
Implementing CRANE: a tool for simple deployment of

containerized applications in local environments

José Miguel Silva Pavón1[0009-0004-0240-9448], Franco Bellino1[0009-0000-0286-4038], Patricia

Bazán3[0000-0001-6720-345X], Alejandra B. Lliteras2,4[0000-0002-4148-1299], Nicolás del Rio1[000-0002-0889-

0752]

1 UNLP, Facultad de Informática, 2 UNLP Facultad de Informática, LIFIA, 3 UNLP,

Facultad de Informática, LINTI, 4 CICPBA

js.silva.010@gmail.com, fran85bellino@gmail.com, pbaz@info.unlp.edu.ar,

alejandra.lliteras@lifia.info.unlp.edu.ar, ndelrio@info.unlp.edu.ar

Abstract. CRANE is a tool designed for local deployment of containerized

applications to simplify testing of locally distributed environments. CRANE's

design offers a lightweight, general-purpose solution with automatic scaling

capabilities, oriented to students and developers who need to create and deploy

complete application stacks within a controlled environment. CRANE is also

intended to facilitate the incorporation of DevOps skills, which accelerates the

software development process in a continuous delivery framework.

Keywords: API REST, Local Deployment, DevOps, Docker, Scaling,

Monitoring, Cloud Infrastructure, Training, Kubernetes.

1 Introduction

PaaS (Platform as a Service) services [1] revolutionized the software development

paradigm in this digital era by providing environments that come equipped with tools

to develop and deploy code directly in the cloud. This flexibility and convenience

allow programmers to focus on application logic and abstract from the complexities

of infrastructure management. In addition, it allows providing better quality products,

as they are considered agnostic to the cloud where they are executed, inherent issues

of current technologies.

However, for different reasons, in early stages of development it may be necessary

to work with this infrastructure in local environments. In these cases, the migration of

the environment to different platforms requires different configuration files, as well as

installing system specific dependencies, library versions and considering different

operating systems. It also makes effective performance testing more difficult.

As a result of these challenges Docker containers [2] emerge as a solution,

allowing the deployment of applications on any host with Docker installed, regardless

of their specific characteristics. This leads to the need to orchestrate, measure and

scale these containers in a more efficient way, a problem that current solutions such as

Kubernetes [3] [4] solve, but at a high cost in computational resources. The

configuration of these containers requires the creation of static configuration files that

often rely on local paths, further complicating the process.

XXX Congreso Argentino de Ciencias de la Computación La Plata, 7 al 10 de octubre de 2024

- 921 -

Due to the aforementioned needs, new roles arise in the work teams such as

DevOps (Development and Operations) [5] that unites roles that were previously

separated (development, IT operations, quality engineering and security) in a single

role and thus have a complete view of the entire system to be developed.

This is why, in this work, we propose the implementation of CRANE [6], which

provides a low-cost solution for the deployment and orchestration of containers

locally.

This work focuses on the creation of a tool that has been designed to facilitate the

deployment and autonomous management of containers in a local environment. This

platform allows the fast and efficient deployment of services in containers that are

automatically managed by CRANE without the need for manual intervention by the

developer, even in situations of low performance or host system errors.

Containers are connected to each other through a network that makes it easy to

obtain and analyze metrics in real time. Any drop in container performance is

detected by this metrics analysis, and a set of pre-established policies are triggered to

respond appropriately to these events.

System management is performed through a REST API, which connects to the

Docker client installed on the operating system through a Python library [7]. These

tools together, and their organization in the CRANE architecture, allow performing

the described operations in an efficient and automated way.

This paper is organized as follows: Section 2 describes the implementation of

CRANE as a tool to simplify the deployment of applications in a local environment

and also as a DevOps training platform. Section 3 describes the architecture,

components and technology stack used in its implementation. Finally, Section 4

presents conclusions, lessons learned and future works.

2 CRANE as a tool for simplification and DevOps training

DevOps is a methodology that combines the world of software development (Dev)

and IT operations (Ops) to accelerate the software lifecycle and ensure continuous

delivery of quality software. Its main objective focuses on automating processes and

increasing collaboration between teams, promoting a culture of shared responsibility

throughout the life of the application.

This methodology began to be used around 2007, when the software development

and IT operations communities became concerned about the traditional software

writing model where developers write the code and work independently from the

operations team, who are in charge of implementing and supporting it. This is why the

term "DevOps" is a combination of the words development and operations because it

reflects the process of integrating these disciplines in a continuous and unified

process.

A DevOps team consists of developers and IT operators working collaboratively

throughout the product lifecycle, with the goal of increasing the speed and quality of

the software implementation. It is a new way of working, a cultural shift, that has

significant implications for the teams and the organizations they work for.

XXX Congreso Argentino de Ciencias de la Computación La Plata, 7 al 10 de octubre de 2024

- 922 -

Under this approach, development and operations teams are no longer separate. In

many cases, these teams are integrated into a single entity in which engineers

collaborate at all stages of the application lifecycle, ranging from development and

assessment to implementation and operations. This has resulted in professionals

possessing a diverse set of multidisciplinary skills, promoting closer and more

efficient collaboration.

Development and operations teams use tools to automate and accelerate the various

processes to increase reliability. These tools help teams address important

fundamentals such as continuous integration, continuous delivery, automation and

collaboration.

Because of the "continuous nature" of this methodology, practitioners use the

infinite loop to show how the phases of the DevOps lifecycle relate to each other.

Although they appear to flow in a sequential fashion, the loop symbolizes the need for

constant collaboration and iterative improvement throughout the lifecycle.

2.1 Design assumptions

CRANE was born from the design assumptions of [6], and evolved in [8] [9] in

response to the need to quickly deploy locally a component-based application with

multiple instances, test the behavior against critical errors and also migrate that

application in different environments. That is, to simulate a cloud infrastructure in a

local environment that does not demand a significant amount of hardware resources.

These design assumptions lead to the following question as a developer: Are you

ready to develop and understand applications running in a distributed environment

on a cloud infrastructure?

Developing software in a local environment versus the cloud involves carefully

evaluating several critical factors such as cost, scalability, performance and security.

On-premises development can give more fine-grained control over the infrastructure

and, in some cases, lower upfront costs. On the other hand, opting for the cloud offers

benefits such as greater scalability and flexibility, as well as providing access to

advanced technologies that may not be available or feasible locally.

CRANE's approach is to integrate the advantages of both approaches,

implementing technologies such as virtualization, automation and resource

orchestration and create a local environment that mimics the capabilities of the cloud.

This solution gives developers the advantages of the scalability and flexibility of

the cloud, while maintaining comprehensive control over the infrastructure and

managing costs more cost-effectively.

CRANE is an educational tool that contains an ecosystem to simulate a cloud

infrastructure locally, allowing the user to practice basic development and operations

(DevOps) concepts such as: 1- Create and interact with containers, 2- Integrate real-

time metrics and alerting systems, 3- Implement decision making based on predefined

rules, 4- Create multiple instances of an application to test its performance and 5-

Reduce costs when testing an application.

XXX Congreso Argentino de Ciencias de la Computación La Plata, 7 al 10 de octubre de 2024

- 923 -

3 CRANE: architecture, components and implementation of the

solution

CRANE is based on the implementation of two components: a Back-End for the

creation and deployment of Docker containers [10] and a Front-End for the end user.

The Back-End component uses Python and FastAPI to generate an API that allows

the management of Docker services. Among them the creation, deployment and

monitoring of containers, as well as the definition of scaling policies and the

management of alerts.

The Front-End component, through the CRANE API, allows the user to interact

with the tool transparently and independently of the place where it is executed. The

interaction with the user is done through an intuitive and easy-to-use web interface,

designed to simplify the user experience and reduce the learning curve. This last

component is beyond the scope of this paper and will be addressed in future work.

The CRANE Back-End infrastructure is composed of several interconnected

components that work together to provide high availability and efficient response to

critical events.

The user communicates with CRANE via a REST API and can create containers

and adjust scaling rules depending on their own analysis and/or previously defined

rules. You have control of exposed application ports, container traffic and can clone

application configurations to generate new instances faster.

Being portable and easily accessible, it can be deployed on any system by simply

executing a command. At the same time, the generated Docker Compose files are

available to be taken to any other machine without having to take CRANE out of the

local development environment.

3.1 – Technology Stack

This section briefly describes each of the technologies used for the proposed

implementation and describes how the components of the solution relate to each

other.

Docker [10] is an open platform designed to automate the deployment of

containerized applications efficiently. It facilitates the separation of applications from

the underlying infrastructure, thus enabling faster software delivery.

A reverse proxy [11] is a type of proxy server that acts as an intermediary between

clients and one or more web servers. Unlike a regular proxy that is positioned

between the client and the target server, a reverse proxy is positioned between the

client and one or more web servers. Traefik [12] is used.

Prometheus [13] is an open-source system monitoring and alerting toolkit

originally created at SoundCloud (SoundCloud is a Swedish-founded German

headquartered audio streaming service) but now maintained independently of any

company. It collects and stores its metrics as time-series data, i.e., metric information

is stored with the timestamp at which it was recorded, along with optional key-value

pairs called tags.

Alertmanager [14] is a Prometheus component that manages the generated alerts

and allows applying certain actions. For this project, it was fundamental because it

XXX Congreso Argentino de Ciencias de la Computación La Plata, 7 al 10 de octubre de 2024

- 924 -

allows action to be taken in the event of any variation in the performance or

availability of the active services. The way Alertmanager works depends on the rules

defined in Prometheus, it is in charge of analyzing if any of the thresholds defined in

the file called rules.yaml are met and to act with the configuration provided by the

user. In the proposed implementation, a communication through automated messages

(webhook) was used, in which Alertmanager notifies Crane by means of a call to the

Alert receiving endpoint when it detects any anomaly.

The integration of Prometheus with CRANE brought benefits as it allows to

abstract from several complications when defining an alert system, providing the

following advantages: 1 - Receive alerts from Prometheus or other monitoring

systems that are configured to send alerts through it, 2 - Can discard identical alerts

and group similar alerts into single notifications. This helps reduce the noise

generated by multiple similar alerts, 3 - Can send alerts to specific recipients based on

certain criteria such as alert labels, priorities, or user-defined settings. This allows

sending alert notifications to the right operations teams or appropriate communication

channels, 4 - Can send alert notifications to different communication channels such as

emails, chat systems (Slack, Microsoft Teams), ticketing systems (PagerDuty, JIRA),

and other notification services through custom integrations, and 5 - Offers the ability

to temporarily mute or suppress certain alerts to avoid notification overload during

planned maintenance periods or known incidents.

Open Policy Agent (OPA) [15] is an open-source project that provides a platform

for policy authorization and evaluation. OPA is designed to help development teams

design and enforce security, access and other types of policies in their applications

and services.

OPA is based on the definition of policies in a declarative language called Rego.

These policies can address many use cases, such as access control, data validation,

network authorization, and are all implemented through an API exposed to the

application, which can be queried to verify, among several functions, whether the user

has permissions to access a resource.

Fig. 1 shows the architecture of the implemented solution and the way its components

dialogue.

Fig. 1. CRANE components and their interaction.

XXX Congreso Argentino de Ciencias de la Computación La Plata, 7 al 10 de octubre de 2024

- 925 -

CRANE API is a component written in Python that coordinates and manages

several vital functions. It acts as the main link to the Python API, using the Python on

Whales library to perform create, read, update and delete (CRUD) operations for

containerized applications. In addition, it generates application instances, receives and

manages alerts and manages user security.

The application instances (APP), referred to as Instance 1 to N, are interconnected

within a virtual private network. This allows secure and isolated communication

between the application instances. In turn, the application router communicates with

Prometheus using a global network to provide access to the container's network

metric.

Prometheus, acts as the monitoring system, responsible for reading and collecting

metrics from the application instances. These metrics provide crucial information

about the status and performance of the application, essential for automated decision

making.

Alertmanager integrates with Prometheus to read alerts generated based on the

collected metrics. Alertmanager processes and manages these alerts, and if certain

conditions are met, triggers a webhook alert to CRANE.

Webhook alerts are HTTP requests triggered by Alertmanager when specific

conditions are detected that require attention. This triggers a process in CRANE to

query for possible actions and update the configuration as needed.

Open Policy Agent (OPA), acts as an authorization and policy control layer, which

receives queries from CRANE and determines allowable actions according to defined

policies. This mechanism ensures that any changes or automated responses are

aligned with business rules and security requirements.

3.2- Starting CRANE, creating an application and managing alerts

This section presents scenarios of use of the proposed implementation.

The first scenario to be presented consists of starting Crane using the uvicorn

app:app -reload command.

Within the CRANE API the following processes are executed: a) Authentication

and registration: CRANE receives the request and extracts the user_id from the

included token, integrating it to the application object, b) Storage: The application is

registered in the database, c) Name management: A unique name is generated for the

application, combining the name supplied by the user with an auto-incremental ID, to

prevent name collisions in the host, d) Container configuration: A docker-compose.

yml file is created with the default proxy configuration and the specifications

provided by the user. This file is stored temporarily, e) Deployment of containers:

Using the Python on Whales library, we proceed to build and deploy the environment

with Docker Compose, f) Integration with Prometheus: Once the container is running,

the port assigned to the router in the Prometheus network is obtained and the scrape is

updated to allow reading metrics from the new application, g) Restarting the

monitoring system: The monitoring stack is restarted to apply and refresh the

configuration changes and, h) Temporary file management: Finally, if the

REMOVE_TEMP_FILES constant is enabled, it is deleted, i.e., if the

REMOVE_TEMP_FILES constant is enabled, it is deleted..

XXX Congreso Argentino de Ciencias de la Computación La Plata, 7 al 10 de octubre de 2024

- 926 -

Regarding the creation of applications, the user has at his disposal all the

configurations that Docker currently accepts, there is no limitation to create

applications, as long as Python on Whales is kept updated with the latest Docker

features. In addition, once any service is generated, use is made of the CRUD offered

by the CRANE API to query, modify and delete the generated applications. In turn,

users with administrator role have at their disposal the metrics, alerts and policies

configurations to evolve the API and adapt it to their specific needs.

Fig. 2 contains a screenshot showing the instances generated with CRANE in the

upper left part. In the lower left part is the terminal with CRANE running. It is also

observed when a container is created and the endpoints that are receiving the request

(CRANE status). In the right part, the body of the postman that receives the

parameters for the creation of the instance is displayed.

Fig. 2 - Creation of instances in CRANE

Finally, in case of receiving alerts through the Alertmanager webhook, CRANE

proceeds as follows: 1- determines the severity depending on whether the alert

indicates FIRING or RESOLVED condition, 2- locates in the database the identifier

of the affected service that generated the alert, 3- consults OPA sending alert type,

severity and name of the affected service so that OPA evaluates the corresponding

policies and returns the action to be executed (escalate, de-escalate, restart container)

and 4 - executes the action determined by OPA.

Fig. 3 contains in the upper right part a simulation of high load with Artillery [16].

In the upper left part, the alert activated in red. In the lower right, the CRANE console

receiving the HTTP request for new instance creation. And finally in the lower left,

the new whoami 1 instance.

1 Tiny Go webserver that prints OS information and HTTP request to output

XXX Congreso Argentino de Ciencias de la Computación La Plata, 7 al 10 de octubre de 2024

- 927 -

Fig. 3 -Application scaling due to high demand

4- Conclusions, lessons learned and future works

The main objective of this work was to effectively implement the CRANE design

proposal [6]. First, the design was technically validated and the technological

alternatives for each component were analyzed.

The first prototype was developed in Python following Crane's structure and with it

the communication of each part was validated. At the same time, Python FastAPI

plugins were included, as well as the interaction of libraries to communicate with

Docker.

Then, the integration with Traefik for traffic management, Prometheus for metrics

monitoring, Alertmanager for alert management, and Open Policy Agent for the

application of scaling and security policies was performed.

Finally, data models were integrated to apply an authentication and authorization

layer over the designed API.

Beyond its technical utility, this solution is intended to have significant value in the

educational environment. Students could use it to learn about service development

and deployment practices, but also for the simulation of DevOps practices in local

environments, a process that, as explained throughout this paper, is very complex and

costly fundamentally if not analyzed in early time.

Thus, the question "Are you prepared to develop and understand applications

running in a distributed environment on a cloud infrastructure?” can be answered in

terms of using CRANE to learn about relevant aspects in a local environment.

For future work, we propose the creation of a Front-End using React. This Front-

End will consume all implemented REST endpoints, from the creation and

deployment of Docker services to metering, scaling policy definition and alert

management. This will provide users with a complete interface to communicate with

all of Crane's core functions.

The purpose of this Front-End is to make CRANE accessible and efficient for a

wide range of users, from beginners to experts. It not only aims to make the technical

process simpler, but also to foster understanding and learning about containerized

service management in a local environment.

XXX Congreso Argentino de Ciencias de la Computación La Plata, 7 al 10 de octubre de 2024

- 928 -

The alerting system can also be enhanced by using container metrics, such as

memory and CPU usage, for its scaling policies and other parameters, as currently,

metrics are taken directly from router traffic.

Acknowledgements. To Jose Felipe Arcidiácono who was the person who made the

initial design of Crane.

References

1. Rani, D., & Ranjan, R. K. (2014). A comparative study of SaaS, PaaS and IaaS in

cloud computing. International Journal of Advanced Research in Computer Science

and Software Engineering, 4(6).

2. Bullington-McGuire, R. and Dennis, A.K. and Schwartz, M. (2020). Docker for

Developers: Develop and run your application with Docker containers using DevOps

tools for continuous delivery. Packt Publishing.

3. Kubernetes - https://kubernetes.io/es/docs/concepts/overview/what-is-kubernetes/

4. Burns, B., Beda, J., Hightower, K., & Evenson, L. (2022). Kubernetes: up and

running. " O'Reilly Media, Inc.".

5. Ebert, C., Gallardo, G., Hernantes, J., & Serrano, N. (2016). DevOps. Ieee Software,

33(3), 94-100.

6. Arcidiacono, J., Bazán, P., del Río, N., & Lliteras, A. B. (2022). Crane: A Local

Deployment Tool for Containerized Applications. In Conference on Cloud

Computing, Big Data & Emerging Topics (pp. 58-71). Springer, Cham.

7. Python - https://www.python.org/doc/

8. Silva Pavon, J. M., Bellino, F., Bazán, P. A., Lliteras, A. B., Arcidiacono, J., & Rio,

N. D. (2023). Despliegue de aplicaciones contenerizadas: un caso de implementación

basado en Crane. In XXV Workshop de Investigadores en Ciencias de la

Computación (Junín, 13 y 14 de abril de 2023)

9. Silva Pavón, J. M., Bellino, F., Bazán, P. A., Lliteras, A. B., & Rio, N. D. (2024).

CRANE: simplificando el despliegue de aplicaciones contenerizadas en entornos

locales. In XXIX Congreso Argentino de Ciencias de la Computación (CACIC)

(Luján, 9 al 12 de octubre de 2023).

10. Docker - https://docs.docker.com/

11. Sommerlad, P. (2003, June). Reverse Proxy Patterns. In EuroPLoP (pp. 431-458).

12. Traefik - https://doc.traefik.io/traefik/

13. Prometheus Documentation - https://prometheus.io/docs/introduction/overview/

14. Alertmanager Documentation -

https://prometheus.io/docs/alerting/latest/alertmanager/

15. Open Policy Agente Documentation - https://www.openpolicyagent.org/

16. Artillery.io https://www.artillery.io/

XXX Congreso Argentino de Ciencias de la Computación La Plata, 7 al 10 de octubre de 2024

- 929 -

https://prometheus.io/docs/alerting/latest/alertmanager/
https://www.openpolicyagent.org/
https://www.artillery.io/

