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Abstract 
We searched Quantitative Structure-Toxicity models for predicting the fish toxicity against Poecilia 
reticulata elicited by a diverse set of 92 benzene derivatives. The simultaneous linear regression 
analyzes on 1176 constitutional, topological, geometrical, electronic, and lipophilic molecular 
descriptors derived from the software Dragon lead to a three-parameter relationship characterized 
with correlation coefficient of calibration of R=0.953, Leave-one-out Cross Validation of Rloo=0.947, 
and test set validation of Rval=0.889, and compares fairly well with a previously reported model 
based on extended topo-chemical atom (ETA) indices. Our developed QSAR involves a topological 
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descriptor as the most relevant variable for the set of chemicals, a 3D-MoRSE and a Radial 
Distribution Function descriptor that show low inter-correlations.  
Keywords: QSAR theory; replacement method; benzene derivatives; poecilia reticulata; pC 

Resumen 
Hemos estudiado algunos modelos de relaciones cuantitativas estructura-toxicidad para predecir la 
toxicidad de los peces hacia Poecilia reticulata obtenida a través de una serie de 92 derivados 
bencénicos. El análisis de regresión lineal simultáneo de 1176 descriptores moleculares 
constitucionales, topológicos, geométricos, electrónicos y lipofílicos provenientes del software 
Dragon conduce a una relación de tres parámetros caracterizada por un coeficiente de correlación de 
calibración de R = 0.953, un Leave-one-out Cross Validation de Rloo= 0.947 y un test de validación 
de Rval= 0.889 los cuales se comparan bastante bien con los modelos informados previamente 
basados en los índices extendidos átomo topo-químico (ETA). Nuestro desarrollo QSAR involucra 
un descriptor topológico como la variable más relevante para una serie de descriptores químicos, 
para descriptores 3D-MoRSE y para descriptores tipo Función Radial de Distribución los que 
muestran bajas intercorrelaciones. 
Palabras clave: teoría QSAR; método de reemplazo; derivados del benceno; poecilia reticulata; pC 

 
 

Introduction 
The accurate estimation of adverse environmental impact is considered of great interest to 

the scientific community, together with a convenient way to regulate the production of toxic 
chemical compounds [1, 2]. It is well known that performing a toxicological experiment for a given 
substance is not an easy task as it usually results expensive, requires time and, furthermore, an 
analysis of such dimensions should consider multiple environments and all biological interactions 
with the living organisms of the ecosystems, data that quite often are not available [3].  

It is known that whenever it is not possible to perform intensive biological tests over 
complex systems, the application of semi-empirical or theoretical methodologies proves to be an 
adequate alternative for obtaining information about the eco-toxicological features of a given 
compound. In recent years, a generally accepted strategy for overcoming the absence of 
experimental measurements in biological phenomena is the analysis based on Quantitative 
Structure-Activity Relationships (QSAR) [4]. The ultimate role of formulating the QSAR is to 
suggest mathematical models that estimate the toxicities by relying on the assumption that these 
relationships are determined solely by the molecular structures of the compounds.  

The structure is therefore translated into the so-called molecular descriptors, describing 
some relevant feature of the compounds, with mathematical formulae obtained from the Chemical 
Graph Theory, Information Theory, Quantum Mechanics, etc. [5, 6]. There are more than a 
thousand available descriptors in the literature, and one has to decide how to select those that 
characterize in the best possible manner the property under consideration. An obvious advantage of 
this sort of studies is to avoid animal testing. 

Present research deals with the QSAR prediction of fish toxicity values for the same data set 
of aromatic chemicals analyzed previously [7], for comparison purposes. We explore a greater pool 
of variables composed of 1176 structural descriptors including definitions of all classes, and resort 
to the widely applied Replacement Method (RM) approach for performing the optimal variable 
subset selection [8-11]. RM is an algorithm proposed by our theoretical group some years ago, that 
efficiently generates multivariable linear regression QSAR models with minimized standard 
deviation.  

As a next step, and with the main purpose of improving the statistical performance of the 
linear regression results found in the test set of compounds (validation data), we present a novel 
optimization algorithm. This is very convenient, as the search for new mathematical algorithms 
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usually lead to mathematical relationships displaying a better fit of the training data but 
simultaneously to a decreased performance on the test set.  

 
Materials and Methods 
Data Set and Molecular Descriptors Calculation 

The observed fish toxicities of the benzene derivatives expressed as 96h LC50 data for both 
Pimephales promelas and Poecilia reticulata (pC) were taken from [7] and originally from ref. 
[12]. The training set analyzed (denoted as train) is composed of the first sixty compounds shown 
in Table 1, whereas molecules 61-80 constitute a test set (val) that is employed for verifying the 
predictive capability of the QSAR models and not for calculating their calibration parameters. In 
addition, an external test set consisting on compounds 81-92 (ext), which does not influence the 
model design, is used for further validating the models. The members of these three molecular set 
were selected in such a way to share similar structural characteristics of the compounds.  

The structures of the compounds are firstly pre-optimized with the Molecular Mechanics 
Force Field (MM+) procedure [13] included in the Hyperchem 6.03 package [14], and the resulting 
geometries are further refined by means of the semiempirical method PM3 (Parametric Method-3) 
[15] using the Polak-Ribiere algorithm [16] and a gradient norm limit of 0.01 kcal.Å-1. We derived 
D=1176 molecular descriptors using the software Dragon 5.0 [17], including descriptors such as 
Constitutional, Topological, Geometrical, Charge, GETAWAY (Geometry, Topology and Atoms-
Weighted AssemblY), WHIM (Weighted Holistic Invariant Molecular descriptors), 3D-MoRSE 
(3D-Molecular Representation of Structure based on Electron diffraction), Molecular Walk Counts, 
BCUT descriptors, 2D-Autocorrelations, Aromaticity Indices, Randic Molecular Profiles, Radial 
Distribution Functions, Functional Groups, Atom-Centred Fragments, Empirical and Properties 
[18]. Furthermore, four Quantum-Chemical descriptors (such as molecular dipole moments, total 
energies, and Homo-Lumo energies, etc), not provided by the program Dragon, were added to the 
pool.  

 
 

 

Table 1. Experimental pC values and predicted residuals by the best QSAR models found. 

No. Compound Exp. Eq. (3) 

Training set 
1 phenol 3.45 0.12 
2 2-methylphenol 3.77 0.24 
3 4-methylphenol 3.74 0.20 
4 2,4-dimethylphenol 3.86 0.10 
5 3,4-dimethylphenol 3.92 0.12 
6 2,3,6-trimethylphenol 4.21 0.09 
7 4-Ethylphenol 4.07 0.19 
8 4-propylphenol 4.09 -0.10 
9 4-tert-butylphenol 4.46 0.06 
10 2-tert-butyl-4-methylphenol 4.90 0.04 
11 4-pentylphenol 5.12 0.17 
12 4-tert-pentylphenol 4.81 -0.10 
13 2-allylphenol 3.96 0.13 
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Table 1.  Cont. 

14 2-phenylphenol 4.76 -0.02 
15 1-naphthol 4.50 0.23 
16 4-chlorophenol 4.18 0.27 
17 4-chloro-3-methylphenol 4.33 0.14 
18 4-chloro-3,5-dimethylphenol 4.66 0.15 
19 3-methoxyphenol 3.22 0.01 
20 4-methoxyphenol 3.05 -0.10 
21 4-phenoxyphenol 4.58 -0.49 
22 quinoline 3.63 -0.40 
23 chlorobenzene 3.77 -0.01 
24 1,3-dichlorobenzene 4.28 -0.06 
25 1,4-dichlorobenzene 4.56 0.23 
26 1,2,3-trichlorobenzene 4.89 0.04 
27 1,2,4-trichlorobenzene 4.83 -0.03 
28 1,2,3,4-tetrachlorobenzene 5.35 -0.02 
29 1,2,3,5-tetrachlorobenzene 5.43 0.05 
30 3-chlorotoluene 3.84 -0.11 
31 4-chlorotoluene 4.33 0.38 
32 2,4-dichlorotoluene 4.54 -0.05 
33 2,4,5-trichlorotoluene 5.06 -0.08 
34 3,4,5-trichlorotoluene 4.60 -0.43 
35 pentachlorotoluene 6.15 0.06 
36 benzene 3.09 -0.11 
37 toluene 3.13 -0.25 
38 2-xylene 3.48 -0.15 
39 4-xylene 3.48 -0.06 
40 nitrobenzene 2.97 -0.59 
41 2-nitrotoluene 3.59 -0.13 
42 3-nitrotoluene 3.65 -0.07 
43 2,3-dimethylnitrobenzene 4.39 0.37 
44 3,4-dimethylnitrobenzene 4.21 0.07 
45 2-chloronitrobenzene 3.72 -0.29 
46 3-chloronitrobenzene 4.01 -0.07 
47 4-chloronitrobenzene 4.42 0.32 
48 2,3-dichloronitrobenzene 4.66 -0.03 
49 2,5-dichloronitrobenzene 4.59 -0.09 
50 3,5-dichloronitrobenzene 4.58 -0.04 
51 2-chloro-6-nitrotiluene 4.52 0.19 
52 4-chloro-2-nitrotoluene 4.44 0.27 
53 aniline 2.91 -0.23 
54 2-methylaniline 3.12 -0.20 
55 3-methylaniline 3.47 0.27 
56 N,N-dimethylaniline 3.33 -0.18 
57 2-ethylaniline 3.21 -0.33 
58 3-ethylaniline 3.65 0.15 
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Table 1.  Cont. 

59 4-ethylaniline 3.52 0.07 
60 4-butylaniline 4.16 0.08 

Test set val 
61 2,6-diisopropylaniline 4.06 -0.57 
62 3-chloroaniline 3.98 0.27 
63 4-chloroaniline 3.67 -0.05 
64 2,5-dichloroaniline 4.99 0.76 
65 3,4-dichloroaniline 4.39 0.12 
66 3,5-dichloroaniline 4.62 0.33 
67 2,3,4-trichloroaniline 5.15 0.39 
68 2,3,6-trichloroaniline 4.73 -0.05 
69 2,4,5-trichloroaniline 4.92 0.14 
70 RRR-4-tetrafluoro-3-methylaniline 3.77 0.11 
71 RRR-4-tetrafluoro-2-methylaniline 3.78 0.13 
72 pentafluoroaniline 3.69 -0.16 
73 2-nitroaniline 3.15 -0.21 
74 3-nitroaniline 3.24 -0.09 
75 4-nitroaniline 3.23 -0.18 
76 2-chloro-4-nitroaniline 3.93 0.06 
77 4-bromoaniline 3.56 -0.28 
78 3-benzyloxyaniline 4.34 -0.24 
79 4-hexyloxyaniline 4.78 0.02 
80 4-ethoxy-2-nitroaniline 3.85 0.01 

Test set ext 
81 3-methylphenol 3.48 -0.09 
82 2,6-dimethylphenol 3.75 -0.11 
83 4-butylphenol 4.47 -0.06 
84 1,2-dichlorobenzene 4.40 0.11 
85 1,3,5-trichlorobenzene 4.74 -0.15 
86 1,2,4,5-tetrachlorobenzene 5.85 0.45 
87 3-xylene 3.45 -0.11 
88 4-nitrotoluene 3.67 0.00 
89 2,4-dichloronitrobenzene 4.46 -0.20 
90 4-methylaniline 3.72 0.61 
91 2-chloroaniline 4.31 0.67 
92 2,4-dichloroaniline 4.41 0.33 

 

 
Model Search 

In our calculations we employ the computer system Matlab 5.0 [19]. It is our purpose to 
search the set D, containing D descriptors, for an optimal subset d of d<<D ones with minimum 
standard deviation S: 
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with N being the number of molecules in the training set, and  the residual for molecule i   
(difference between the experimental and predicted property p). More precisely, we want to obtain 
the global minimum of S(d) where d is a point in a space of D!/[d!(D-d)!] ones. A full search (FS) 
of optimal variables is impractical because it requires D!/[d!(D-d)!] linear regressions. Some time 
ago we proposed the Replacement Method (RM) [8-11] that produces linear QSPR-QSAR models 
that are quite close the FS ones with much less computational work. This technique approaches the 
minimum of S by judiciously taking into account the relative errors of the coefficients of the least-
squares model given by a set of d descriptors d={X1,X2,…,Xd}. The RM gives models with better 
statistical parameters than the Forward Stepwise Regression procedure [20] and similar ones to the 
more elaborated Genetic Algorithms [21]. 

ires

The Kubinyi function (FIT) [22, 23] is a statistical parameter that closely relates to the 
Fisher ratio (F), but avoids the main disadvantage of the latter that is too sensitive to changes in 
small d values and poorly sensitive to changes in large d values. The FIT(d) criterion has a low 
sensitivity to changes in small d values and a substantially increasing sensitivity for large d values. 
The greater the FIT value the better the linear equation. It is given by the following equation, where 
R(d) is the correlation coefficient: 

)1)((
)1(
22

2

RdN
dNRFIT
−+
−−

=                         (2) 

 
In present study, the optimal number of molecular descriptors ( ) to be included in the 

linear regression equation is deduced from two criteria: (i) the plot of FIT vs. d and (ii) the 
performance of the model on the test set. For case (i), as the Kubinyi function achieves a maximum 
value at , it is possible to calculate  in the following way: 

optd

maxd optd

1. calculate max
1 1

2
dd ⎡ ⎤= ⎢ ⎥⎣ ⎦

+ , where [ ]x  denotes the integer part of x. 

2. if the slope of FIT at  is greater than at 1d 11 +d , then 1ddopt = , otherwise, 11 += ddopt .        

Therefore, the  value reflects a “breaking point” beyond which the FIT improvement 
can be considered negligible. In case that the predictive performance of the model on the test set val 
is better for a smaller value of  than that given by criterion (i), then the smaller  value is 
adopted. 

optd

optd optd

 
Results and Discussion 

We begin the QSAR analysis by applying the RM algorithm on the training set of 60 
benzene derivatives in order to find out a suitable model size (d). Table 2 shows the best linear 
models found with 1-7 molecular descriptors, while the specific details of the numerical variables 
involved throughout the whole article are provided in Table 3. Figure 1 (a) shows that the FIT 
parameter improves with d up to a certain “breaking point”, which according to the criterion 
mentioned in section 2.2 corresponds to the value dopt=4. Despite of this, Table 2 demonstrates that 
the model exhibiting a better predictive power on the test set val (compounds 61-80) involves one 
descriptor less (dopt=3), leading to the validation parameters Rval=0.889 and Sval=0.312. Therefore, 
the best linear QSAR found includes the following three molecular descriptors: 
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eMorvXeRDFC 21)1.0(584.01)05.0(939.0020)04.0(296.0)2.0(824.1p ⋅±+⋅±+⋅±−±=  

        N=60,  R=0.953,  S=0.212,  FIT=8.086,  Rloo=0.947,  Sloo=0.224,  p<10-4      (3) 
        N=20,  Rval=0.889,  Sval=0.312  

     
Here, the absolute errors of the regression coefficients are given in parentheses, p is the 

significance of the model, and loo stands for the Leave-One-Out Cross Validation technique [24]. 
 
 
 

 

Figure 1. (a) FIT parameter versus number of 
descriptors (N=60). 
(b) Predicted (Eq. 3) versus experimental pC
(N=80). Circles: training set. Triangles: test set.  
(c) Dispersion plot of the residuals for Eq. (3) 
(N=80). Circles: training set. Triangles: test set. 
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Table 2. Linear QSAR models established for the training set (N=60). The best relationship found 
is in bold.  

Model Descriptors involved     R     S   FIT Sloo  Rval Sval 

M1 MW 0.889 0.316 3.567 0.324 0.600 0.686 

M2 MW, nN 0.929 0.257 5.602 0.268 0.692 0.487 

M3 RDF020e, X1v, Mor21e 0.953 0.212 8.086 0.224 0.889 0.312 

M4 RDF020e, DP02, ATS2p, 
BEHe2 0.961 0.195 8.753 0.212 0.824 0.411 

M5 MAXDP, nCL, BEHe7, 
RDF020e, Sp 0.967 0.181 9.196 0.201 0.896 0.363 

M6 MW, nN, nRORPh, Mor32u, 
Kp, L2u 0.977 0.153 11.605 0.174 0.585 0.636 

M7 MW, nN, nRORPh, H6m, R2u+, 
HATS0u, E2m 0.978 0.152 10.486 0.176 0.645 0.643 

 

Table 1 includes the predicted residuals via equation (3) for the training and test sets, while 
the plot of predicted vs. experimental toxicities shown in Figure 1 (b) suggests that the 60 training 
and 20 test set compounds of val follow a straight line. The behavior of the residuals in terms of the 
predictions of Figure 1 (c) leads to a normal distribution. This figure includes three calibration 
outliers with a residual exceeding the value 2S=0.424: compounds 21 (4-phenoxyphenol, -0.491), 
34 (3,4,5-trichlorotoluene, -0.426), and 40 (nitrobenzene, -0.586), while no-one of the training 
compounds exceeds the value 3S=0.636; the presence of these outliers can be attributed to be a 
purely consequence of the limited number of optimal descriptors participating in equation (3).  

The correlation matrix in Table 4 reveals that the descriptors of the linear model are not 
seriously inter-correlated (R<0.5), and thus substantiate the presence of all the variables in the 
model. The predictive power of the linear model is satisfactory as revealed by its stability upon the 
inclusion or exclusion of compounds, as measured by the loo parameters Rloo=0.889 and Sloo=0.312, 
and especially by means of the predictive ability in the test set val of Rval=0.889 and Sval=0.312. 
Present linear QSAR is of better quality and involves fewer descriptors (three) than the one reported 
previously [7] employing seven extended topochemical atom (ETA) indices that lead to R=0.941 
and S=0.230. It has to be mentioned, however, that the reported model employed all the 92 pC 
values for training the model and did not employ a validation set for testing its predictive potential. 

The three structural variables appearing in equation (3) can be classified as follows: (i) a 
topological descriptor: X1v, the valence connectivity index chi-1, (ii) a 3D-MoRSE descriptor: 
Mor21e, 3D-MoRSE–signal 21 / weighted by atomic Sanderson electronegativities; and (iii) a 
radial distribution function: RDF020e, Radial distribution function – 2.0 / weighted by atomic 
Sanderson electronegativities. 
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             Table 3. Symbols for molecular descriptors involved in different models. 

Molecular 
descriptor Type Description 

RDF020e Radial Distribution 
Function 

Radial distribution function – 2.0 / weighted by atomic 
Sanderson electronegativities 

X1v Topological valence connectivity index chi-1 

Mor21e 3D-MoRSE 3D-MoRSE – signal 21 / weighted by atomic Sanderson 
electronegativities  

RDF045m Radial Distribution 
Function 

Radial distribution function – 4.5 / weighted by atomic 
masses 

Mor05p 3D-MoRSE 3D-MoRSE – signal 05 / weighted by atomic polarizabilities 

L3v WHIM 3rd component size directional WHIM index / weighted by 
atomic van der Waals volumes 

MW Constitutional Molecular weight 

nN Constitutional  Number of nitrogen atoms 

DP02 Randic Molecular 
Profiles Molecular profile number 02 

ATS2p 2D-Autocorrelations Broto-Moreau autocorrelation of a topological structure – lag 
2 / weighted by atomic polarizabilities 

BEHe2 BCUT Highest eigenvalue n. 2 of Burden matrix / weighted by 
atomic Sanderson electronegativities 

MAXDP Topological Maximal electrotopological positive variation 

nCL Constitutional Number of chlorine atoms 

BEHe7 BCUT Highest eigenvalue n. 7 of Burden matrix / weighted by 
atomic Sanderson electronegativities 

Sp Constitutional Sum of atomic polarizabilities (scaled on carbon atom) 

nRORPh Functional Groups Number of ethers (aromatic) 

Mor32u 3D-MoRSE 3D-MoRSE – signal 32 / unweighted  

Kp WHIM K global shape index / weighted by atomic polarizabilities 

L2u WHIM 2nd component size directional WHIM index / unweighted 

H6m GETAWAY H autocorrelation of lag 6 / weighted by atomic masses 

R2u+ GETAWAY R maximal autocorrelation of lag 2 / unweighted 

HATS0u GETAWAY Leverage-weighted autocorrelation of lag 0 / unweighted 

E2m WHIM 2nd component accessibility directional WHIM index / 
weighted by atomic masses 
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The connectivity index X1v was proposed by Kier and Hall with the purpose of taking into 
account the nature of atoms symbolized by vertices [25]. This is readily calculated with a formula 
similar to that of Randic’s molecular connectivity index, but considers products of valence delta 
values ( iδ ) instead of vertex degrees: 

∑=
ji

jivX
,

 1 δδ          
1−−

−
= v

ii

i
v
i

i ZZ
HZδ    (5) 

where  indicates the number of valence electrons in atom i, v
iZ Z  is its atomic number, and  is 

the number of hydrogens attached to atom i. Thus, it is expected that index X1v reflects the 
molecular size. The 3D-MoRSE type of descriptor is obtained considering a molecular transform 
derived from an equation used in electron diffraction studies [26]. The electron diffraction does not 
directly yield atomic coordinates, but provides diffraction patterns from which the atomic 
coordinates are derived by mathematical transformations. These codes are defined in order to reflect 
the contribution to the property under investigation, at a prescribed scattering angle, of an atomic 
property such as mass (m), polarizability (p), electronegativity (e) or volume (v), and so enable to 
differentiate the nature of atoms. In example, for the case of Mor21e, the scattering angle is of 21 Å-

1 and the atomic Sanderson electronegativities are employed as weighting scheme. The Radial 
Distribution Function (RDF) [27] of an ensemble of atoms can be interpreted as the probability 
distribution of finding an atom in a spherical volume of certain radius, also incorporating different 
atomic properties in order to differentiate the contribution of atoms to the property being analyzed. 
For the case of RDF020e, the sphere radius is of 2.0 angstroms and the atomic Sanderson 
electronegativities are employed to distinguish their nature. 

iH

The standardization of the regression coefficients [20] in Equation (3) allows assigning a 
greater importance to the molecular descriptors that exhibit larger absolute standardized coefficients 
(shown in parentheses): 

 
X1v (0.844)  >  RDF020e (0.346)  >  Mor21e (0.222)   (4) 

 
and it is seen that the topological descriptor is the most relevant variable in present set of chemicals. 
It is mentioned that X1v and RDF020e descriptors take positive numerical values for all the 
compounds analyzed here, while Mor21e has negative values. Therefore, considering the sign of the 
regression coefficients a benzene derivative would tend to be more toxic (exhibiting a higher value 
of pC) the higher the value of X1v index and the lower the values of RDF020e and Mor21e 
molecular descriptors in equation (3). Of course, compensating effects among the three variables 
would also lead to high toxicity of the compounds.  
 
 

Table 4. Correlation matrix for descriptors of equation (3) (N=60). 

 RDF020e X1v Mor21e

RDF020e 1 0.057 0.477 

X1v  1 0.211 

Mor21e   1 
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Conclusions 
Present QSAR analysis established a linear regression model over sixty fish toxicity values 

exhibited by benzene derivatives, by means of three molecular descriptors that were rescued from a 
pool containing more than a thousand of variables through the Replacement Method variable subset 
selection procedure. The predictive performance of this model was assessed with two different test 
sets, one partially employed for guiding the model performance (val) and the other not employed at 
all during the training stage (ext), leading in both cases to satisfactory predictions of the 
toxicological behavior.  
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