
Journal of Computer Science & Technology, Volume 24, Number 2, October 2024

- ORIGINAL ARTICLE -

Trends in High Performance Computing and Quantum
Computing

Tendencias en Cómputo de Altas Prestaciones y Computación Cuántica

Adrian Pousa1 , Victoria Sanz1,2 , Marcelo Naiouf1 , and Armando De Giusti1,3

' lll-UDI, School of Computer Sciences, National University of La Plata, Argentina
{apousa,vsanz,mnaiouf,degiusti}@lidi.info.unlp.edu.ar

"CIC. Buenos Aires, Argentina
5 CONICET, Argentina

Abstract

High Performance Computing (HPC) applies different
techniques to complex or large-volume applications,
relying on both parallel software and hardware, to re
duce their execution time compared to running them on
a simple computer. On the other hand. Quantum Com
puting (QC) emerges as a new paradigm that leverages
the properties of Quantum Mechanics for computa
tion. QC has an inherently parallel nature and it is
expected to solve some problems faster than classi
cal computing. This paper carries out a bibliographic
review to examine the point of view of different au
thors regarding the relationship between HPC and QC.
The objective is to determine the trend of this rela
tionship: Will QC replace classical HPC computing?
or Will they complement each other? Also, if they
were complementary tools, the aim is to answer: How
could they be integrated? How will users access these
resources?.

Keywords: High Performance Computing, HPC-QC
Integration, Hybrid HPC-QC Architecture, Quantum
Computing

Resumen

La Computación de Alto Rendimiento (HPC) aplica
diferentes técnicas a aplicaciones complejas o de gran
volumen, apoyándose tanto en software como en hard
ware paralelos, para reducir su tiempo de ejecución
en comparación con su ejecución en una computadora
simple. Por otro lado, la Computación Cuántica (QC)
surge como un nuevo paradigma que aprovecha las
propiedades de la Mecánica Cuántica para la com
putación. La QC tiene una naturaleza inherentemente
paralela y se espera que resuelva algunos problemas
más rápido que la computación clásica. En este
artículo se realiza una revisión bibliográfica para ex
aminar el punto de vista de diferentes autores respecto
a la relación entre HPC y QC. El objetivo es determi
nar la tendencia de esta relación: ¿QC reemplazará a
la computación HPC clásica? o ¿Se complementarán

entre sí? Además, si fueran herramientas complemen
tarias, se busca responder: ¿Cómo podrían integrarse?
¿Cómo accederán los usuarios a estos recursos?.

Palabras claves: Arquitectura HPC-QC Híbrida,
Computación cuántica. Cómputo de altas prestaciones.
Integración HPC-QC

1 Introduction

High Performance Computing (HPC) is the practice
of aggregating computational resources in order to im
prove the performance in solving large-volume prob
lems of science, engineering or business. For that,
different programming techniques are applied to cre
ate parallel algorithms that will be executed on parallel
architectures, with the aim of reducing the execution
time of the application. In HPC, the cluster architec
ture is widely used, that is, computers connected by
high-speed networks. Each computer (node) in the
cluster can have multiple processing units (CPUs or
cores) and eventually multiple graphics cards (GPUs),
which are used as coprocessors for general-purpose
computing. [1, 2, 3]

Quantum Computing (QC) began in the 1980s,
when Paul Benioff, Richard Feynman and David
Deutsch proposed to leverage the laws of Quantum
Mechanics (QM) for computation. Their major pro
posals are the viability of quantum computers (i.e.,
computers that operate under the laws of QM) and the
possibility of using such systems to tackle problems
that are difficult to solve on classical computers (for
example, simulation of quantum systems). [4]

In order to compare the computational power of
quantum and classical computers, John Preskill pop
ularized the term quantum supremacy, which refers
to the potential ability of quantum machines to solve
problems that classical machines cannot deal with suf
ficient precision [5]. However, in practice, the term
quantum advantage is used, which refers to the sig
nificant improvement in execution time achieved by a
quantum algorithm compared to the best classical al
gorithm to solve a problem. In terms of computational

- Ill -

Journal of Computer Science & Technology, Volume 24, Number 2, October 2024

complexity this means providing a superpolynomial
speedup over the best possible classical algorithm [6].
An example of this is the quantum algorithm proposed
by Shor in 1995 to factorize a large integer [7].

In QC, the unit of information is the quantum bit
(qubit). Unlike a classical bit, which can only take
the value 0 or 1, a qubit can take the value 0, 1, or
both at the same time. That is, the qubit can be in a
superposition of two quantum states. This quantum
superposition enables large-scale parallel processing.
Intuitively, those computations that must be applied to
both states (0 and 1) can be done in a single operation
using a qubit on a quantum computer, in contrast to
a classical computer that needs to perform two opera
tions separately (one per state). [4, 8, 9]

Beyond computing, it is expected that in the near
future quantum networks, which use the laws of QM
to exchange quantum information between connected
devices, will be developed. These networks rely on
teleportation, a process that allows information to be
transmitted from one place to another, even at very
large distances. Teleportation is based on entangle
ment, a phenomenon by which two entangled particles
behave identically regardless of the distance between
them. It is said that both particles share the same state
and any change in the properties of one instantly al
ters those of the other. Through superposition and
entanglement of particles, a highly secure and efficient
connection can be established, capable of overcoming
the limitations of classical networks. [10]

Given the parallel nature of quantum computers and
their potential ability to solve problems faster than
classical computers, it is inevitable to establish a re
lationship between HPC and QC. This paper carries
out a bibliographic review to examine the point of
view of the different authors regarding the relationship
between HPC and QC. Specifically, we selected sev
eral articles, from 2008 to the present, that introduce
different proposals on the use of QC in HPC and we
analyzed them seeking to answer questions such as:
Will QC replace classical HPC? Can QC be integrated
into existing HPC systems? How could such integra
tion be carried out if possible? How will users access
these resources?

The rest of the paper is organized as follows. Sec
tions 2 and 3 summarize the fundamentals of HPC and
QC respectively. Section 4 describes some works that
relate HPC and QC. Section 5 analyzes those propos
als to clarify the current state of HPC and QC. Finally,
Section 6 presents the main conclusions and future
research.

2 Fundamentals of HPC

The idea of aggregating computational resources in
order to improve the performance in solving large-
volume problems dates back to 1971 [11]. However,
commodity clusters became popular in the early 1990s,

thanks to a drop in computing/communication hard
ware prices, the extended use of the TCP/IP proto
col and the emergence of development tools such as
PVM [12] (later replaced by MPI [13]). This section
describes the evolution of HPC systems, from their
beginnings to the present.

2.1 Clusters

An HPC cluster connects several computers (nodes)
through a local network (Figure la). The interconnec
tion network may be Ethernet or a high-speed network
such as Infiniband or Myrinet. To leverage the power
of a cluster, applications must use the distributed-
memory programming model. In this model, several
processes are launched (one per cluster node) to solve
the problem, which communicate among them by ex
changing messages. The most used message passing
library is MPI.

A cluster is often shared by multiple users. To run
an application, each user may employ all the nodes
or a subset of them, but in an exclusive way. Thus,
the application will execute without being interfered
by other applications. When a user employs a subset
of nodes, the remaining ones can be assigned to other
users.

Resource Managers, such as OpenPBS [14], Torque
[15] and Slurm [16], are used to manage cluster re
sources. Users ask the manager for the resources
needed to run their applications. If the request can be
satisfied, the manager allocates the demanded nodes
and launches the execution of the application. On the
contrary, it queues the request and serves it later, when
resources become available.

2.2 Multicore and Multicore Clusters

In the past, the evolution of processors was based on
increasing clock frequency, which automatically im
proved the performance of applications. However, this
strategy also raises the temperature of the processor
and leads to a higher energy consumption to dissi
pate the heat. Hence, this trend came to an end in
the early 2000s, with the emergence of multicore pro
cessors. Multicores include several independent pro
cessing units (cores) and improve the performance of
applications designed to exploit task-level parallelism.

Multicore cluster systems (Figure lb) benefit from
having a higher number of processing units. To
fully exploit multicore machines, applications should
use the shared-memory programming model. In this
model, several threads are created (one per core) that
communicate with each other through shared memory.
The most used tools for developing shared-memory
applications are Pthreads [17] and OpenMP [18]. How
ever, as an alternative, the application can use the
distributed-memory programming model (i.e. running
one process per core and communicating them through

- 112-

Journal of Computer Science & Technology, Volume 24, Number 2, October 2024

|— • | Queues _________
i Running User A | User B

' Pending I User C I User D User E

(b) Multicore Cluster(a) Cluster

(c) Hybrid GPU/CPU Cluster (d) Integrated HPC-QC infrastructure

Figure 1: HPC systems

messages). Applications that run on a multicore clus
ter can use both programming models (hybrid model)
and combine different tools (i.e. MPI and OpenMP or
MPI and Pthreads).

As mentioned above, cluster nodes are not shared
among users. Users ask the Resource Manager for
exclusive nodes. Therefore, if a user employs only a
subset of cores from the requested node, the remaining
cores cannot be employed by other users.

2.3 Hybrid GPU/CPU Clusters

Graphics cards (GPUs) were designed to acceler
ate graphics processing, freeing the CPU from that
task. In the beginning, they were composed of non
programmable processors, dedicated to specific tasks
(implemented by hardware). Nowadays, GPUs include
programmable processors, allowing solving general
purpose problems, which gives place to the concept of
GPGPU (General-Purpose Computing on GPUs).

GPUs have demonstrated to be more efficient than
multicore processors and clusters for data-intensive
computing applications, which exhibit a high degree
of parallelism (SIMD) and work on regular data. How
ever, GPUs did not replace those architectures, but
rather were included as coprocessors inside each clus
ter node (Figure 1c).

Applications that run on hybrid GPU/CPU clusters
can use only the GPUs or use GPUs and CPU cores in
a collaboratively way. Some articles [19, 20] show the
advantage of this integration.

Regarding resource allocation, when a user asks for
GPUs, the Resource Manager serves the request by
assigning nodes that include them. If the user employs
only one type of resource from each node (GPUs or
CPU cores), the remaining resources cannot be em
ployed by other users.

3 Fundamentals of QC

The qubit is the unit of quantum information. A qubit
can be in one of the basic states (0 or 1) or in the su
perposition state (0 and 1). A qubit in a superposition
state has two associated probabilities, which repre
sent the probability of being 0 or 1 respectively. It
should be taken into account that when ’’observing” or
’’measuring” a qubit in a superposition state, its state
collapses towards the most probable basic state (either
0 or 1). For this reason, several runs (or shots) must
be performed to obtain meaningful results when using
a quantum algorithm. [4, 8, 9]

The superposition principle endows quantum com
puters with an inherent parallelism. Tn a quantum
system of N-qubits, 2'v states can be simultaneously
superposed, so that the effect of applying an operation
to N-qubits is equivalent to applying it to all states in
parallel.

The first quantum computers appeared in the 1990s
and were limited to 2 or 3 qubits. Currently there
are individual quantum machines with tens of qubits
[21, 22, 23, 24]. These computers operate on qubits

- 113 -

Journal of Computer Science & Technology, Volume 24, Number 2, October 2024

using quantum gates, which are analogous to the log
ical gates used by classical computers and allow to
change the state of the qubit [25]. Quantum machines
must be in a controlled environment to avoid or miti
gate decoherence, which arises from the interactions
of a qubit with the environment and leads to errors in
quantum information. For this reason, they require ex
tremely low temperatures, close to absolute zero (-273
C), and need to be isolated from external signals (radio,
light, electromagnetic). This explains why quantum
machines are difficult to commercialize to the point
that today they are provided by a few institutions and
accessed through Cloud services [26].

In the same decade, the first quantum algorithms
(QAs) were proposed [7, 27, 28]. A QA applies opera
tions to the qubits, with the objective of increasing the
probability of the desired states and decreasing that of
the undesired ones, and ends with the measurement,
which collapses the state of the system to a basic state
with a certain probability, producing a classical output
(bits).

4 HPC-QC: a bibliographical review

In [29] the authors address the issue of large-scale
quantum information processing and propose using a
High Performance Quantum Computer as a generic
resource for multiple-user quantum information pro
cessing. Specifically, they suggest to use a cluster
that connects quantum computers (nodes) through a
network with 3D topology. This topology allows to
partition the cluster into isolated regions, which can
be assigned to different users for simultaneous use. In
this way, conflicts that arise with traditional topologies,
where the quantum network is shared among users, are
avoided. Those conflicts appear because in that shared
context, a user could transport information from other
users, leading to errors.

A similar idea was presented in [30], which pro
poses: connecting quantum nodes through a quantum
interconnection, taking advantage of quantum telepor
tation, and extending MPI to support communication
in this type of architectures.

Ian Foster, a leading researcher in the area of HPC,
published a short article [31], in collaboration with
other authors, which relates HPC, Artificial Intelli-
gence/Machine Learning (AI/ML), QC and commu
nications. The authors mention that the infrastructure
needed to support HPC and AI/ML shares many fea
tures. For example: GPUs originally used in HPC for
general-purpose computing have become essential for
AI/ML and, although QC has not reached sufficient
maturity, it is expected to add a complementary com
puting capability to other systems. They also claim
that quantum accelerators will not be suitable for all
workloads. They conclude that understanding how
these three technologies might complement each other
and share infrastructure requires early thinking and

Figure 2: Loose integration between an HPC system
and a QC system

planning. In addition, they highlight the current dif
ficulty in accessing this type of infrastructure. They
recommend that such infrastructure should be a com
bination of co-located resources at computing centers,
coordinated access to specific testbeds and to commer
cial Cloud resources. Only in this way, the needs of
the most demanding, interdisciplinary research will be
met.

Other authors [32] proposed two ways of integrating
Quantum Processing Units (QPUs) into HPC systems:
loose and tight. The loose integration (Figure 2) is a
client-server model, where the HPC system interacts
with an isolated QC server via network: the QC server
may be on a dedicated network or may be part of a
larger computational network, and it may host multiple
QPUs that interact with each other through a quantum
interconnect. The tight integration (Figure 3) moves
the QPUs closer to the CPUs, creating a single, tightly
connected system; in this case, three alternatives are
proposed: a) allowing multiple CPUs to interact with a
single QPU, b) associating each CPU with a dedicated
QPU, c) connecting the QPUs through a quantum net
work and allowing them to be accessed by multiple
CPUs through interfaces. Also, the authors consider
that new metrics should be developed to evaluate per
formance. In HPC, FLOPS (Floating Point Operations
per Second') is a key performance metric, but it is mean
ingless for quantum systems, whose computational
model is not based on performing floating point opera
tions but rather on manipulating states. They propose
to measure the performance of a QPU by evaluating
the quantum gates applied and the amount of shots,
since quantum algorithms are usually probabilistic.

More recently, the same authors [33] proposed in
tegrating QPUs into HPC systems and use them as
specialized accelerators, in a manner similar to what
happens with GPUs. This involves a careful selection
of the workloads that will be assigned to these devices.
They predict that future HPC designs will be heteroge
neous, with multiple accelerators coexisting within a
node. However, some technological barriers challenge
this integration, for example: the insulation and cool
ing required by QPUs, incompatible with the usual
noise and vibrations of a server room, and the lack of
software to support the interaction of these hardware
systems. Their contribution is a description of a QPU

- 114-

Journal of Computer Science & Technology, Volume 24, Number 2, October 2024

(a) (b) (c)

Figure 3: Tight integration of CPUs and QPUs: three alternatives

accelerator design and a language hierarchy that would
make the integration possible, as explained next.

Figure 4a describes their QPU accelerator design.
The QPU is composed of: a quantum control unit
(QCU), quantum execution units (QEUs), and a quan
tum register. The QCU represents the interface be
tween the QPU and the external system, and its role is
to analyze incoming instructions and issue operands to
the QEUs. Each QEU implements a subset of quantum
gates operations, and different QEUs can operate in
parallel. The quantum register stores quantum infor
mation (n-qubits); its measurement causes the collapse
of some elements to a basic state, this is collected by
the appropriate QEU and converted to a digital sig
nal, and finally this information is transmitted to the
QCU and returned to the host or collected for further
processing.

Figure 4b) describes the language hierarchy to allow
the host program to interact with the QPU. The highest-
level language must have keywords, data types and
functions that enable quantum operations; it may be an
existing programming language augmented with spe
cialized libraries or a dedicated quantum programming
language [34] [35]. The program may be compiled
or interpreted, and may access/control accelerators
or other devices and system resources. The role of
the host is to issue instructions to the QPU. The in
struction set of the QPU (ISA) is very important as it
abstracts its capabilities. Then, the stream of instruc
tions and data sent to the QPU must be translated into
operation codes (opcodes) that will trigger specific
QEUs. Finally, the specification of how QEUs imple
ment opcodes (gate and register usage) represents the
lowest-level language (not visible to the user). Figure
5 summarizes the steps involved in the interaction.

Another more recent article [36] presents a con
ceptual middleware that facilitates quantum-classical
integration, by providing unified resource access and
management. This middleware is composed of four
layers: workflow, workload, task, and resource. The
workflow layer receives high-level task descriptions
(classical, quantum, or composite), their dependencies,
and the data they use, resolves dependencies and pre
pares the execution. The workload layer organizes the
execution of the tasks issued by the previous layer;

(a)

(b)

Figure 4: (a) HPC node with a QPU accelerator, (b)
Language hierarchy used to program and control a
QPU.

Figure 5: CPU-QPU interaction sequence diagram

depending on the tasks type (classical, quantum or
composite), the workload manager selects the appro
priate system resource for each task and assigns tasks
to the resources. The task layer comprises several task
managers, one per system resource; each one manages

-115 -

Journal of Computer Science & Technology, Volume 24, Number 2, October 2024

the allocation, acquisition, scheduling and monitoring
of local resources to ensure the tasks are executed suc
cessfully. The resource layer represents the classical
(CPUs, GPUs, FPGAs, etc.) and quantum resources
(QPUs) where tasks are executed.

In [37] other authors claim that quantum-classical
integration is needed in order to demonstrate practical
quantum advantage. They show, without much de
tail, a hybrid memory-centric architecture (Figure 7),
integrated in an HPC data center, accessible through
the Cloud and based on container technology. They
implement the proposed architecture by combining
real high-performance classical infrastructure (CPUs,
GPUs, etc.), simulated QPUs and advanced machine
learning tools, with the aim of experimenting with hy
brid quantum-classical algorithms. They say that quan
tum circuits are hard to simulate classically, since the
time and memory required scale exponentially with
the number of qubits. However, they highlight that
some classes of algorithms scale more favourably, al
though still exponentially, for specific sets of quantum
circuits (e.g. tensor networks). They run optimization,
machine learning and simulation algorithms on the
presented hybrid architecture and demonstrate that the
hybrid quantum-classical approach significantly out
performs the classical approach, for these algorithms.

Another recent review article [38] states that ad
vancements in QC have made clear that it will not
replace conventional HPC, but can rather be integrated
into current heterogeneous HPC infrastructures, as an
additional accelerator, thus allowing the optimal use
of both paradigms. The authors study several quantum
programming tools (QPTs) and investigate whether
they can be integrated with existing HPC tools. They
conclude that existing QPTs only partially cover the
requirements needed for full HPC-QC integration and
that future work on QPTs should consider integration
as a crucial aspect and provide a simple way to use
them in an HPC context.

5 Discussion

Some authors seem to think about the replacement
of HPC systems with their quantum equivalent [29,
30], by proposing the use of quantum clusters without
integrating them with classical HPC architectures. On
the other hand, the remaining articles make it clear that
QC will not replace traditional HPC, but rather will be
complementary tools.

In [32] the authors propose hybrid quantum-
classical architectures, which may even integrate mul
tiple interconnected QPUs. However, current research
efforts are focus on the manufacture of a single, more
efficient quantum machine and it seems difficult to
have, in the short term, interconnected quantum ma
chines.

Foster [31] suggests that QC will not be suitable
for all workloads, and thus will complement classi

cal HPC architectures when necessary. Something
similar happened when GPUs began to be used for
general-purpose computing. These boards did not re
place clusters or multicore processors, but rather were
integrated as accelerators for specific tasks. Some
articles [19, 20] show the advantages of CPU-GPU
collaborative computing. Britt [32] raises the possi
bility of using quantum machines as coprocessors, as
happens with GPUs. Perelshtein [37] demonstrates
the practical advantage of this approach by running
specific algorithms on a hybrid architecture, which
combines high-performance classical infrastructure
(CPUs, GPUs) and simulated QPUs. Uikewise, Britt
[32] claims that new metrics, based on quantum gates
and the number of shots, should be considered.

With regards to HPC-QC integration, the articles
[32, 33, 36, 38] include proposals about how to inte
grate these architectures, the use of middlewares, the
management of quantum-classical resources, and the
integration of quantum programming tools with ex
isting HPC tools. Today, quantum computers require
a controlled environment and are not integrated with
classical HPC systems. For this reason, they can only
be accessed individually through Cloud services.

HPC-QC integration involves several challenges.
Britt [33] explains some of them: the incompatibility
between quantum and classical computing technolo
gies, and the effort to manage the interaction between
both systems and errors in quantum information.

In conclusion, HPC-QC integration should be con
sidered as a crucial aspect, HPC-QC infrastructure
should be easily accessed by users and easy-to-
program. [31, 38]

6 Conclusions and Future Work.

From the bibliographic review carried out in this work,
we can conclude that classical HPC systems and quan
tum machines should be used in a complementary
manner. In particular, quantum devices should act
as coprocessors, as happens today with GPUs. QC
will be used for solving specific problems, for which
it is possible to obtain a significant improvement in
performance, with respect to classical HPC solutions.
Today, quantum machines are accessed through Cloud
services and are not integrated with classical HPC
systems. There are several challenges related to the
incompatibility between classical-quantum technolo
gies and the fault-tolerance ability for long-running
applications. Achieving a successful HPC-QC inte
gration requires vendors to provide easy access to the
infrastructure and user-friendly programming tools.

As future work, we plan to develop quantum algo
rithms and compare their performance with that of
their classical counterparts. Although currently avail
able quantum computers have few qubits, they are
useful to determine what types of workloads are more
benefited by QC. In the near future, the number of

- 116-

Journal of Computer Science & Technology, Volume 24, Number 2, October 2024

Quantum Applications and Workflows

Workflow Manager

L4

L3

L2

I Quantum Software Framework] I Workflow Description

Workload Manager

Quantum Workload e • Classical Workload ••••

Task Manager

I Scheduler e •

Task Manager

I Scheduler"»

Task Manager

I Scheduler Í

Quantum
Resource

Classical
HPC/Cloud
Resource

Accelerated Quantum
Resource

Resource Manager
Resource Manager

Compute •
QPU

Resource Manager

Compute •
GPU

Compute
GPU
QPU

O Composed Task • Quantum Task • Classical Task

Figure 6: Conceptual middleware to facilitate quantum-classical integration

CUSTOMER

SINGLE CLOUD

Figure 7: Hybrid classical-quantum architecture acces
sible through the Cloud

qubits is expected to increase exponentially. With a
significant number of qubits, it will be possible to
study the scalability of certain algorithms.

Competing interests

The authors have declared that no competing interests exist.

Authors’ contribution

The authors confirm contribution to the paper as follows:

(AR VS): Conceptualization. Methodology. Investigation.
Validation, Redaction - original manuscript, Redaction - re
view and editing

(MN, ADG): Supervision

All the authors have read and approved the final version.

References

[1] A. Grama, A. Gupta, G. Karypis, V. Kumar, ”An In
troduction to Parallel Computing”, 2nd ed., Addison
Wesley, 2003.

[2] I. Foster, ’’Designing and Building Parallel Programs:
Concepts and Tools for Parallel Software Engineering”.
Pearson, 2023.

[3] J. Dongarra, I. Foster, G. Fox, W. Gropp, K. Kennedy,
L. Torczon. A. White. '’Sourcebook of Parallel Comput
ing”, Morgan Kaufmann, 2003.

[4] S. Golestan, M. R. Habibi, S. Y. Mousazadeh Mousavi,
J. M. Guerrero, J. C. Vasquez, ’’Quantum computation
in power systems: An overview of recent advances”,
Energy Reports, Volume 9, Pages 584-596, 2023. DOI:
https ://doi.org/10.1016/j .egyr.2022.11.185

[5] J. Preskill, ’’Quantum computing and the entanglement
frontier”. arXiv preprint arXiv: 1203.5813v3. 2012. DOI:
https ://doi.org/10.48550/arXiv. 1203.5813

[6] A. Papageorgiou, J. F. Traub, ’’Measures of quantum
computing speedup”. arXiv preprint arXiv:1307.7488vl.
2013. DOI: https://doi.org/10.48550/arXiv.1307.7488

[7] P. W. Shor, ’’Polynomial-Time Algorithms for Prime
Factorization and Discrete Logarithms on a Quantum
Computer”, arXiv:quant-ph/9508027v2, 1995. DOI:
https://doi.org/10.48550/arXiv.quant-ph/9508027

- 117-

https://doi.org/10.48550/arXiv.1307.7488
https://doi.org/10.48550/arXiv.quant-ph/9508027

Journal of Computer Science & Technology, Volume 24, Number 2, October 2024

[8] C. Hughes, J. Isaacson, A. Perry, R. F. Sun, J. Turner,
’’What Is a Qubit?. In: Quantum Computing for the
Quantum Curious”, Springer, Cham, 2021.

[9] S. S. Gill, A. Kumar, H. Singh, M. Singh, K. Kaur,
M. Usman, R. Buyya, "’Quantum computing: A
taxonomy, systematic review and future directions”,
Softw: Pract Exper, 52(1): 66-114, 2020. DOI:
https://doi.org/10.48550/arXiv.2010.15559

[10] B. Lackey, "’Quantum networking: A roadmap
to a quantum internet”, Microsoft Azure
Quantum Blog. Accessed: Feb. 29, 2024.
https://cloudblogs.microsoft.com/quantum/2023/ll/01/
quantum-networking-a-roadmap-to-a-quanturn-
internet/

[11] G. Hager. G. Wellein. ’’Introduction to HPC for Scien
tists and Engineers”, CRC Press, 2010.

[12] Parallel Virtual Machine (PVM),
https://www.epm.ornl.gov/pvm/pvm_home.html

[13] Message Passing Interface (MPI), https://www.mpi-
forum.org/

[14] OpenPBS Resource Manager,
https://www.openpbs.org/

[15] Torque Resource Manager,
https://adaptivecomputing.com/cherry-services/torque-
resource-manager/

[16] Slum Resource Manager, https://slurm.schedmd.com/
[17] Posix Threads (Pthreads). https://posix.opengroup.org/
[18] Open Multi-Processing (OpenMP),

https://www.openmp.org/
[19] V. Sanz, A. Pousa, M. Naiouf, A. De Giusti, "’Accel

erating Pattern Matching with CPU-GPU Collaborative
Computing”, Algorithms and Architectures for Parallel
Processing, ICA3PP 2018, Lecture Notes in Computer
Science, Vol 11334, Pages 310-322, Springer, Cham,
2018. DOI: https://doi.org/10.1007/978-3-030-05051-
1_22

[20] V. Sanz, A. Pousa, M. Naiouf, A. De Giusti, ”Eff-
cient Pattern Matching on CPU-GPU Heterogeneous
Systems”, Algorithms and Architectures for Parallel
Processing, ICA3PP 2019, Lecture Notes in Computer
Science, Vol 11944, Pages 39IM03. Springer, Cham,
2020. DOI: https://doi.org/10.1007/978-3-030-05051-
1_22

[21] Amazon Braket: Quantum Computers, QuEra,
https://aws.amazon.com/es/braket/quantum-
computers/quera/

[22] Amazon Braket: Quantum Computers, Rigetti,
https://aws.amazon.com/es/braket/quantum-
computers/rigetti/

[23] IBM: Quantum Computing Technology,
https://www.ibm.com/quanhim/technology

[24] Google. Quantum AL: Quantum Computer Datasheet.
https://quantumai.google/hardware/datasheet/weber.pdf

[25] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVin
cenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin,
H. Weinfurter, "’Elementary gates for quantum com
putation”, arXiv:quant-ph/9503016vl, 1995. DOI:
https://doi.org/10.48550/arXiv.quant-ph/9503016

[26] Amazon Braket, https://aws.amazon.com/braket/

[27] D. Deutsch, R. Jozsa "’Rapid solution of prob
lems by quantum computation”, Proceedings of the
Royal Society of London A439:553, 1992. DOI:
https ://doi.org/10.1098/rspa. 1992.0167

[28] L. K. Grover, ”A fast quantum mechanical algorithm
for database search”, Proceedings, 28th Annual ACM
Symposium on the Theory of Computing, 1996. DOI:
https://doi.org/10.48550/arXiv.quant-ph/9605043

[29] S. J. Devitt, W. J. Munro,
"’High Performance Quantum
arXiv preprint arXiv:0810.2444,

K. Nemoto,
Computing”,

2008. DOI:
https://doi.org/10.48550/arXiv.0810.2444

[30] T. Haner, D. S. Steiger, T. Hoefler, M. Troyer,
"’Distributed Quantum Computing with QMPI”, Pro
ceedings of the International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC 2021, Article No.: 16, 2021. DOI:
https://doi.org/10.48550/arXiv.2105.01109

[31] S. Banerjee, I. Foster, W. Gropp, "’Infrastructure
for Artificial Intelligence, Quantum and High Perfor
mance Computing”, arXiv:2012.09303, 2020. DOI:
https://doi.org/10.48550/arXiv.2012.09303

[32] K. A. Britt, T. S. Humble, "’High-Performance Com
puting with Quantum Processing Units”, ACM Journal
on Emerging Technologies in Computing Systems. Vol
ume 13 Issue 3 Article No.: 39 pp 1-13, 2015. DOI:
https://doi.org/10.1145/3007651

[33] K. A. Britt, F. A. Mohiyaddin, T. S. Humble, "’Quan
tum Accelerators for High-Performance Computing Sys
tems”, arXiv preprint arXiv: 1712.01423, 2017. DOI:
https://doi.org/10.48550/arXiv.1712.01423

[34] P. Selinger, "’Towards a quantum programming
language”, Mathematical Structures in Computer
Science, vol. 14, pp. 527-586, 8, 2004. DOI:
https://doi.org/10.1017/S09601295040042

[35] D. C. Steiger, T. Haner, M. Troyer, "’Projectq: An
open source software framework for quantum com
puting”, arXiv preprint arXiv:1612.08091, 2016. DOI:
https://doi.org/10.48550/arXiv.1612.08091

[36] N. Saurabh, S. Jha, A. Luckow, ”A Concep
tual Architecture for a Quantum-HPC Middleware”,
arXiv preprint arXiv:2308.06608vl, 2023. DOI:
https://doi.org/10.48550/arXiv.2308.06608

[37] M. Perelshtein, A. Sagingalieva, K. Pinto, V. Shete,
A. Pakhomchik, A. Melnikov, F. Neukart, G. Gesek,
A. Melnikov, V. Vinokur, "’Practical application
specific advantage through hybrid quantum comput
ing”, arXiv preprint arXiv:2205.04858, 2022. DOI:
https://doi.org/10.48550/arXiv.2205.04858

[38] A. Elsharkawy, M. Xiao-Ting, P. Seitz, Y. Chen, Y.
Stade, M. Geiger, Q. Huang, X. Guo, M. A. Ansari,
C. B. Mendl, D. Kranzlmtiller, M. Schulz, "’Integra
tion of Quantum Accelerators with High Performance
Computing - A Review of Quantum Programming
Tools”, arXiv preprint arXiv:2309.06167, 2023. DOI:
https://doi.org/10.48550/arXiv.2309.06167

- 118-

https://doi.org/10.48550/arXiv.2010.15559
https://cloudblogs.microsoft.com/quantum/2023/ll/01/
https://www.epm.ornl.gov/pvm/pvm_home.html
https://www.mpi-forum.org/
https://www.openpbs.org/
https://adaptivecomputing.com/cherry-services/torque-resource-manager/
https://slurm.schedmd.com/
https://posix.opengroup.org/
https://www.openmp.org/
https://doi.org/10.1007/978-3-030-05051-1_22
https://doi.org/10.1007/978-3-030-05051-1_22
https://aws.amazon.com/es/braket/quantum-computers/quera/
https://aws.amazon.com/es/braket/quantum-computers/rigetti/
https://www.ibm.com/quanhim/technology
https://quantumai.google/hardware/datasheet/weber.pdf
https://doi.org/10.48550/arXiv.quant-ph/9503016
https://aws.amazon.com/braket/
https://doi.org/10.48550/arXiv.quant-ph/9605043
https://doi.org/10.48550/arXiv.0810.2444
https://doi.org/10.48550/arXiv.2105.01109
https://doi.org/10.48550/arXiv.2012.09303
https://doi.org/10.1145/3007651
https://doi.org/10.48550/arXiv.1712.01423
https://doi.org/10.1017/S09601295040042
https://doi.org/10.48550/arXiv.1612.08091
https://doi.org/10.48550/arXiv.2308.06608
https://doi.org/10.48550/arXiv.2205.04858
https://doi.org/10.48550/arXiv.2309.06167

Journal of Computer Science & Technology, Volume 24, Number 2, October 2024

Citation: A. Pousa, V. Sanz, M. Naiouf and
A. De Giusti. Trends in High Performance
Computing and Quantum Computing. Journal of
Computer Science & Technology, vol. 24, no.
2, pp. 111-119,2024.
DOI: 10.24215/1666603 8.24.el 1
Received: April 15, 2024 Accepted: May
24,2024. '
Copyright: This article is distributed under the
terms of the Creative Commons License CC-
BY-NC-SA.

-119-

