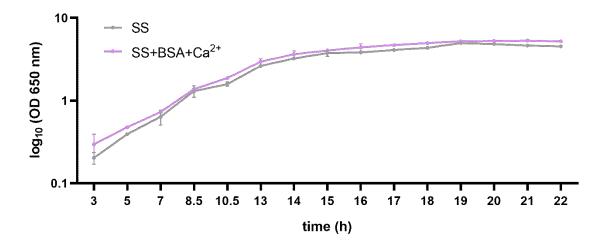
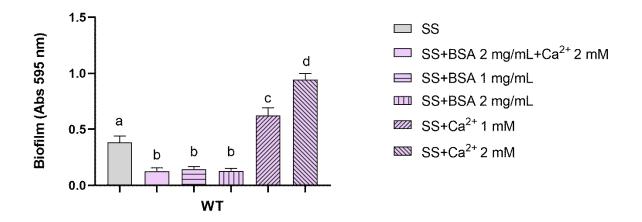
Supplementary Material

Table S1. Strains and plasmids.


Strain	Description	Reference
B. bronchiseptica		
RB50	Wild type strain: RB50	(Cotter and Miller, 1994)
BbWT	Wild type strain; 9.73H+ Sm ^r	(Le Blay <i>et al.</i> , 1997)
BbWT-brtA-HA	<i>Bb</i> 9.73H+ with <i>brtA</i> with HA tagg Sm ^r	(Ambrosis <i>et al.</i> , 2016)
$Bb\Delta fhaB$	<i>Bb</i> 9.73H+ with <i>fhaB</i> deleted Sm ^r	This work
$Bb\Delta degP$	<i>Bb</i> 9.73H+ with <i>degP</i> deleted Sm ^r	This work
$Bb\Delta cyaA$	<i>Bb</i> 9.73H+ with <i>cyaA</i> deleted Sm ^r	This work
$Bb\Delta cyaA\Delta degP$	<i>Bb</i> 9.73H+ with <i>cyaA</i> and <i>degP</i> deleted	This work
$Bb\Delta bvgR$	Bb9.73H+ with $bvgR$ deleted Sm ^r	(Gutierrez et al., 2024)
$Bb\Delta pdeD$	<i>Bb</i> 9.73H+ with <i>pdeD</i> deleted Sm ^r	(Gutierrez et al., 2024)
$Bb\Delta pdeA$	Bb9.73H+ with $pdeA$ deleted Sm ^r	This work
$Bb\Delta pdeC$	Bb9.73H+ with $pdeC$ deleted Sm ^r	This work
<i>Bb</i> ∆3PDE	<i>Bb</i> 9.73H+ with <i>pdeA</i> , <i>pdeC</i> , and <i>pdeD</i> deleted Sm ^r	This work
$Bb\Delta 4PDE$	<i>Bb</i> 9.73H+ with <i>pdeA</i> , <i>pdeC</i> , <i>pdeD</i> and <i>bvgR</i> deleted Sm ^r	This work
$Bb\Delta lapG$	Bb9.73H+ with $lapG$ deleted Sm ^r	(Ambrosis et al., 2016)
$Bb\Delta brtA$	<i>Bb</i> 9.73H+ with <i>brtA</i> deleted Sm ^r	(Ambrosis et al., 2016)
Plasmids		
pMQ30	allelic replacement; <i>sacB aacC1</i> ColE1 <i>oriT</i> CEN4 URA3 Gm ^r	(Shanks <i>et al.</i> , 2006)
pMQ30pdeA F1F2	pMQ30 containing <i>pdeA</i> upstream and downstream region Gm ^r	This work
pMQ30pdeC F1F2	pMQ30 containing <i>pdeC</i> upstream and downstream region Gm ^r	This work
pMQ30pdeDF1F2	pMQ30 containing <i>pdeD</i> upstream and downstream region Gm ^r	(Gutierrez et al., 2024)
pMQ30fhaB F1F2	pMQ30 containing <i>fhaB</i> upstream and downstream region Gm ^r	This work
pMQ30degP F1F2	pMQ30 containing <i>degP</i> upstream and downstream region Gm ^r	This work
pMQ30cyA F1F2	pMQ30 containing <i>cyaA</i> upstream and downstream region Gm ^r	This work
pEmpty	pBBR1-MCS-5-nptII Gm ^r	(Sisti et al., 2013)
pbdcB	pBBR1-MCS-5- <i>npt</i> II- <i>bdcB</i> Gm ^r	(Belhart <i>et al.</i> , 2023)
pbdcA	pBBR1-MCS-5-nptII- bdcA Gm ^r	(Sisti et al., 2013)

Primer	Sequence	Purpose
BBpdeA_F1F	CCAAGCTTGCATGCCTGCAGGTCGACTCTAGAGGATC AACGTCATTGCGATCG	Delete <i>bbpdeA</i>
BBpdeA_F1R	TCTAGAAAGTATAGGAACTTCGAAGCAGCTCCAGCCT ACACTGGCTGGACGGCGCGGCA	Delete <i>bbpdeA</i>
BBpdeA_F2F	AGGTCGACGGATCCCCGGAATTAATTCTCATGTTTGGG CAGATTCATGCGTATC	Delete <i>bbpdeA</i>
BBpdeA_F2R	AACAGCTATGACCATGATTACGAATTCGAGCTCGGTAC CATCGACCATCAGCGCG	Delete <i>bbpdeA</i>
mutpdeC-1F	CTGTTTTATCAGACCGCTTCTGCGTTCTGATCTGGACT TCTTGACGCCGAT	Delete <i>bbpdeC</i>
mutpdeC-1R	TTCGAGGATCAGATGCCACGTTATGCTGATCTTCCCGC CC	Delete <i>bbpdeC</i>
mutpdeC-2F	GGGCGGGAAGATCAGCATAACGTGGCATCTGATCCTC GAA	Delete <i>bbpdeC</i>
mutpdeC-2R	CGGATAACAATTTCACACAGGAAACAGCTATGCACCT GGGCATAGAAGTGCT	Delete <i>bbpdeC</i>
DegPF1F	CTGTTTTATCAGACCGCTTCTGCTTCTGATGCCACCAA CCTGCTGC	Delete <i>degP</i>
DegPF1R	TGCACCGCGACCCATCGCATCCACCGGCACA	Delete degP
DegPF2F	TGTGCCGGTGGATGCGATGGGTCGCGGTGCA	Delete degP
DegPF2R	CGGATAACAATTTCACACAGGAAACAGCTATGGAGGC GTCGACCACCA	Delete <i>degP</i>
mut_FHA_F1	CAGCTATGACCATGATTACGAATTCGCGTCAAAGGAAT GGCTGCG	Delete <i>fhaB</i>
mut_FHA_R1	GGCGCCGCCGCGTTCACGGACAGCACCTGCCGCAC ACGCCAACATCAGG	Delete <i>fhaB</i>
mut_FHA_F2	TGGCCTGGGCCCTGATGTTGGCGTGTGCGGCAGGTGC TGTCCGTGAACGC	Delete <i>fhaB</i>
mut_FHA_R2	TAAAACGACGGCCAGTGCCAAGCTTTTCCTGCGGCAG CCACGGTC	Delete <i>fhaB</i>
mut_cyaA_F1	CAGCTATGACCATGATTACGAATTCCGAGCGTGTTGCG TGCGAGC	Delete cyaA
mut_cyaA_R1	GCTTCAGCGCCAGTTGACAGCCAGGGACTGCTGCAA GAACCAAACATCCA	Delete cyaA
mut_cyaA_F2	TACGACGTGCTGGATGTTTGGTTCTTGCAGCAGTCCC TGGCTGTCAACTG	Delete cyaA
mut_cyaA_R2	TAAAACGACGGCCAGTGCCAAGCTTCAGCGCCGGAA TGAACCAGC	Delete cyaA
Q30Verify F	GAGTCAGTGAGCGAGGAAG	pMQ30 sequencing
Q30Verify R	CAGACCGCTTCTGCGTTCTG	pMQ30 sequencing


Table S2. Primers used and designed in this	work.
---	-------

Mugni *et al.* Interplay Of Virulence Factors and Signaling Molecules: Albumin And Calcium-Mediated Biofilm Regulation In *Bordetella bronchiseptica*.

Supplementary Figures

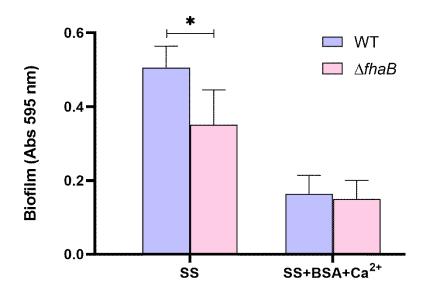


Figure S1. Growth kinetics of *B. bronchiseptica* wild type in SS medium or SS+BSA+Ca²⁺. Cultures grown in BGA medium at 37°C were harvested and used to inoculate SS at initial $OD_{650nm} = 0.1$, followed by incubation at 37°C with shaking at 160 rpm. OD_{650nm} was recorded periodically. The results are the average of two independent experiments. There was no observable difference in growth between the two media.

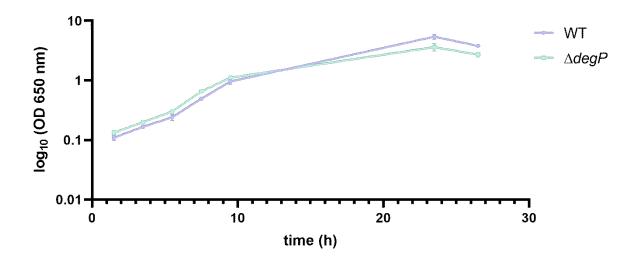


Figure S2. Effect of albumin and CaCl₂ separately and at different concentrations on biofilm formation. Biofilm formation on PVC 96-well of overnight cultures of wild type *B*. *bronchiseptica* 9.73 grown is SS or SS supplemented with BSA or CaCl₂. The biofilm formed was stained with CV and quantified after resuspension in 33% (v/v) acetic acid. Results are the average of at least three independent experiments. Different letters indicate significant differences (p<0.01; ANOVA).

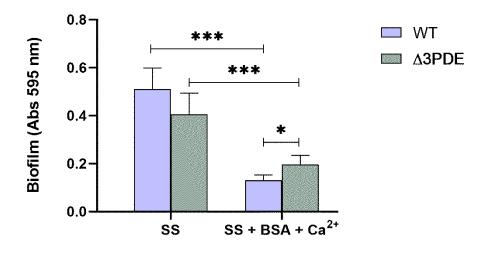

Mugni *et al.* Interplay Of Virulence Factors and Signaling Molecules: Albumin And Calcium-Mediated Biofilm Regulation In *Bordetella bronchiseptica*.

Figure S3. The Role of filamentous hemagglutinin in biofilm formation. Biofilm formation was assessed in PVC 96-well plates using overnight cultures of wild type *B. bronchiseptica*, and *Bb* Δ *fhaB* mutant grown in SS or SS supplemented with 2.0 mg/ml BSA and 2.0 mM CaCl₂. Biofilm was stained with CV and quantified after resuspension in 33% (v/v) acetic acid. Results are the average of at least three independent experiments. *Indicates a significant difference (p<0.05, ANOVA).

Figure S4. Growth kinetics of *B. bronchiseptica* wild type and $\Delta degP$ strains in SS. Cultures grown in BGA at 37°C were harvested and used to inoculate SS at initial DO_{650nm} = 0.1, followed by incubation at 37°C with shaking at 160 rpm. DO_{650nm} was recorded periodically. The results are average of two independent experiments. No significant differences were observed between the strains.

Figure S5. Influence of PDEs on biofilm formation. Biofilm formation on PVC 96-well plates of overnight cultures of wild type *B. bronchiseptica* and the Δ 3PDE mutant grown in SS or SS supplemented with 2.0 mg/ml BSA and 2.0 mM CaCl₂. Biofilm was stained with CV and quantified after resuspension in 33% (v/v) acetic acid. Results are the average of at least three independent experiments. * or *** indicate significant differences (p<0.05 and p<0.001 respectively. ANOVA).

References.

- Ambrosis, N., Boyd, C.D., O Toole, G.A., Fernández, J., Sisti, F., 2016. Homologs of the LapD-LapG c-di-GMP Effector System Control Biofilm Formation by *Bordetella bronchiseptica*. PLoS One 11, e0158752. https://doi.org/10.1371/journal.pone.0158752
- Belhart, K., Sisti, F., Gestal, M.C., Fernández, J., 2023. *Bordetella bronchiseptica* diguanylate cyclase BdcB inhibits the type three secretion system and impacts the immune response. Sci Rep 13, 7157. https://doi.org/10.1038/s41598-023-34106-x
- Cotter, P.A., Miller, J.F., 1994. BvgAS-mediated signal transduction: analysis of phase-locked regulatory mutants of *Bordetella bronchiseptica* in a rabbit model. Infect Immun 62, 3381–90.
- Gutierrez, M. de la P., Damron, F.H., Sisti, F., Fernández, J., 2024. BvgR is important for virulence-related phenotypes in *Bordetella bronchiseptica*. Microbiol Spectr e0079424. https://doi.org/10.1128/spectrum.00794-24
- Le Blay, K., Gueirard, P., Guiso, N., Chaby, R., 1997. Antigenic polymorphism of the lipopolysaccharides from human and animal isolates of *Bordetella bronchiseptica*. Microbiology 143 (Pt 4, 1433–1441. https://doi.org/10.1099/00221287-143-4-1433
- Shanks, R.M.Q., Caiazza, N.C., Hinsa, S.M., Toutain, C.M., O'Toole, G.A., 2006. Saccharomyces cerevisiae-based molecular tool kit for manipulation of genes from gram-negative bacteria. Applied and environmental microbiology 72, 5027–36. https://doi.org/10.1128/AEM.00682-06
- Sisti, F., Ha, D.-G.G., O'Toole, G.A., Hozbor, D., Fernández, J., 2013. Cyclic-di-GMP signalling regulates motility and biofilm formation in *Bordetella bronchiseptica*. Microbiology (Reading, England) 159, 869–79. https://doi.org/10.1099/mic.0.064345-0