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Abstract: Perfluoropropionic acid (CF3CF2C(O)OH) has been investigated with a focus
on its complex structural properties. As a formal derivative of propanoic acid, the in-
corporation of fluorine atoms imparts unique structural features, including three distinct
monomeric conformations and a dimeric structure. This study presents experimental find-
ings, supported by computational modeling, to explore these characteristics. The analysis
includes an FTIR study of the isolated species in an Ar-cryogenic matrix and the low-
temperature determination of its crystalline structure using single-crystal X-ray diffraction.

Keywords: perfluoropropionic acid; low-temperature crystal structure; cryogenic Ar matrix
study; conformers; monomers; dimer; computational calculations

1. Introduction
The chemistry of fluorine has long been, and continues to be, with renewed momen-

tum, one of the most captivating fields for chemists worldwide. Fluorine, in its compounds,
cannot be simply regarded as either a “larger hydrogen” or a “smaller chlorine”. The
properties of its compounds often prove to be unexpected, unpredictable, fascinating, and
truly unique. For example, the energy transition has once again positioned fluorine at
the forefront of the discipline. It is a key component of the salt used in lithium battery
electrolytes, LiPF6, and in its elemental form plays a vital role in chemically eliminating
trace water by oxidizing it into OF2 and HF [1].

In particular, fluoro- and perfluoro-organic compounds have found a wide range
of applications. Specifically, perfluoroorganic compounds, one of which is the focus of
this work, exhibit remarkable stability due to the presence of C-F bonds within their
molecular structure. This stability—thermal, chemical, biological, and, to some ex-
tent, photochemical—confers upon them a significant degree of environmental persis-
tence [2–13].

Perfluoropropionic acid, CF3CF2C(O)OH (PFPA), the title compound, may not accu-
mulate in the environment to the same extent as the longer chain perfluorinated carboxylic
acids [7,8], and its natural sources have not been identified so far. That it has been detected
in rainwater [14–16], however, stresses its role as an environmentally active molecule. To
fully understand how this and other long-lived products are formed under the complex
environmental conditions present in a given reactive matrix, it is essential to acquire a de-
tailed knowledge of the photochemical evolution of the species, their association equilibria
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at various temperatures, and to experimentally determine the existence of all conformers
present at room temperature.

In the context of the anhydride acid molecule central to this study, it is worth noting
that, from a structural perspective, the hydrate and dihydrate of anhydrous acid were inves-
tigated using Chirped-Pulse Fourier Transform Microwave (CP-FTMW) Spectroscopy. The
study revealed that the complexation of the -OH group of the acid with one or two water
molecules occurs on the plane of the carboxylic acid group, resulting in the formation of a
six- or eight-membered ring structure [17].

Important for this work is a vibrational study of CF3CF2C(O)OH, published by Crow-
der in 1972, in which he detailed the partial and total association of the species in the
vapor and liquid states, respectively. The use of fundamental vibrational concepts, such as
evaluating group electronegativity, allowed him to understand, for example, the shift to
higher wavenumbers of the carbonyl stretch when a CF3CF2- group is formally replaced
by a CF3- group, and its connection with the hydrogen bonding comparison between the
two species [18,19].

Another study explored the far-infrared spectra of a set of 27 carboxylic acids in
aqueous solution, including the compound examined in this work. The analysis of the
spectra, particularly in the OH stretching region, enables the determination of conforma-
tional isomerism [20]. Computational studies using DFT-B3LYP/6-311+G** and ab initio
MP2/6-311+G** calculations on perfluoropropionic acid revealed the existence of an equi-
librium between two conformations: the cis form (where the C=O group eclipses the C-C
bond) and the gauche conformer. The calculations predict the gauche conformer to be the
lower-energy form at ambient temperature, with an abundance of 76% gauche and 24% cis
at 298.15 K [21]. The structural properties of perfluoropropionic acid have been resolved
through the study of its rotational spectrum using a pulsed nozzle, chirped-pulse Fourier
transform microwave spectrometer within the frequency range of 8–14 GHz. Combined
quantum chemical calculations and spectroscopic analysis supports the assignment of the
gauche form, with a C−C−C=O dihedral angle of 106–107◦, and variations depending on
the level of approximation used [22].

In another work, the chemistries of perfluoropropionic acid and its close derivatives
were studied, described, and compared [23]. Perfluoropropionic acid was also included in
an early study utilizing neutron spectroscopy to examine its vibrational spectrum, along-
side a broader group of related organic acids [24]. The title compound was also investigated
using gas-phase mid-IR, near-IR, and visible vibrational spectroscopy, alongside perfluo-
rooctanoic and perfluorononanoic acid, employing Fourier transform and cavity ring-down
spectroscopy. The authors of this work concluded that these compounds exhibit more
harmonic O–H bonds, lower transition wavenumbers, and reduced intensities compared
to shorter-chain hydrocarbon acids, alcohols, and peroxides [25]. The vibrational spectra
of the title compound were also found within the range of 11,000–1000 cm−1 and were
compared with those of its hydrocarbon homolog, propionic acid [26]. Perfluoropropionic
acid was one of the compounds used to study a simple drop-coating deposition using
Raman spectroscopy methods to concentrate perfluoroalkyl substances and subsequently
design an accessible and reliable spectral library [27].

A family of polyfluorinated compounds, including CF3CF2C(O)OH, was analyzed
from the perspective of the fragmentation process of the deprotonated species. It was
demonstrated that the relative energy of the transition state of the formed CCFC ring, which
leads to the FCO2

− anion, is directly linked to the subsequently observed dissociation [28].
In another work, we also employed perfluoropropionic acid to study details related to its
photoexcitation, photoionization, and photofragmentation using synchrotron light energies
in the range between 11.7 and 715.0 eV. At low energies, the detected fragments were
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COH+, C2F4
+, and the parent M+ ion. In this work, and in line with the experimental

variables used—for instance, very low pressures on the order of 10−6 mm Hg—there was
no evidence of the existence of a dimer of perfluoropropionic acid [29].

CF3CF2C(O)OH was also part of a very recent study that evaluated the decomposition
products of this family of compounds with the aim of providing more information about
the thermal evolution process [30]. In this context, and in connection with this evidence,
the degradation of perfluoropropionic acid and related compounds was investigated using
an argon plasma under various conditions [31].

A previous analysis of this type reported that after decomposition in an N2 atmosphere
at temperatures between 200 and 780 ◦C, the identified products were CF2=CF2, CF3CF2H,
and CF3C(O)F. In an O2 atmosphere at below 400 ◦C, the main product is OCF2, accom-
panied by the inevitable formation of SiF4 due to the use of a quartz reactor [32]. From a
computational perspective, and to understand transport behavior of relatively stable sub-
stances over considerable distances, such as perfluoroalkyl and polyfluoroalkyl compounds,
this work aims to comparatively determine the gas-phase thermochemical properties of
the compounds, which includes perfluoropropionic acid [33]. The use of perfluoropropi-
onic acid for studying its role in the nucleation of atmospheric molecules under ambient
conditions is computationally analyzed in order to understand, at a molecular level, the
composition and formation mechanism of secondary organic aerosols [34]. In connection
with the above-mentioned decomposition processes, we highlight that pentafluoropropi-
onate salts (salts of Li, Na, K, Cs, Mg, Ca and Ba) were also examined. In that study, the
principal pyrolysis product of the pentafluoropropionate salts under dynamic vacuum was
tetrafluoroethylene (CF2=CF2) [35].

To fully comprehend how this and other long-lived products are formed under the
intricate environmental conditions present in a given reactive matrix, it is crucial to gain
a detailed understanding of the photochemical evolution of the species and their asso-
ciation equilibria at various temperatures and to experimentally confirm the existence
of all conformers present at room temperature. This comprehensive approach ensures a
deeper insight into the mechanisms and interactions that drive the formation and stability
of these products.

2. Results and Discussion
2.1. Quatum Chemical Calculations
2.1.1. Monomer

With the aim of determining which conformations of CF3CF2C(O)OH coexist in the
gas phase at room temperature, a potential energy surface was calculated as a function
of the dihedral angles φ(C−C−C=O) and φ(O−C−O−H), using the B3LYP/6-311+G(D)
approximation (Figure S1).

The gauche–syn, gauche–anti, and syn–syn conformations (Figure 1) correspond to
minima on the aforementioned potential energy surface, while the syn–anti structure
corresponds to a saddle point. This represents a notable difference between CF3CF2C(O)OH
and its hydrogenated analog, which admits four stable conformations. Despite the stability
of three CF3CF2C(O)OH conformations, only one (gauche–syn) has been properly detected
experimentally and studied.

The structures corresponding to the three mentioned conformers were optimized and
their harmonic vibrational frequencies were calculated using different approximations.
Table 1 presents the values of the dihedral angles φ(C−C−C=O) and φ(O−C−O−H) for
the different conformations, their relative energies, and their populations determined using
the Boltzmann equation at room temperature, taking into account the double degeneracies
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for the gauche species due to symmetric considerations, using the MP2/6-311+G(D) level
of approximation.
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Figure 1. Optimized structures (MP2/6-311+G(D)) of the gauche–syn, syn–syn, and gauche–anti
conformers of CF3CF2C(O)OH.

Table 1. Energy and Gibbs free energy differences among gauche–syn, gauche–anti, and syn–syn con-
formers of CF3CF2C(O)OH; dihedral angles φ(C−C−C=O)) and φ(O−C−O−H); and conformational
population χ calculated at 298 K using the MP2/6-311+G(D) approximation.

Conformer φ(C−C−C=O) φ(O−C−O−H) ∆E (kcal/mol) ∆G (kcal/mol) χ (%)

gauche–syn 101.2 −0.3 0.00 0.00 85.1
syn–syn −0.1 0.0 0.43 0.62 14.7

gauche–anti 82.3 176.6 3.37 3.64 0.2

The obtained and tabulated results indicate that the gauche–syn conformer has the
highest conformational population percentage at 298 K (85.1%), followed by the syn–syn
rotamer (14.7%) and finally the gauche–anti form (0.2%).

Table S1 (Supplementary Information) lists the theoretically calculated vibrational
wavenumbers for each of the three conformers, obtained at the MP2/6-311+G(d) level of
theory, which correspond to the experimental wavenumber range. A tentative spectral
assignment is also provided. These data will later facilitate the interpretation of the FTIR
spectra of matrix-isolated CF3CF2C(O)OH.

2.1.2. Dimer

The structure of the CF3CF2C(O)OH dimer (Figure 2) was calculated using the MP2/6-
311+G(D) approximation, taking into account that the structure determined by X-ray
diffraction reproduces these data (see X-ray diffraction section). The dimer consists of two
enantiomeric monomeric units (gauche–syn) that are properly oriented and linked to each
other through two hydrogen bonds. The calculated geometry belongs to the Ci point group.
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The IR spectrum of the dimeric form was computed at the MP2/6-311+G(d) level of
theory. The wavenumbers of the IR-active vibrational modes, along with their tentative
assignments, are compiled in Table S1. Similarly to the simulated spectra of the monomeric
conformers, the theoretical dimer spectrum serves as a key reference for interpreting and
assigning the experimental gas-phase and matrix-isolation IR spectra.
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2.2. Experimental Results
2.2.1. Gas-Phase FTIR Spectra

In 1972, Crowder reported for the first time the infrared spectrum of the gas and
liquid phases of CF3CF2C(O)OH [18]. The experimental gas-phase FTIR spectrum of
CF3CF2C(O)OH demonstrates clear evidence for the simultaneous presence of monomeric
and dimeric forms (Figures 3 and 4). Despite the good resolution of the acquired spectra
(0.5 cm−1), the different conformational contributions of the monomer remain unclear. The
gas-phase infrared spectrum assignment is detailed in Table S1.
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Figure 3. Gas-phase FTIR spectra of CF3CF2C(O)OH (optical path, 10 cm; resolution, 0.5 cm−1; and
pressures, 40 torr (top, green line) and 8 torr (middle, blue line)) and the Ar matrix FTIR spectrum
(bottom, red line) with a CF3CF2C(O)OH:Ar ratio at 1:500 and with a resolution of 0.5 cm−1, in
the 3740–400 cm−1 wavenumber region. Some of the bands of the monomer and dimer species are
indicated by M and D, respectively.

The gas-phase IR spectra (Figures 3 and 4) exhibit six different absorptions attributable
to the dimeric species. Notably, the ν(O−H) stretching vibration undergoes a significant
redshift from 3576 cm−1 (monomer) to ~3100 cm−1 (dimer), consistent with strong hydro-
gen bonding between subunits. Due to the dimer’s Ci symmetry, only the antisymmetric
(out-of-phase) O−H stretching fundamental mode is IR-active.

Similarly, the carbonyl stretching vibration shifts from 1821 cm−1 (monomer) to
1779 cm−1 (dimer), indicating substantial intermolecular interaction via the C=O groups.
This observation aligns with the formation of the characteristic cyclic structure of carboxylic
acid dimers, as predicted computationally (Figure 2). The experimental wavenumber
shifts for these modes show excellent agreement with theoretical calculations (Table S1),
validating the proposed dimeric structure.

The wavenumbers and tentative assignments of the four additional dimer absorptions
observed in the gas-phase IR spectra are detailed in Table S1. Notably, a distinct band at
900 cm−1—assigned to the out-of-phase HCO deformation mode of the dimer—appears in
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a spectral region devoid of monomer absorptions (Table S1). This feature provides strong
spectroscopic evidence for dimer formation.

Molecules 2025, 30, 1887 6 of 16 
 

 

 

Figure 4. Selected regions of the gas-phase FTIR spectrum of CF3CF2C(O)OH (optical path, 10 cm; 
resolution, 0.5 cm−1; pressure, 8 torr (top, blue line)) and the Ar matrix FTIR spectrum (bottom, red 
line) with a CF3CF2C(O)OH:Ar ratio at 1:500 and a resolution of 0.5 cm−1. Some of the bands of the 
monomer and dimer species are indicated by M and D, respectively. 

The wavenumbers and tentative assignments of the four additional dimer absorp-
tions observed in the gas-phase IR spectra are detailed in Table S1. Notably, a distinct 
band at 900 cm⁻1—assigned to the out-of-phase HCO deformation mode of the dimer—
appears in a spectral region devoid of monomer absorptions (Table S1). This feature pro-
vides strong spectroscopic evidence for dimer formation. 

Next, the coexistence of monomers and a dimer of CF3CF2C(O)OH will be confirmed 
through experiments conducted in the vapor phase. It is important to have this infor-
mation to ensure that, during the preparation of the CF3CF2C(O)OH matrix in Ar for dep-
osition and measurement at cryogenic temperature, the dimer concentration is mini-
mized. Figure 5 shows a selected section of the FTIR spectra in the vapor phase for 
CF3CF2C(O)OH samples measured at different temperatures. In this region, two distinct 
bands clearly appear: one at 714 cm⁻1, corresponding to the out-of-phase CF2 deformation 
mode of the dimer, and another at 676 cm⁻1, corresponding to the δ(CF2) mode of the mon-
omer. Figures 5 and 6 describe the results of experiments conducted with the vapor phase 
of the species, aiming to determine the optimal experimental conditions for ensuring that 
monomeric species predominate over the dimer in the matrix isolation experiments of 
perfluoropropionic acid. The remaining dimer bands discussed in this section exhibit con-
sistent spectral shifts relative to the monomer absorptions, further supporting their pro-
posed assignments. 

Figure 4. Selected regions of the gas-phase FTIR spectrum of CF3CF2C(O)OH (optical path, 10 cm;
resolution, 0.5 cm−1; pressure, 8 torr (top, blue line)) and the Ar matrix FTIR spectrum (bottom, red
line) with a CF3CF2C(O)OH:Ar ratio at 1:500 and a resolution of 0.5 cm−1. Some of the bands of the
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Next, the coexistence of monomers and a dimer of CF3CF2C(O)OH will be confirmed
through experiments conducted in the vapor phase. It is important to have this information
to ensure that, during the preparation of the CF3CF2C(O)OH matrix in Ar for deposition
and measurement at cryogenic temperature, the dimer concentration is minimized. Figure 5
shows a selected section of the FTIR spectra in the vapor phase for CF3CF2C(O)OH samples
measured at different temperatures. In this region, two distinct bands clearly appear: one
at 714 cm−1, corresponding to the out-of-phase CF2 deformation mode of the dimer, and
another at 676 cm−1, corresponding to the δ(CF2) mode of the monomer. Figures 5 and 6
describe the results of experiments conducted with the vapor phase of the species, aiming
to determine the optimal experimental conditions for ensuring that monomeric species
predominate over the dimer in the matrix isolation experiments of perfluoropropionic
acid. The remaining dimer bands discussed in this section exhibit consistent spectral shifts
relative to the monomer absorptions, further supporting their proposed assignments.

According to the experimental design used to record these spectra, the rise in tempera-
ture is directly associated with an increase in the vapor pressure of perfluoropropionic acid,
promoting monomer interactions and resulting in a higher proportion of dimeric species.

This experiment should not be confused with the one originally conducted by Crowder,
who recorded infrared spectra of CF3CF2C(O)OH at different temperatures while keeping
the pressure constant. As expected, the increase in temperature favors the growth of the
entropic term associated with the system’s evolution toward the formation of a greater
number of monomeric species [18]. These monomeric species, predicted by Crowder, have
now been determined with the help of computational calculations.



Molecules 2025, 30, 1887 7 of 15
Molecules 2025, 30, 1887 7 of 16 
 

 

 

Figure 5. Gas-phase FTIR spectra of CF3CF2C(O)OH (optical path: 10 cm; resolution: 0.5 cm⁻1) rec-
orded from the liquid phase at different temperatures. 

 

Figure 6. Relative percentage areas of the IR bands at 714 cm⁻1, arising from the bending vibration 
of the O−C=O group in the dimeric CF3CF2C(O)OH species, and at 676 cm⁻1, corresponding to the 
same mode in the monomeric acid in its gauche–syn conformation, as a function of the liquid tem-
perature in equilibrium with the vapor phase. 

According to the experimental design used to record these spectra, the rise in tem-
perature is directly associated with an increase in the vapor pressure of perfluoropropi-
onic acid, promoting monomer interactions and resulting in a higher proportion of di-
meric species. 

This experiment should not be confused with the one originally conducted by 
Crowder, who recorded infrared spectra of CF3CF2C(O)OH at different temperatures 
while keeping the pressure constant. As expected, the increase in temperature favors the 
growth of the entropic term associated with the system’s evolution toward the formation 
of a greater number of monomeric species [18]. These monomeric species, predicted by 
Crowder, have now been determined with the help of computational calculations. 

  

Figure 5. Gas-phase FTIR spectra of CF3CF2C(O)OH (optical path: 10 cm; resolution: 0.5 cm−1)
recorded from the liquid phase at different temperatures.

Molecules 2025, 30, 1887 7 of 16 
 

 

 

Figure 5. Gas-phase FTIR spectra of CF3CF2C(O)OH (optical path: 10 cm; resolution: 0.5 cm⁻1) rec-
orded from the liquid phase at different temperatures. 

 

Figure 6. Relative percentage areas of the IR bands at 714 cm⁻1, arising from the bending vibration 
of the O−C=O group in the dimeric CF3CF2C(O)OH species, and at 676 cm⁻1, corresponding to the 
same mode in the monomeric acid in its gauche–syn conformation, as a function of the liquid tem-
perature in equilibrium with the vapor phase. 

According to the experimental design used to record these spectra, the rise in tem-
perature is directly associated with an increase in the vapor pressure of perfluoropropi-
onic acid, promoting monomer interactions and resulting in a higher proportion of di-
meric species. 

This experiment should not be confused with the one originally conducted by 
Crowder, who recorded infrared spectra of CF3CF2C(O)OH at different temperatures 
while keeping the pressure constant. As expected, the increase in temperature favors the 
growth of the entropic term associated with the system’s evolution toward the formation 
of a greater number of monomeric species [18]. These monomeric species, predicted by 
Crowder, have now been determined with the help of computational calculations. 

  

Figure 6. Relative percentage areas of the IR bands at 714 cm−1, arising from the bending vibration
of the O−C=O group in the dimeric CF3CF2C(O)OH species, and at 676 cm−1, corresponding to
the same mode in the monomeric acid in its gauche–syn conformation, as a function of the liquid
temperature in equilibrium with the vapor phase.

2.2.2. FTIR Spectrum of CF3CF2C(O)OH Isolated in Solid Argon

The study of species isolated using cryogenic matrices enhances the resolution of
infrared spectra by eliminating the contributions of rotational broadening at low tem-
peratures, typically around 15 K. Thus, the close inspection of the infrared spectrum
of the CF3CF2C(O)OH:Ar (1:500) mixture, in combination with the aid of the computa-
tional predictions, reveals the contributions of the gauche–syn and syn–syn conformers of
CF3CF2C(O)OH, which coexist in the gas phase. No clear contribution of the less abundant
gauche–anti conformer to the IR spectrum is observed.

Four distinct absorptions assigned to the syn–syn conformer exhibit measurable
wavenumbers shifts relative to the dominant gauche–syn conformer, with sufficient intensity
for detection in the matrix–isolation IR spectrum (Table S1). These bands correspond to
ν(C=O) stretching, ν(C2-C3) stretching, ν(C-O) stretching, and νS(CF3) symmetric stretch-
ing fundamental modes. The observed shifts align quantitatively with theoretical predic-
tions reported in this study, confirming the spectral assignment of the syn–syn conformer.
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The presence of a second conformation represents a difference between propionic
acid, CH3CH2C(O)OH, and its perfluorinated counterpart: the matrix FTIR spectrum of
propionic acid at low temperatures only shows the existence of a single conformer [36].
Figure 4 compares the FTIR spectra of CF3CF2C(O)OH in the gas phase and in the matrix,
highlighting the respective conformational contributions in the latter.

2.2.3. Matrix FTIR Spectra of CF3CF2C(O)OH After Broadband UV–Vis Irradiation

The matrix of CF3CF2C(O)OH diluted in argon in a 1:500 ratio at cryogenic temper-
atures was exposed to UV–vis broadband irradiation in the range of 200 ≤ λ ≤ 800 nm.
Spectra were acquired before irradiation and at different irradiation times (0.5, 1.5, 3, 6,
12, 30, and 60 min). The irradiation resulted in a decrease in the population of the lowest
energy and most abundant conformer in the gas phase, the gauche–syn conformer, and
an increase in the syn–syn conformer and the dimeric species. A significant finding was
that after 30 min of irradiation, signals of the gauche–anti form appeared in the spectrum.
The ν(O-H) and ν(C=O) vibrational modes of the syn–syn conformer were observed at
higher wavenumbers (3574 and 1834 cm−1, respectively) compared to those of the more
abundant gauche–syn conformer. Two additional bands exhibiting similar spectral shifts
were detected at 682 and 616 cm−1, which were assigned to δ(CF2) and δ(CF3) deformation
modes, respectively. The gauche–syn conformer had previously been elusive due to its
relatively low concentration in the gas phase at room temperature. Thus, we obtained the
first experimental evidence for the existence of this conformer. Figure 7 depicts the FTIR
spectra of CF3CF2C(O)OH isolated in Ar, recorded immediately after deposition and after
60 min of broad band irradiation in the carbonyl stretching vibrational region, which is
highly sensitive to conformation. For clarity, the spectra were normalized to the carbonyl
absorption of the lowest-energy conformer, the gauche–syn rotamer.
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Figure 7. Ar matrix FTIR spectra of CF3CF2C(O)OH (resolution, 0.5 cm−1; CF3CF2C(O)OH:Ar ratio,
1:500) between 1840 and 1800 cm−1, taken immediately after deposition (bottom, red line) and after
60 min of broad band UV–vis irradiation (top, blue line).

Figure 8 shows the variation in absorbance, measured as the integrated area of the
IR bands, as a function of irradiation time. The features assigned to the syn–syn and
gauche–syn forms increase their intensities at the expense of the bands corresponding to
the gauche–syn rotamer. Additionally, the absorptions of the dimer also increase upon
photolysis, presumably due to some monomer diffusion during irradiation.
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Figure 8. Absorbances of the IR bands of the CF3CF2C(O)OH:Ar (1:500) matrix for the
gauche–syn (top left) and syn–syn (top right) conformers, as well as for the dimer (bottom), as a
function of irradiation time.

2.2.4. Solid State Structure

The solid-state structure of CF3CF2C(O)OH has been studied from an in situ grown
crystal. CF3CF2C(O)OH crystallizes in the space group P21/c, forming dimers in which
both monomers adopt a gauche–syn conformation, related to each other by a crystallographic
center of inversion (Figure 9). Table S2 presents crystallographic information obtained from
the structural analysis and refinement of CF3CF2C(O)OH.
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The geometric parameters of CF3CF2C(O)OH obtained by X-ray diffraction are listed
below in Table 2, where they are compared with the values obtained by quantum chemistry
calculations showing that the calculated values reproduce the experimentally obtained
fairly well, even though the computational values would be closer to those determined in
the gas phase due to their intrinsic nature.

According to NBO quantum chemical calculations at the B3LYP/6-311+G(D) level of
the theory, the aforementioned hydrogen bonds, which are responsible for dimer formation,
arise from electronic transfer from a lone pair of the carbonyl oxygen to the anti-bonding
molecular orbital σ*(O−H). This interaction leads to a second-order perturbation stabiliza-
tion energy E(2) of 9.20 kcal mol−1.
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Table 2. Experimental structure parameters obtained by X-ray diffraction and computed parameters
(distances in Å; angles in degrees) corresponding to the gauche–syn conformer of CF3CF2C(O)OH.

Parameter X-Ray Diffraction MP2/6-311+G(D)

r(F6−C3) 1.338(2) 1.344
r(F7−C3) 1.336(2) 1.351
r(F9−C4) 1.319(2) 1.336
r(F8−C4) 1.317(2) 1.330

r(F10−C4) 1.304(2) 1.332
r(O5=C2) 1.215(2) 1.203

r(O1−H11) 0.97(3) 0.971
r(O1−C2) 1.286(2) 1.337
r(C2−C3) 1.545(2) 1.542
r(C4−C3) 1.542(2) 1.542

α(H11−O1−C2) 112.6(17) 108.3
α(O5−C2−O1) 127.9(2) 126.9
α(O5−C2−C3) 120.0(2) 123.0
α(O1−C2−C3) 112.0(2) 110.0
α(F9−C4−F8) 108.9(2) 109.0

α(F9−C4−F10) 108.8(2) 108.8
α(F9−C4−C3) 109.4(2) 109.4
α(F8−C4−F10) 109.1(2) 108.9
α(F8−C4−C3) 110.1(2) 110.1

α(F10−C4−C3) 110.6(2) 110.5
α(F6−C3−C7) 108.7(2) 108.9
α(F6−C3−C2) 109.0(2) 108.8
α(F6−C3−C4) 108.1(2) 107.7
α(F7−C3−C2) 110.5(2) 110.6
α(F7−C3−C4) 107.9(2) 108.0
α(C2−C3−C4) 112.6(2) 112.8

τ(H11−O1−C2−O5) −0.5(18) −0.3
τ(H11−O1−C2−C3) −178.2(17) 178.8
τ(O5−C2−C3−F6) 21.2(2) −18.2
τ(O5−C2−C3−F7) 140.6(2) −137.8
τ(O5−C2−C3−C4) −98.7(2) 101.2
τ(O1−C2−C3−F6) −160.9(2) 162.6
τ(O1−C2−C3−F7) −41.5(2) 43.1
τ(O1−C2−C3−C4) 79.2(2) −78.0
τ(F9−C4−C3−F6) −65.5(2) 65.1
τ(F9−C4−C3−F7) 177.2(2) −177.4
τ(F9−C4−C3−C2) 54.9(2) −54.9
τ(F8−C4−C3−F6) 54.1(2) −54.7
τ(F8−C4−C3−F7) −63.3(2) 62.8
τ(F8−C4−C3−C2) 174.5(2) −174.7
τ(F10−C4−C3−F6) 174.7(2) −175.0
τ(F10−C4−C3−F7) 57.3(2) −57.6
τ(F10−C4−C3−C2) −64.9(2) 65.0

The hydrogen bond H11···O5′ (symmetry code −x, 1 − y, −z) has a length of 1.70(3) Å,
and the distance O1···O5′ is 2.665(2) Å. Additionally, the only appreciable distance below
the van der Waals distance (rvdW) [37] is the contact F6···C2′ (symmetry code: +x, 3/2 − y,
1/2 + z) with 3.113(2) Å. However, the stabilization energy calculated for these interactions
is not appreciable. All intermolecular F···O and F···F distances are longer than their van
der Waals distances. A section of the crystal lattice, viewing roughly along the b axis, is
shown in Figure 10.
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3. Materials and Methods
3.1. CF3CF2C(O)OH

The CF3CF2C(O)OH 97% was purchased from Sigma Aldrich (Saint Louis, MO, USA)
and subsequently purified by distillation through a series of U-shaped cold traps immersed
in cold baths at −50, −80, and −110 ◦C, respectively. The acid was collected in the trap
cooled to −50 ◦C.

3.2. Quantum Chemical Calculations

The Gaussian 03 program [38] was used to perform quantum chemical calculations,
including the calculation of the potential energy function for a specific dihedral angle,
followed by the geometry optimization of the corresponding minima and the calculation
of their harmonic wavenumbers. For these purposes, the DFT [39] and MP2 [40] methods
were chosen in conjunction with the 6-311+G(D) basis set. NBO [41] calculations were
performed with the NBO 5.G package [42] incorporated in Gaussian 03. Additionally, the
dimeric structure was computed using Gaussian 03. In this case, a potential energy curve
was generated, followed by the optimization of the obtained minimum, employing the
B3LYP/6-311+G(D) level of approximation.

3.3. Infrared Spectroscopy

Infrared spectra were recorded using a Nicolet™ 6700 spectrometer (Thermo Electron
Corporation, Madison, WI, USA) with a double-wall cell featuring a 10 cm optical path
length and 0.5 mm thick Si windows. The spectral resolution was 0.5 cm−1, and each spec-
trum was obtained by averaging 64 scans. To optimize the equilibrium between monomers
and dimers of perfluoropropionic acid in the matrix study at cryogenic temperatures, spec-
tra were recorded at various temperatures (5.0, 9.9, 15.6, 20.4, and 38.0 ◦C) to determine the
best experimental conditions.

3.4. Matrix Isolation Experiments

The gas mixture was deposited on a 15 K CsI window using the pulse deposition
technique [43–45]. Low temperatures were achieved using a Displex closed-cycle refrig-
erator SHI-APD Cryogenics, model DE-202(AS Scientific Products, Abingdon, UK). The
corresponding FTIR spectra were acquired with the previously described instrument. A
Spectra-Physics Hg-Xe arc lamp operating at 1000 W was used to irradiate the matrix within
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the 200–800 nm broad band range. To prevent matrix heating, a water filter was placed be-
tween the lamp and the matrix. Several spectra were recorded at different irradiation times.

3.5. X-Ray Diffraction Analysis

A single crystal of CF3CF2C(O)OH was grown in situ within a capillary. The sample
was filled into a capillary, cooled with liquid nitrogen forming a polycrystalline material.
At 180 K, a solid/liquid equilibrium near the melting point was established by melting the
solid, leaving only a tiny crystal seed intact, using a thin copper wire as an external heat
source. The temperature was then gradually lowered at 1 K/h to 176 K, at which point the
entire capillary was filled with the crystalline specimen, followed by cooling to 146 K at a
rate of 44 K per hour.

The crystal was maintained at 146.0(1) K during data collection, which was performed
using an Agilent SuperNova diffractometer (Agilent, Santa Clara, CA, USA) at Bielefeld Uni-
versity. Using Olex2 [46], the structure was solved by direct methods with SHELX-97 [47],
and the refinement was carried out using Olex2.refine [48] and spherical scattering factors
were calculated with NoSpherA2 [49].

4. Conclusions
The evaluation of the results obtained through various spectroscopic techni-

ques—vibrational IR, matrix IR spectra with UV–vis broad band irradiation, and X-ray
diffraction analysis—provide complementary data that allow for the study of conformations
and equilibria in different families. It is worth noting that conformational properties are
crucial for understanding the chemical behavior of macromolecules and are responsible for
the fundamental chemical behavior of biological molecules [50,51].

In the present case, and in relation to the above-mentioned data, the structure of
CF3CF2C(O)OH, its dimer, and the existence of three conformations in equilibrium in the
vapor phase have been conclusively determined. The combined analysis of matrix–isolation
IR spectra and computationally predicted vibrational wavenumbers provides a powerful
approach for identifying rotamers and investigating conformational equilibria. This is
particularly evident when monitoring IR spectral changes induced by irradiation, which
serve as distinctive markers for different conformers.

It is worth noting that the accurate assessment of the number of real conformers is a key
tool for precisely approximating the electronic spectra of molecules. A purely computational
approach requires evaluating thousands of geometries. In a recently published study, this
computational effort is drastically reduced by using effective conformers for the calculation
of UV–vis spectra [52].
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