puting capability to other systems. They also claim 
that quantum accelerators will not be suitable for all 
workloads. They conclude that understanding how 
these three technologies might complement each other 
and share infrastructure requires early thinking and

Figure 2: Loose integration between an HPC system 
and a QC system

planning. In addition, they highlight the current dif
ficulty in accessing this type of infrastructure. They 
recommend that such infrastructure should be a com
bination of co-located resources at computing centers, 
coordinated access to specific testbeds and to commer
cial Cloud resources. Only in this way, the needs of 
the most demanding, interdisciplinary research will be 
met.

Other authors [32] proposed two ways of integrating 
Quantum Processing Units (QPUs) into HPC systems: 
loose and tight. The loose integration (Figure 2) is a 
client-server model, where the HPC system interacts 
with an isolated QC server via network: the QC server 
may be on a dedicated network or may be part of a 
larger computational network, and it may host multiple 
QPUs that interact with each other through a quantum 
interconnect. The tight integration (Figure 3) moves 
the QPUs closer to the CPUs, creating a single, tightly 
connected system; in this case, three alternatives are 
proposed: a) allowing multiple CPUs to interact with a 
single QPU, b) associating each CPU with a dedicated 
QPU, c) connecting the QPUs through a quantum net
work and allowing them to be accessed by multiple 
CPUs through interfaces. Also, the authors consider 
that new metrics should be developed to evaluate per
formance. In HPC, FLOPS (Floating Point Operations 
per Second') is a key performance metric, but it is mean
ingless for quantum systems, whose computational 
model is not based on performing floating point opera
tions but rather on manipulating states. They propose 
to measure the performance of a QPU by evaluating 
the quantum gates applied and the amount of shots, 
since quantum algorithms are usually probabilistic.

More recently, the same authors [33] proposed in
tegrating QPUs into HPC systems and use them as 
specialized accelerators, in a manner similar to what 
happens with GPUs. This involves a careful selection 
of the workloads that will be assigned to these devices. 
They predict that future HPC designs will be heteroge
neous, with multiple accelerators coexisting within a 
node. However, some technological barriers challenge 
this integration, for example: the insulation and cool
ing required by QPUs, incompatible with the usual 
noise and vibrations of a server room, and the lack of 
software to support the interaction of these hardware 
systems. Their contribution is a description of a QPU
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(a) (b) (c)

Figure 3: Tight integration of CPUs and QPUs: three alternatives

accelerator design and a language hierarchy that would 
make the integration possible, as explained next.

Figure 4a describes their QPU accelerator design. 
The QPU is composed of: a quantum control unit 
(QCU), quantum execution units (QEUs), and a quan
tum register. The QCU represents the interface be
tween the QPU and the external system, and its role is 
to analyze incoming instructions and issue operands to 
the QEUs. Each QEU implements a subset of quantum 
gates operations, and different QEUs can operate in 
parallel. The quantum register stores quantum infor
mation (n-qubits); its measurement causes the collapse 
of some elements to a basic state, this is collected by 
the appropriate QEU and converted to a digital sig
nal, and finally this information is transmitted to the 
QCU and returned to the host or collected for further 
processing.

Figure 4b) describes the language hierarchy to allow 
the host program to interact with the QPU. The highest- 
level language must have keywords, data types and 
functions that enable quantum operations; it may be an 
existing programming language augmented with spe
cialized libraries or a dedicated quantum programming 
language [34] [35]. The program may be compiled 
or interpreted, and may access/control accelerators 
or other devices and system resources. The role of 
the host is to issue instructions to the QPU. The in
struction set of the QPU (ISA) is very important as it 
abstracts its capabilities. Then, the stream of instruc
tions and data sent to the QPU must be translated into 
operation codes (opcodes) that will trigger specific 
QEUs. Finally, the specification of how QEUs imple
ment opcodes (gate and register usage) represents the 
lowest-level language (not visible to the user). Figure 
5 summarizes the steps involved in the interaction.

Another more recent article [36] presents a con
ceptual middleware that facilitates quantum-classical 
integration, by providing unified resource access and 
management. This middleware is composed of four 
layers: workflow, workload, task, and resource. The 
workflow layer receives high-level task descriptions 
(classical, quantum, or composite), their dependencies, 
and the data they use, resolves dependencies and pre
pares the execution. The workload layer organizes the 
execution of the tasks issued by the previous layer;

(a)

(b)

Figure 4: (a) HPC node with a QPU accelerator, (b) 
Language hierarchy used to program and control a 
QPU.

Figure 5: CPU-QPU interaction sequence diagram

depending on the tasks type (classical, quantum or 
composite), the workload manager selects the appro
priate system resource for each task and assigns tasks 
to the resources. The task layer comprises several task 
managers, one per system resource; each one manages
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the allocation, acquisition, scheduling and monitoring 
of local resources to ensure the tasks are executed suc
cessfully. The resource layer represents the classical 
(CPUs, GPUs, FPGAs, etc.) and quantum resources 
(QPUs) where tasks are executed.

In [37] other authors claim that quantum-classical 
integration is needed in order to demonstrate practical 
quantum advantage. They show, without much de
tail, a hybrid memory-centric architecture (Figure 7), 
integrated in an HPC data center, accessible through 
the Cloud and based on container technology. They 
implement the proposed architecture by combining 
real high-performance classical infrastructure (CPUs, 
GPUs, etc.), simulated QPUs and advanced machine 
learning tools, with the aim of experimenting with hy
brid quantum-classical algorithms. They say that quan
tum circuits are hard to simulate classically, since the 
time and memory required scale exponentially with 
the number of qubits. However, they highlight that 
some classes of algorithms scale more favourably, al
though still exponentially, for specific sets of quantum 
circuits (e.g. tensor networks). They run optimization, 
machine learning and simulation algorithms on the 
presented hybrid architecture and demonstrate that the 
hybrid quantum-classical approach significantly out
performs the classical approach, for these algorithms.

Another recent review article [38] states that ad
vancements in QC have made clear that it will not 
replace conventional HPC, but can rather be integrated 
into current heterogeneous HPC infrastructures, as an 
additional accelerator, thus allowing the optimal use 
of both paradigms. The authors study several quantum 
programming tools (QPTs) and investigate whether 
they can be integrated with existing HPC tools. They 
conclude that existing QPTs only partially cover the 
requirements needed for full HPC-QC integration and 
that future work on QPTs should consider integration 
as a crucial aspect and provide a simple way to use 
them in an HPC context.

5 Discussion

Some authors seem to think about the replacement 
of HPC systems with their quantum equivalent [29, 
30], by proposing the use of quantum clusters without 
integrating them with classical HPC architectures. On 
the other hand, the remaining articles make it clear that 
QC will not replace traditional HPC, but rather will be 
complementary tools.

In [32] the authors propose hybrid quantum- 
classical architectures, which may even integrate mul
tiple interconnected QPUs. However, current research 
efforts are focus on the manufacture of a single, more 
efficient quantum machine and it seems difficult to 
have, in the short term, interconnected quantum ma
chines.

Foster [31] suggests that QC will not be suitable 
for all workloads, and thus will complement classi

cal HPC architectures when necessary. Something 
similar happened when GPUs began to be used for 
general-purpose computing. These boards did not re
place clusters or multicore processors, but rather were 
integrated as accelerators for specific tasks. Some 
articles [19, 20] show the advantages of CPU-GPU 
collaborative computing. Britt [32] raises the possi
bility of using quantum machines as coprocessors, as 
happens with GPUs. Perelshtein [37] demonstrates 
the practical advantage of this approach by running 
specific algorithms on a hybrid architecture, which 
combines high-performance classical infrastructure 
(CPUs, GPUs) and simulated QPUs. Uikewise, Britt 
[32] claims that new metrics, based on quantum gates 
and the number of shots, should be considered.

With regards to HPC-QC integration, the articles 
[32, 33, 36, 38] include proposals about how to inte
grate these architectures, the use of middlewares, the 
management of quantum-classical resources, and the 
integration of quantum programming tools with ex
isting HPC tools. Today, quantum computers require 
a controlled environment and are not integrated with 
classical HPC systems. For this reason, they can only 
be accessed individually through Cloud services.

HPC-QC integration involves several challenges. 
Britt [33] explains some of them: the incompatibility 
between quantum and classical computing technolo
gies, and the effort to manage the interaction between 
both systems and errors in quantum information.

In conclusion, HPC-QC integration should be con
sidered as a crucial aspect, HPC-QC infrastructure 
should be easily accessed by users and easy-to- 
program. [31, 38]

6 Conclusions and Future Work.

From the bibliographic review carried out in this work, 
we can conclude that classical HPC systems and quan
tum machines should be used in a complementary 
manner. In particular, quantum devices should act 
as coprocessors, as happens today with GPUs. QC 
will be used for solving specific problems, for which 
it is possible to obtain a significant improvement in 
performance, with respect to classical HPC solutions. 
Today, quantum machines are accessed through Cloud 
services and are not integrated with classical HPC 
systems. There are several challenges related to the 
incompatibility between classical-quantum technolo
gies and the fault-tolerance ability for long-running 
applications. Achieving a successful HPC-QC inte
gration requires vendors to provide easy access to the 
infrastructure and user-friendly programming tools.

As future work, we plan to develop quantum algo
rithms and compare their performance with that of 
their classical counterparts. Although currently avail
able quantum computers have few qubits, they are 
useful to determine what types of workloads are more 
benefited by QC. In the near future, the number of
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qubits is expected to increase exponentially. With a 
significant number of qubits, it will be possible to 
study the scalability of certain algorithms.
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