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Abstract.  There are many different forms of recombination operators available in 
literature. However, it is difficult to determine a priori which one is the best suited for 
a given problem. This issue encourages us to propose an adaptive evolutionary 
algorithm to solve the NK landscape problem, which dynamically selects the 
recombination operator from an operator pool during the evolution; this removes the 
need of specifying a single recombinator operator ad-hoc. We compare the 
performance of our adaptive proposal against traditional evolutionary algorithms in a 
numerical way. Our experiments show that the simple adaptive mechanism has a good 
performance among all the evaluated ones on high dimensional landscapes with an 
additional reduction in pretuning time. 

I. Introduction 

One of the major issues in the design and implementation of robust genetic 
algorithms (GA) to solve a problem is the selection of the appropriate recombination 
operator, in order to obtain good quality of solutions. To further complicate the issue, 
many different forms of recombination exist. Traditionally, GAs have relied upon 
one- and two-point crossover operators [11]. But there are many situations in which 
having a higher number of crossover points is beneficial. Perhaps the most surprising 
result is the effectiveness of uniform crossover, an operator that produces on the 
average L/2 crossings on strings of length L [24,7]. 

Currently there are not techniques for selecting which operators to use before the 
GA is initiated. There are at least two possible approaches to this problem. The first is 
to make an extensive experimentation to determine, in an empirical way, which 
operator actually gives the best results for the problem at hand; this task implies an 
extra set up time, which is computationally expensive. The second approach is to have 
an adaptive mechanism in which the EA selects the operators it will be use.  This 
paper concentrates on self-adaptive approaches, in which the EA itself selects the 
recombination operators. Self-adaptation is not without precedent, many approaches 
have been proposed for adjusting GA parameters such as mutation probability [5], 
crossover probability [3,10], crossover operator [21,26], and population size [8] in the 
course of a genetic algorithm run. 

The purposes of this paper are to propose an adaptive mechanism for controlling 
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the use of crossover in an EA, while the EA is simultaneously solving a problem, and 
to investigate how this approach can influence the performance of the EAs. The new 
adaptive mechanism chooses automatically between two different forms of 
recombination (two-point and uniform crossover) by using a simple and inexpensive 
criterion based on traditional statistics of the search process. Mutation is assumed to 
be used at some set rate and is not adapted by the EA. This approach not only allows 
for the simultaneous exploration of both the problem space and some space of 
different EAs, but also it tends to alleviate the time required to tune the algorithm 
parameters. 

In order to evaluate the performance of our proposed algorithm, we will use the 
NK model [14], which is a useful general model both for investigating the structural 
properties of landscapes and for evaluating the performance of evolutionary 
algorithms. The NK model is based upon the idea of genetic linkage. Each gene in a 
genotype makes a contribution towards the fitness contribution of  the genotype as a 
whole, however, the fitness contribution of each gene may be dependent not only on 
its own allele, but also on the alleles of any number of other genes. As the number of 
these epistatic connections between genes increases the resulting fitness landscape is 
changed from being relatively smooth and predictable to increasingly rugged and 
random. The NK model has been used in Biology and Physics [15,16,22,25], in 
business environments to model the evolution of organizations [13,17], among others. 
In the evolutionary computation fields, the NK model has been used as a benchmark 
for evaluating various encoding schemes and genetic operators on evolutionary 
algorithms [1,6,12,19]. Thus, it is clear from all this that NK is a problem worth of 
study.  

The outline of the paper is as follows. Section II focuses in the motivations that 
lead us to propose this adaptive approach. Section III presents the outline of the 
current implementation of our adaptive algorithm. In Section IV presents a 
description of problem used in this work to evaluate the performance of our adaptive 
algorithm. In Section V, we present the parameterization used here. In the next 
section, we analyze the results from a numerical point of view. Finally, we summarize 
the conclusions and discuss several lines for future research in Section VII. 

II. Motivation 

The present availability of genetic operators for binary representations allows the 
possibility of using different degrees of exploration and exploitation in the same 
algorithm.  

Analyzing the pool of recombination operators available from the literature for 
binary representations, there is no clear winner [9]. Each of these recombination 
operators is particularly useful for some classes of problems and poor for other 
problems. This strengthens our idea of using self-adaptive algorithms, where the 
algorithm determines the more adequate operator to apply depending of the state of 
the evolutionary process. 

The one-point crossover and the uniform crossover are the selected recombination 
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operators to be used in this work, because they are the basic recombination operators 
applied currently more often in present works. One-point crossover (1X) selects one 
crossing point and left segments are exchange, while other segment remains 
unchanged. Uniform crossover (UX) exchanges genes rather than segments; it can 
combine features regardless their relative location.  

One-point crossover is the least disruptive of material, while uniform crossover is 
the most disruptive. Also, Booker [4] has noted that, in terms of positional and 
distributional bias, both one-point and uniform crossover are considerably different. 
Thus, it is natural to allow the GA to explore a relative mixture of these two 
operators, the motivation being that different mixtures will represent different 
intermediate search characteristics between the two extremes. 

In literature, many researchers have proposed various adaptation techniques to 
crossover designed to enhance GA's capabilities [8]. Schaffer et al. [18] used a self-
adaptive approach where the points at which crossover is allowed to cut and splice 
material, is adapted. The mechanism appends an additional L bits to each individuals, 
which is used to determine crossover points at each locus. Spears [21] considered the 
use of an extra bit to the end of every individual to self-adapt crossover, but instead of 
searching the large space of n-point crossover distributions, it considers only two 
forms of crossover, two-point and uniform.  Yang [26] proposed a statistics-based 
adaptive non-uniform crossover (SANUX), which uses the statistics information of 
the alleles in each locus to adaptively calculate the swapping probability of that locus 
for crossover operation. 

Other works involve the adaptation of the crossover probability instead of 
adjusting the selection of the operator to be used. In Srinivas et al. [23], the proposed 
adaptive GA varies the crossover probability depending on the fitness values of the 
solutions. Each chromosome has its own probability of crossover and mutation. 

III. Our Proposed Adaptive Genetic Algorithm 

In this section we present the characteristics of the adaptive genetic algorithm 
devised, which dynamically adjust the recombination operator during the evolutionary 
process (see the structure of the proposed algorithm in Algorithm 1). The algorithm 
creates an initial population P of solutions in a random way, and then evaluates 
these solutions. After that, the population goes into a cycle where it undertakes 
evolution, which means the application of genetic operators, to create  offspring. 
Finally, each iteration ends by selecting individuals to build up the new population 
from the set of ( + ) existing ones. The best solution is identified as the best 
individual ever found which maximizes the fitness function. 

The new adaptive proposal consists in the dynamic selection of the recombination 
operator that will be applied, taking as criterion the convergence speed. A major 
advantage of this adaptive criteria lies in that it is not necessary to set it to any ad-hoc 
value, because a dynamical setting of which is the most appropriate one is done 
during the search. Also, we focus in reducing the overhead to a minimum, so as to 
finally allow savings in the numerical effort which can be used later to solve the 
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Algorithm 1 Basic GA
t = 0; {current evaluation} 
initialize(P(t));
evaluate(P(t)); 
  while{(t < maxgenerations) do 
    P'(t) = recombinate(P(t));  
    P'(t) = mutate(P'(t));  
    evaluate (P'(t));
    P(t+1) = select new population from P'(t) P´(t); 
    t = t + 1;  
  end while 

actual optimization problem.  
The execution is initialized by randomly choosing a recombination operator. The 

criterion to change the recombination operator, used each generation is a function of 
the average fitness of the population, which is a possible measure of the convergence 
speed.  Following the ideas presented in [2], we define f as the difference between 
the average fitness values in generation t and t - 1:  1tt fff . We calculate the 
average of this difference during k consecutive generations (k=10); the average is 
denoted as 10

1t ff . If the difference f  decreases at least by a factor of : f k

- f k-1 f k-1 (threshold value  [0,1]), it means that the algorithm evolves 
slowly and the local exploitation will be increased, hence the algorithm have to apply 
a less disruptive recombination operator as the one-point crossover (1X). On the 
contrary, if that difference increases by a factor greater than (1- ) : f k - f k-1 > (1 - 

) f k-1, then the search is proceeding too fast and there exists the possibility of a 
quickly lost of diversity, hence the operator to be applied will be the uniform 
crossover (UX) in order to promote exploration in next generations. Algorithm 2 
describes the basic adaptive pattern. This criterion is inexpensive to measure, since it 
checks simple conditions based on information already available in any standard GA, 
like the mean fitness.  

Algorithm 2 Pattern for our dynamic adaptive criteria 
if f k < (1+ ) f k-1 then 

P'(t) = 1X(P(t)); 
else  

P'(t) = UX(P(t)); 
end if 

IV. NK-Landscapes 

An NK-landscape is a fitness function  f : { 0,1 }N R on binary strings, where N
is the bit string length and K is the number of bits in the string that epistatically 
interact with each bit, i.e., K stands for the number of other genes that epistatically 
affect the contribution of each gene to the overall fitness value of the string. Each 
gene xi, where 1 =  xi =  N, contributes to the total fitness of the genotype depending 
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on the value of its allele and on those of each of the K other genes to which it is 
linked. Thus K must fall between 0 and N-1. For K = 0, there are no interaction among 
genes and a single-peak landscape is obtained; in the other extreme (for K= N-1), all 
genes interact each other in constructing the fitness landscape, so a completely 
random landscape is obtained (a maximally rugged landscape). Varying K from 0 to 
N-1 gives a family of increasingly rugged multi-peaked landscapes. 

The fitness value for the entire genotype is given as the average of the fitness 
contribution of each locus fi by: 

N

i iiii K
xxxf

N
xf

1
),,(1)(

1
 (1) 

where 
Kii xx ,

1
Nxxx ii ,,,, 111  are the K genes interacting with gene xi in 

the genotype x. The other K epistatic genes could be chosen in any number of ways 
from the N genes in the genotype. Kauffman [15] investigated two possibilities: 
adjacent neighborhoods, where K genes nearest to gene xi on the chromosome are 
chosen, particularly a gene interacts with K/2 left and K/2 right adjacent genes; and 
random neighborhoods, where these K other genes are chosen randomly on the 
chromosome. In this work we adopted the first type of neighbourhood and considered 
circular genotypes to avoid boundary effects. The fitness contribution fi of xi is taken 
at random from a uniform distribution [0.0, 1.0] and depends upon its value and those 
present in K other genes among the N. Each gene has associated a fitness table,
mapping each of the 2K+1 possible combinations of alleles to a random, real value 
number in the range [0,1]. Figure 1 gives an example of the fitness function f4

21 444 ,, xxx  associated to gene x4 for N=8 and K=2. Gene x4 is linked to two other 

genes, in this case, the gene to both sides, 
14x and 

24x .

Figure 1. An example of a genotype and a fitness table associated to gene x4 for a 
problem with N=8 and K=2. 
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V. Experimental Setup 

In order to observe and compare the effect on performance of the self-adaptive 
proposal (GA_Adap), we use the following traditional GAs: (i) a GA running with 
UX as recombination operator in traditional fashion, denoted as (GA_UX); (ii) a GA 
with one-point crossover, denoted as GA_1X. 

In order to perform subsequent comparisons, the whole population of all evaluated 
models is composed of 32 individuals. By default, the initial population is randomly 
generated. At each iteration, the number of created offspring  is 64. The maximum 
number of evaluations is fixed to 10000. Each parent is selected by binary tournament 
selection. The recombination operator is applied with a probability of 0.60. Bit-flip 
mutation is used. Fitness proportional selection is used to build up the next population 
from the set of ( + ) individuals. These parameters (population size, stop criterion, 
probabilities, etc.) are chosen after an examination of some values previously used 
with success [1], [16].  

We conduct our study on NK instances with N=96 bits varying the epistatic 
relations from K=0 to K=48 in increments of 4. We use landscapes with adjacent 
epistatic patterns among genes. For each combination of N and K we generated 30 
random problem instances. Each algorithm was tested with each of these instances. 
The algorithms are implemented inside MALLBA [2], a C++ software library 
fostering rapid prototyping of hybrid and parallel algorithms. Our computing system 
is a cluster of 8 machines with AMD Phenom8450 Triple-core Processor at 2GHz 
with 2 GB of RAM, linked by Gigabit, under Linux with 2.6.27-4GB kernel version. 

VI. Experimental Analysis 

Let us now proceed with the presentation of the results. The quality of a solution is 
measured by the percentage gap, i.e., the relative distance to the best solution obtained 
by GA_Adap (best_solGA_Adap) and the best solution of each of the other algorithms, as 
described in Equation 2.  

100
_

_

_

_

AdapGA

iAdapGA
best solbest

GAsolbest
gap    (2) 

Table 1 presents the performance of each GA version introduced in previous 
Section on each problem. Figures in the first two columns stand for the percentage 
gap regarding best solutions (column gapbest) and in the last two columns stand for the 
gap taking into account mean best solutions (column gapmean). Positive values indicate 
superiority of the results obtained by the proposed self-adaptive GA, while negative 
values indicate the opposite situation.  

From Table 1, it can be seen that the GA_UX’s gapbest is positive for all the 
instances, from low to high levels of epistasis, which indicates that the solution 
qualities of GA_Adap are higher when compared with GA_UX. From the analysis of 
the gapbest’s values for GA_1X, there is not a clear winner; however in 7 of the 12
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Table 1: gap values for traditional GAs 
gapbest gapmeanK

GA_1X GA_UX GA_1X GA_UX 

0 -0.87 -0.17 0.35 0.53 
4 -0.13 1.97 1.79 5.29 
8 -6.28 1.59 1.55 4.03 
12 0.66 0.66 2.17 3.39 
16 0.67 0.65 3.61 6.35 
20 0.65 0.64 2.73 4.38 
24 0.65 0.67 3.35 4.32 
28 0.65 0.64 2.33 3.37 
32 -0.64 3.38 1.38 3.32 
36 2.18 3.80 2.39 3.12 
40 -0.76 6.49 0.85 1.51 
44 -1.19 4.08 0.46 1.20 
48 0.98 0.63 2.30 1.76 

instances the values are positive, for problems with low and high level of epitasis. In 
the case of the gapmean values, it is important to note that all gap values for GA_SX 
and GA_UX are positive, which means that in average the GA_Adap obtains a pool 
of best solutions with higher quality than traditional GAs. The previous observations 
stand for the superiority of our proposed adaptive algorithm, which using different 
recombination operators along the search contributes positively to the search process 
in the landscape. Another issue to emphasize is that the adaptive approach implicitly 
helps in minimizing the work involved in the selection of the appropriate 
recombination operator to solve the problem. 

Figure 2 shows the mean number of generations to reach the best value for the 
GA_Adapt and traditional GAs. We can see that GA_Adapt presents a considerable 
higher numerical effort than traditional GAs, in order to find their best values. This 
observation is corroborated by statistical tests (ANOVA), indicating the significant 
differences among the algorithms in all instances (the respective p-values for 
ANOVA  test are higher than = 0.1, the significance value). 

One of the problems that remained to address is to determine whether any 
performance improvements were due to the adaptive mechanism, or due to the fact 
that their adaptive GA simply used more crossover operators. Consequently, in the 
following we concentrate in the adaptive mechanism itself to know if the adaptive 
behaviour was responsible for the performance improvement. A further analysis was 
done in order to address this issue.  Instead of using a traditional GA, a reasonable 
study was to also run the GA with both one-point and uniform crossover. In this case, 
the algorithm, denoted as GA_Rand, randomly choices the recombination operator to 
apply each generation, using a 50/50 coin flips. By comparing the performance of this 
GA to the self-adaptive GA, the effect that the adaptive mechanism had on 
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Figure 2: Mean number of generations to reach the best value for each K value. 

Table 2: gap values for GA_Rand 
K 0 4 8 12 16 20 24 28 32 36 40 44 48 

gapbest -2.1 1.00 2.35 0.66 0.66 0.65 0.68 0.65 2.18 0.64 2.48 -1.1 0.77 
gapmean 0.30 1.79 3.39 2.17 5.16 2.62 4.01 2.37 2.58 2.19 0.78 0.46 0.78 

performance can be determined. Table 2 shows the gap values of this comparison. It 
can be seen that the values are positive, except for instance with K=44.  

VII. Conclusions and Future Work 

In this paper, we have presented an adaptive evolutionary algorithm to solve the 
NK landscapes, which selects the recombination operator to use during the solution of 
a problem. The operators considered in this work are the one-point and uniform 
crossover, which presents different levels of disruption of genetic material. The 
criterion to select which operator to apply is based on the use of a simple measure, 
such as the mean population fitness which gives some insides of the evolution 
process.  

The results in this paper indicate, in general, that the adaptive algorithm appears to 
generate good performance results compared with traditional GAs. Analizing the 
GA_Adap performance against an algorithm randomly selecting between two 
crossover operators, we can see that our proposal was able to find better quality of 
solutions for the set of instances, no needing the traditional and costly ad-hoc pre-
tuning of recombination operator. 

As a future work, we propose to study more sophisticated criteria for the 
adaptation, also possibly including in this process the probability of recombination. 
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Furthermore, another extension to this work can be the analysis of the effectiveness of 
this adaptive approach over other complex problems. 

Acknowledgments 

We acknowledge the Universidad Nacional de La Pampa and the ANPCYT 
(Argentina) from which the authors receive continuous support. 

References 

[1]  H. Aguirre and K. Tanaka. Genetic algorithms on NK-landscapes: Effects of selection, 
drift, mutation, and recombination. EvoWorkshops 2003, LNCS 2611, pp. 131-142, 
2003. 

[2]  E. Alba et al. MALLBA: A Library of Skeletons for Combinatorial Optimisation, volume 
2400 of LNCS, pages 927–932, 2002. 

[3]  Z. Bingul. Adaptive genetic algorithms applied to dynamic multiobjective problems.
Applied Soft Computing, vol. 7, pp. 791–9, 2007. 

[4] L. B. Booker, Recombination Distributions for Genetic Algorithms. Proc. of the Second 
Foundations of Genetic Algorithms Workshop, pp. 29-44, 1992. 

[5]  D. CH, Z. YF, C. WR. Adaptive probabilities of crossover and mutation in genetic 
algorithms based on cloud model. Proc. of 2006 IEEE Information Theory Workshop, pp. 
710–713, 2006. 

 [6]  K. De Jong, M.Potter, and W.M. Spears. Using problem generators to explore the effects 
of epistasis.  Proc. of the Seventh International Conference on Genetic Algorithms 
(ICGA97), 1997. 

[7]  S.K. De Jong and W.M. Spears, On the virtues of parametrized uniform crossover. Proc. 
of Fourth International Conference on Genetic Algorithms, pp. 230–236, 1991. 

[8]  A.E. Eiben, R. Hinterding and Z. Michalewicz. Parameter control in evolutionary 
algorithms. IEEE Transactions on Evolutionary Computation, vol. 3, pp. 124–141, 1999.  

[9]  L. Eshelman, R. Caruana, and J. Schaffer. Biases in the crossover landscape. Proc. of the 
Third International Conference on Genetic Algorithms, pp. 10–19, 1989. 

[10] S.C. Ghosh, B.P. Sinha and N. Das. Channel assignment using genetic algorithm based on 
geometric symmetry. IEEE Transactions on Vehicular Technology, vol 52, pp. 860–75, 
2003. 

[11] J. Grefenstette. A User’s guide to GENESIS. Navy Center for Applied Research in 
Artificial Intelligence, 1987. 

[12]  R.B. Heckendorn, S.Rana, and D.L. Whitley. Test function generators as embedded 
landscapes. Foundations of Genetic Algorithms 5, pp. 183-198, 1999. 

[13]  K. Frenken. A fitness landscape approach to technological complexity, modularity, and 
vertical disintegration. Structural Change and Economic Dynamics, vol. 17, pp. 288-305, 
2006. 

[14]  S. Kauffman. The Origins of Order: Self-Organization and Selection in Evolution. 
Oxford University Press, 1993. 

[15]  S. A. Kauffman and S. Levin. Towards a general theory of adaptive walks on rugged 
landscapes.  Journal of Theoretical Biology, vol. 128, pp. 11-45, 1987.  

[16]  C. Macken and A. Perelson. Protein evolution on rugged landscapes. National Academic 

CACIC 2011 - XVII CONGRESO  ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 9



Science USA, vol. 86, pp. 6191-6195, 1989. 
[17]  D. Levinthal. Adaptation on rugged landscapes. Management Science, vol. 43, pp. 934-

950, 1997. 
[18] J.D. Schaffer, and A. Morishima. An Adaptive Crossover Distribution Mechanism for 

Genetic Algorithms. Proc. of the Second International Conference on Genetic Algorithms, 
pp. 36-40, 1987. 

[19]  R.E. Smith and J.E. Smith. New methods for tunable, random landscapes. Foundations of 
Genetic Algorithms 6. Morgan Kaufmann, 2001. 

[20]  W.M. Spears, and K.A. De Jong, On the Virtues of Parameterized Uniform Crossover.
Proc. of the Fourth International Conference on Genetic Algorithms, pp. 230-236, 1991. 

[21]  W.M. Spears. Adapting Crossover in Evolutionary Algorithms. Proc of the Fourth Annual 
Conference on Evolutionary Programming, pp. 367-384, 1995. 

[22]  A. Stoltzfus. Mutation-biased adaptation in a protein nk model. Molecular Biology and 
Evolution, vol. 23(10), pp. 1852-1862, 2006. 

[23]  M. Srinivas, L.M. Patnaik. Adaptive probabilities of crossover and mutation in genetic 
algorithms. IEEE  Trans. On Systems, Man and Cybernetics vol. 24, pp. 656-667, 1994. 

[24] W. Syswerda, Uniform Crossover in Genetic Algorithms. Proc. of the Third International 
Conference on Genetic Algorithms, pp. 2-8, 1989. 

[25] J.Welch and D. Waxman.  The NK model and population genetics. Journal of Theoretical 
Biology, vol. 234(3), pp. 329-340, 2005. 

[26]  S. Yang, Adaptive Crossover in Genetic Algorithms Using Statistics Mechanism,
Artificial Life VIII, pp. 182-185, 2002. 

CACIC 2011 - XVII CONGRESO  ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 10




