

XX CAC 2017

CONGRESO ARGENTINO DE CATÁLISIS

DEL 1 AL 3 DE NOVIEMBRE DE 2017 CORDOBA-ARGENTINA

Catalizadores a base de ceria-zirconia en la eliminación de NO₃⁻ en aguas

Jaworski, María^{1,2,3}*; Herrán, Rodrigo¹; Bideberripe, Hernán^{1,2}; Siri, Guillermo^{1,2}; Casella, Mónica¹

1- CINDECA (CCT-La Plata, CONICET y Facultad de Ciencias Exactas, UNLP), 47 N° 257 (1900) La Plata. Argentina

2- PIDCAT-Facultad de Ingeniería (UNLP), calle 50 y 116 (1900) La Plata. Argentina

3- Departamento de Ciencias Básicas-Facultad de Ingeniería (UNLP), calle 115 y 49 (1900) La Plata. Argentina

*majaworski@quimica.unlp.edu.ar

Palabras Claves: nitratos, agua, ceria, zirconia, PdCu

Resumen

Se estudió la eliminación de NO₃⁻ en aguas empleando catalizadores de Pd (1%p/pPd) y PdCu usando H₂ como agente reductor. Como soporte se utilizaron ZrO₂ y CeO₂ preparada por calcinación o sol-gel puras o modificadas con 5%p/pZrO₂. Los soportes obtenidos fueron mesoporosos y la ZrO₂ se distribuyó homogéneamente sobre los mismos. Los catalizadores Pd fueron activos en la eliminación de NO₃⁻ aunque no lograron eliminarlo completamente y generaron alta cantidad de NH₄⁺. El agregado de 0.3%p/pCu sobre los catalizadores Pd mejoró su actividad y selectividad a N₂. Los catalizadores PdCu/Ce y PdCu/Zr-Ce eliminaron completamente los NO₃⁻; sin embargo, la cantidad de NH₄⁺ (1 y 3ppm) generada fue más alta que la permitida por la norma (0.5ppm). El sistema con mejor selectividad a N₂ fue PdCu/Zr-Ce SG (99.6%) aunque se evidencia una desaceleración de la reacción con el tiempo. El uso de HCl para regular el pH permitió que este catalizador elimine completamente los NO₃⁻ manteniendo la selectividad a N₂. Este mismo catalizador eliminó un 40% de los NO₃⁻ presentes en muestras de aguas destinadas a consumo humano y se detectó una alta generación de NO₂⁻ (15ppm), probablemente los iones presentes en el agua tratada enmascaran los sitios de adsorción de NO₃⁻.

Abstract

The elimination of NO₃⁻ in water was studied using Pd (1% w/wPd) and PdCu catalysts and H₂ as the reducing agent. The selected supports were ZrO₂ and CeO₂ prepared by calcination or sol-gel method, both pure or modified with 5 wt.% ZrO₂. The supports so obtained were mesoporous and ZrO₂ was homogeneously distributedover them. The catalysts were active in the elimination of NO₃⁻ although not completely and produced high NH₄⁺ content. The addition of 0.3 wt.% Cu to the Pd catalysts improved their activity and selectivity to N₂. The PdCu/Ce and PdCu/Zr-Ce catalysts eliminated the NO₃⁻ completely, but the NH₄⁺ produced (1 and 3ppm) was higher than the allowed limit (0.5ppm). The system with the best N₂ selectivity was PdCu/Zr-Ce SG (99.6%), although a decrease in the reaction rate with time was evidenced. The use of HCl to control pH for this catalyst allowed eliminate NO₃⁻ completely conserving the selectivity to N₂. This catalyst eliminated 40% of the NO₃⁻ present in water samples for human consuming but high NO₂⁻ generation (15ppm) were detected. Probably the ions present in real water masked the NO₃⁻ adsorption sites.

XX CAC 2017 CONGRESO ARGENTINO DE CATÁLISIS DEL 1 AL 3 DE NOVIEMBRE DE 2017 CORDOBA-ARGENTINA

Introducción

Entre los compuestos que afectan la calidad del agua de consumo humano se halla el NO3. Los NO_3 son transformados a NO_2 en el cuerpo humano lo que causa metahemoglobinemia, una deficiencia de oxígeno en la sangre [1]. Es por ello que se han establecido límites máximos tolerables para el NO₃⁻ (50ppm US EnvironmentalProtection Agency) en aguas de consumo humano. Desde un punto de vista ambiental, la mejor técnica para remover los NO_3^- es aquella que los convierta a N_2 . Uno de los procesos más prometedores es la reducción catalítica de NO_3^- a N_2 utilizando H_2 como agente reductor. Vorlop y Tacke sugirieron un método de reducción catalítica basado en el uso de un metal noble soportado como catalizador y H₂ gaseoso como agente reductor [2]. Se ha demostrado que la naturaleza de la fase activa y del soporte afecta la actividad y selectividad de la reacción [3]. Como contribución al tema, en el presente trabajo se estudiará la dependencia de la composición del soporte en la actividad y selectividad en la eliminación de NO3⁻ empleando catalizadores PdCu como fase activa y soportes ZrO₂ y CeO₂ pura preparada por diferentes metodos (calcinación o sol-gel) y ceria modificada por agregado de ZrO₂. El uso de CeO₂ en catálisis favorece la dispersión de los metales soportados y la oxidación/reducción del mismo (cupla Ce⁺⁴/Ce⁺³) por su capacidad para almacenar y liberar oxigeno [4]. La adición de ZrO₂ a la CeO₂ aumenta las vacancias de oxigeno de la CeO₂ lo que permitiría al soporte aumentar la interacción con los NO_3^- que desean ser eliminados del agua a tratar. Esto es debido a la sustitución parcial de la Ce^{+4} con Zr^{+4} en la estructura de la ceria [5].

Experimental

Preparación de los soportes y catalizadores: En la Tabla 1 se resume la metodología empleada para la preparación de los soportes, los catalizadores empleados y la nomenclatura que se utilizará de aquí en adelante para los mismos. Los catalizadores se prepararon mediante el método de impregnación a humedad incipiente empleando las sales $PdCl_2$ (catalizador monométalico 1%Pd) y $Cu(NO_3)_2$ (catalizador bimetálico 1%Pd y 0.3%p/pCu).

Fase activa	Soporte	Metodología de preparación del soporte	Nomenclatura
Pd	Tinoonia	Draginitación en modio bósico con NH OH	Pd/Zr
PdCu	Zirconia	Precipitación en medio básico con NH4OH	PdCu/Zr
Pd	Ceria	Calainación a 600°C	Pd/Ce
PdCu		Calcinación a 600 C	PdCu/Ce
Pd		Procinitación con (NILL) Co(NO)	Pd/Ce SG
PdCu		$rrecipitation con (1NH_4)_2 Ce(1NO_3)_6$	PdCu/Ce SG
Pd	5% p/p Zirconia-Ceria	Ce y precipitación de ZrOCl ₂ .8H ₂ O	Pd/Zr-Ce
PdCu			PdCu/Zr-Ce
Pd		Co SC y proginitación do 7rOCL 84 O	Pd/Zr-Ce SG
PdCu		Ce SO y precipitación de ZIOCI ₂ .8H ₂ O	PdCu/Zr-Ce SG

Tabla 1- Nomenclatura de los catalizadores estudiados

Caracterizaciones: Los soportes se caracterizaron por DRX (equipo *Philips PW 1050/70*, corriente 20mA, voltaje 40kV, 20 10-70° y escaneando 1°min). Las propiedades texturales se determinaron por la técnica de absorción/desorción de N₂ (*MicromeriticsAccusorb 2100E*). Los ensayos SEM y análisis semicuantitativo EDAX se efectuaron con microscopio *Philips SEM 505* con sistema de energía dispersiva para microanálisis por Rayos X, (*EDAX 9100*). Los catalizadores fueron caracterizados por TPR, utilizándose un caudal de 22 cm³/min y una concentración de H₂ de 10 % en Ar.

Reacción catalítica: La reacción de reducción de NO₃⁻ se llevó a cabo en un sistema semi-batch. En un ensayo tipo el catalizador previamente reducido se colocó en agua desionizada y desgasificada

XX CAC 2017 CONGRESO ARGENTINO DE CATÁLISIS

DEL 1 AL 3 DE NOVIEMBRE DE 2017 CORDOBA-ARGENTINA

conteniendo 100ppm de NO₃⁻. La experiencia y selectividades hacia los productos de reacción se describió previamente NO₂⁻ (S_{NO2} -%), NH₄⁺ (S_{NH4+} %) y N₂ (S_{N2} %) [6].

Resultados y discusión

Las propiedades texturales, área superficial BET (S_{BET}) volumen de poro (V_p), diámetro de poro medio (d_p calculado por el método BJH) y la fase obtenida por DRX de todos los soportes estudiados se muestran en la Tabla 2. Los difractogramas de los soportes Ce y Ce SG corresponden a una estructura cúbica del tipo fluorita como fue descripto en la literatura [4] la cual no se ve alterada por la presencia de Zr en los soportes CeZr y CeZr SG.

Tabla 2. Tropledades texturales de los soportes estudiados				
Soporte	$\frac{S_{BET}}{(m^2g^{-1})}$	V _p (cm ³ g ⁻¹)	d _p BJH (nm)	Fase DRX obtenida
Zr	73	0.1	5.4	tetragonal y monoclínica
Ce	17	0.04	1.7	Fluorita
Ce SG	62	0.06	3.8	Fluorita
Zr-Ce	19	0.05	1.3	Fluorita
Zr-Ce SG	63	0.06	3.7	Fluorita

 Tabla 2. Propiedades texturales de los soportes estudiados

El método sol-gel permitió que el soporte Ce SG presente una mayor área S_{BET} y volumen de poro en comparación con el Ce. Para los soportes Zr-Ce y Zr-Ce SG no se observa un cambio significativo en el área superficial ni en el Vp con respecto a los soportes Ce y Ce SG puros, lo que indica que la ZrO₂ se distribuye homogéneamente sobre estos soportes. La leve disminución del dp se debe a que la ZrO₂ se depositaría en los poros de los soportes modificados.

Las isotermas de adsorción y desorción de N_2 para los soportes a base de ceria estudiados presentaron un ciclo de histéresis con formas típicas de materiales mesoporosos. Por la técnica SEM-EDAXse confirmó la presencia de ZrO₂ sobre los soportes Ce y Ce SG.

En la Figura 1 se muestran los diagramas de TPR para los catalizadores Pd (Fig. 1a) y PdCu (Fig.1b) estudiados. En el perfil de TPR del catalizador Pd/Zr (Fig. 1a) se observa la presencia de un pico negativo, atribuido a la descomposición de un β -hidruro de Pd (H_xPd) formado a temperatura ambiente [7]. Para el resto de los catalizadores analizados los cuales contienen ceria en su estructura, la ausencia del pico correspondiente al β -hidruro indica una mayor interacción del Pd con los soportes que inhibe la reducción del PdO a temperatura ambiente [8]. En estos catalizadores se observa un pico bien definido el cual se asigna a la reducción PdO a Pd⁰. La temperatura de reducción de este pico es mayor para Pd/Ce SG en comparación con el catalizador Pd/Ce. La mayor área del soporte Ce SG favorece una mayor dispersión de la fase Pd y un aumento de la interacción de la fase activa con el soporte. Cuando se agrega Zr a los soportes Ce y Ce SG disminuye la temperatura de reducción del pico principal, lo que indicaría que disminuye la interacción del Pd con el soporte.

Figura 1. Perfil de TPR de los catalizadores preparados, a) catalizadores Pd b) catalizadores PdCu

XX CAC 2017 CONGRESO ARGENTINO DE CATÁLISIS DEL 1 AL 3 DE NOVIEMBRE DE 2017 CORDOBA-ARGENTINA

Con respecto a los catalizadores bimetálicos, en el TPR del catalizador PdCu/Zr (Fig. 1b) se observan tres picos, el primero corresponde al pico del β -hidruro cuya intensidad se encuentra disminuida respecto del catalizador Pd/Zr lo que indica algún tipo de interacción con el Cu. El segundo pico entre 100-200°C es asignado a la reducción de Pd (PdO a Pd°) y el tercer pico (entre 300 y 400°C), corresponde a la reducción de CuO a Cu° [9]. Para el resto de los catalizadores bimetálicos analizados se observa un perfil similar al de los catalizadores monometálicos con un pico mayoritario asignado a la reducción de PdO iunto con especies PdCu. Los cristales de Pd favorecen el spillover del H₂ lo que hace que los óxidos de Cu se reduzcan a menor temperatura cuando se lo compara con un catalizador monometálico de Cu (300-400°C) [7]. Para los sistemas soportados sobre Ce y Ce SG pura la temperatura del pico mayoritario es mayor que para los catalizadores conteniendo Zr mostrando un comportamiento similar a los monometálicos de Pd. *Resultados catalíticos*

En la Tabla 3 se presentan los resultados de conversión y selectividad correspondientes a los ensayos catalíticos de eliminación de NO_3^- para los catalizadores mono y bimetálicos preparados en este trabajo. A partir de dicha tabla se hace evidente que el soporte tiene un rol importante en la eliminación de NO_3^- y en la selectividad hacia N_2 como fue demostrado en trabajos previos [9].

de 180 minutos de reacción						
Catalizador	X _{NO3-} %	S _{NO2} -%	S _{NH4+} %	S _{N2} %		
Pd/Zr	28	0	7	93		
Pd/Ce	84	2	4	96		
Pd/ Zr-Ce	92	1	2	97		
Pd/Ce SG	65	0.5	1	98.5		
Pd/Zr-Ce SG	70	0.5	0.8	98.7		
PdCu/Zr	63	0	5	95		
PdCu/Ce	100	7	3	90		
PdCu/Zr-Ce	100	2	1	97		
PdCu/Ce SG	80	2	0.5	97.5		
PdCu/Zr-Ce SG	87	0	0.4	99.6		

Tabla 3-Conversión de NO ₃ ⁻ y selectividades hacia NO ₂ ⁻ , NH ₄ ⁺ y N ₂ para los catalizadores evaluados luego
de 180 minutos de reacción

Se ha propuesto en la literatura que para la reducción de NO₃⁻ se precisan de ensambles bimetálicos PdCu cuando los soportes empleados son inertes [8]. En este trabajo todos los catalizadores monometálicos Pd fueron activos en la eliminación de NO₃⁻. Este comportamiento es similar al demostrado previamente para catalizadores a base de Pd soportado sobre los materiales redox ZrO₂ y ZrO₂-Al₂O₃[6]. Los sitios de vacancias de oxígeno que existen en los soportes redox (Zr, Ce y ZrCe) y su interacción con el Pd hacen que el sistema resultante sea activo en la hidrogenación de NO₃⁻.

Analizando la Tabla 3 y comparando los sistemas monometálicos y los bimetálicos sobre el mismo soporte se evidencia que el agregado de Cu aumenta la capacidad de eliminación de NO_3^- y hace que disminuya la generación de NH_4^+ . Es de esperar que el Cu agregado se localice en los bordes o esquinas de los clusters de Pd, lo que disminuiría la selectividad hacia NH_4^+ por disminución de la capacidad reductora del Pd favoreciendo la selectividad a N_2 [10].

Para los catalizadores PdCu soportados sobre los materiales Ce SG y Zr-Ce SG se obtuvo la mejor selectividad a N_2 con una muy baja selectividad hacia NO_2^- y NH_4^+ . La mayor área S_{BET} de estos soportes permitió una mejor dispersión de la fase metálica lo cual favoreció la interacción PdCu, como se evidenció por TPR.

En la Figura 2 se muestran las curvas de eliminación de NO_3^- para los catalizadores PdCu evaluados sin control de pH.

Figura 2- Eliminación de NO₃⁻ para catalizadores PdCu

XX CAC 2017 CONGRESO ARGENTINO DE CATÁLISIS

DEL 1 AL 3 DE NOVIEMBRE DE 2017 CORDOBA-ARGENTINA

Los sistemas bimetálicos soportados sobre Ce y Zr-Ce eliminaron completamente los NO_3^- dentro de los 60 minutos de reacción. Para el resto de los catalizadores se ve una desaceleración de la reacción con el tiempo.

D'Arino et al. [11] ilustraron la dificultad de controlar el pH del medio de reacción en las proximidades de la fase activa, es decir dentro de los poros del soporte en donde los OH⁻ son producidos durante la reacción de hidrogenación lo que implicaría una disminución de la velocidad de reacción.

Con el objeto de contrarrestar el efecto de presencia de OH⁻, se evaluaron dos métodos descriptos en la literatura [10].En un caso se utilizó una mezcla de H_2/CO_2 como alimentación del reactor y en el otro, la adición de HCl (Figura 3 y Tabla 4). El catalizador seleccionado para estos ensayos fue el PdCu/Zr-Ce SG que fue el que presento mejor selectividad a N₂.

Tabla 4-Conversión de NO ₃ ⁻ y selectividades hacia
NO ₂ , NH ₄ ⁺ y N ₂ para el catalizador PdCu/Zr-Ce SG
luego de 180 minutos de reacción

Control de pH	X _{NO3-} %	S _{NO2} -%	S _{NH4+} %	S _{N2} %
Sin control	87	0	0.4	99.6
CO ₂	62	2	2.4	95.6
HCl	100	0.2	0.6	99.4

Figura 3. Eliminación de NO₃⁻ para el catalizador PdCu/Zr-Ce SG con control de pH

En este trabajo el uso de CO₂ (Figura 3) no resultó favorable para la reacción en estudio ya que no se logró la eliminación completa de los NO₃⁻. Un trabajo de Bae*et al.* argumentó que tanto el NO₃⁻ como el bicarbonato tienen la misma estructura planar lo que hace que el HCO₃⁻ compita con el NO₃⁻ en la adsorción sobre los sitios activos disminuyendo la reducción del NO₃⁻ [12]. Cuando se empleó HCl para controlar el pH de la reacción, se pudo apreciar que se logró aumentar muy significativamente la actividad en la eliminación de NO₃⁻ manteniendo la selectividad a N₂.

Para que estos catalizadores tengan una aplicación práctica es necesario evaluarlos en agua de consumo humano. Es por esto que el catalizador PdCu/Zr-Ce SG se evaluó en dos muestras de agua extraídas de dos zonas diferentes del Acuífero Puelche. La reacción se llevó a cabo con control de pH empleando HCl. Los resultados se muestran en la Tabla 5.

Tabla 5 . Eliminación de NO ₃ ⁻ en aguas de
consumo humano luego de 3h de reacción

Muestra	ppm <i>i</i> NO ₃ -	ppmf NO ₃	ppmf NO ₂ ⁻	ppmf NH4 ⁺
1	62	20	10	0.4
2	65	30	15	0.3

ppm*i* ppm iniciales **ppm***f*finales El catalizador evaluado fue activo en la eliminación de NO_3^- aunque se observó una alta producción de NO_2^- . Se sugirió que la disminución de la actividad y selectividad es atribuida al enmascaramiento de la fase activa por los iones que se hallan en al agua a tratar [13].

XX CAC 2017 CONGRESO ARGENTINO DE CATÁLISIS DEL 1 AL 3 DE NOVIEMBRE DE 2017 CORDOBA-ARGENTINA

Conclusiones

De los resultados de caracterización (propiedades texturales, microscopía SEM-EDAX y DRX) se destaca que la estructura de los soportes Ce y Ce SG se mantiene cuando son modificados con ZrO₂. Se observó que los catalizadores Pd depositados sobre soportes con vacancias de oxígeno en su estructura (Ce, Zr-Ce, Ce SG y Zr-Ce SG) fueron activos en la eliminación de NO₃⁻ no precisándose de ensambles bimetálicos; sin embargo, la adición de Cu permitió mejorar la actividad y selectividad a N₂. En los ensayos sin control de pH, el catalizador con mejor actividad fue el PdCu/Zr-Ce, aunque presento una selectividad a NH₄⁺ muy alta. El sistema que presento mejor selectividad a N2 fue PdCu/Zr-Ce SG. Para contrarrestar el efecto del pH se utilizaron dos métodos uno utilizando CO₂ y otro usando HCl. Los ensayos se realizaron sobre el catalizadorPdCu/Zr-Ce SG. El uso de CO₂ en el medio de reacción lo cual no resultó eficiente ya que el HCO₃⁻ generado compite con los NO₃⁻ por la adsorción del sitio activo. La utilización de HCl para controlar el pH mejoró la actividad de este catalizador manteniendo una muy buena selectividad a N₂. Este catalizador fue activo en la eliminación de NO₃⁻ de muestras de aguas destinadas a consumo humano aunque se genera una alta cantidad de NO₂⁻.

Agradecimientos

El presente trabajo fue financiado mediante los siguientes proyectos: Subsidio Jóvenes Investigadores, UNLP (2015-2016); PIP0276, CONICET, Proyecto X700, UNLP

Referencias

[1] L.I Carbó, M.C. Flores, M.A. Herrero; EnvironGeol 57(2009)1489-1500

[2] Y.-N. Kim, M.Y. Kim, M. Choi; Chem .Eng. J. 289 (2016) 423-432

[3] O.S.G.P. Soares, J.J.M. Órfão, M.F. R. Pereira; Desalination 279 (2011) 367-374

[4] K. Polychronopoulou, A.F. Zedan, M.S. Katsiotis, M.A. Baker, A.A. AlKhoori, S.Y. AlQaradawi, S.J.

Hinder, S. Alazán; J. Mol. Catal. A: Chemical 2016 http://dx.doi.org/10.1016/j.molcata.2016.11.039

[5] B.M. Reddy, P. Saikia, P. Bharali, L. Katta, G. Thrimurthulu; Catal. Today 141 (2009) 109-114

[6] M.A. Jaworski; I.D. Lick; G.J. Siri; M.L. Casella; Appl. Catal. B: Environmental 156-157 (2014) 53-61

[7] C. M. Mendez, H. Olivero, D. E. Damiani, M. A. Volpe. App Catal B: Environmental 84 (2008) 156

[8] J. Trawczynski, P. Gheek, J. Okal, M. Zawadzki, M.J. Ilan Gomez; Appl. Catal. A: General 409–410 (2011) 39–47

[9] D. Găsparovičová, M. Králik, M. Hronec, Z. Vallŭsová, H. Vinek, B. Corain. J Mol Catal A: Chemical 264 (2007) 93

[10] M. Al Bahri, L. Calvo, M.A. Gilarranz, J.J. Rodriguez, F. Epron; Appl. Catal. B: Environmental 138–139 (2013) 141–148

[11] M. D'Arino, F. Pinna, G. Strukul; Appl. Catal. B: Environmental 53 (2004) 161-168

[12] S. Bae, J. Jung, W. Lee; Chem. Eng. J. 232 (2013) 327-337

[13] C.P. Theologides, P.G. Savva, C.N. Costa; App. Catal B: Environ. 102 (2011) 54