
A Self-Adaptive Recombination Method in
Evolutionary Algorithms for Solving Epistatic Problems

Natalia Stark, Carolina Salto

Facultad de Ingeniería, Universidad Nacional de La Pampa
Calle 110 esq. 9, General Pico (6360)

La Pampa, Argentina.
e-mail: {nstark,saltoc}@ing.unlpam.edu.ar

Abstract. There are many different forms of recombination operators available in
literature. However, it is difficult to determine a priori which one is the best suited for
a given problem. This issue encourages us to propose an adaptive evolutionary
algorithm to solve the NK landscape problem, which dynamically selects the
recombination operator from an operator pool during the evolution; this removes the
need of specifying a single recombinator operator ad-hoc. We compare the
performance of our adaptive proposal against traditional evolutionary algorithms in a
numerical way. Our experiments show that the simple adaptive mechanism has a good
performance among all the evaluated ones on high dimensional landscapes with an
additional reduction in pretuning time.

I. Introduction

One of the major issues in the design and implementation of robust genetic
algorithms (GA) to solve a problem is the selection of the appropriate recombination
operator, in order to obtain good quality of solutions. To further complicate the issue,
many different forms of recombination exist. Traditionally, GAs have relied upon
one- and two-point crossover operators [11]. But there are many situations in which
having a higher number of crossover points is beneficial. Perhaps the most surprising
result is the effectiveness of uniform crossover, an operator that produces on the
average L/2 crossings on strings of length L [24,7].

Currently there are not techniques for selecting which operators to use before the
GA is initiated. There are at least two possible approaches to this problem. The first is
to make an extensive experimentation to determine, in an empirical way, which
operator actually gives the best results for the problem at hand; this task implies an
extra set up time, which is computationally expensive. The second approach is to have
an adaptive mechanism in which the EA selects the operators it will be use. This
paper concentrates on self-adaptive approaches, in which the EA itself selects the
recombination operators. Self-adaptation is not without precedent, many approaches
have been proposed for adjusting GA parameters such as mutation probability [5],
crossover probability [3,10], crossover operator [21,26], and population size [8] in the
course of a genetic algorithm run.

The purposes of this paper are to propose an adaptive mechanism for controlling

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 1

the use of crossover in an EA, while the EA is simultaneously solving a problem, and
to investigate how this approach can influence the performance of the EAs. The new
adaptive mechanism chooses automatically between two different forms of
recombination (two-point and uniform crossover) by using a simple and inexpensive
criterion based on traditional statistics of the search process. Mutation is assumed to
be used at some set rate and is not adapted by the EA. This approach not only allows
for the simultaneous exploration of both the problem space and some space of
different EAs, but also it tends to alleviate the time required to tune the algorithm
parameters.

In order to evaluate the performance of our proposed algorithm, we will use the
NK model [14], which is a useful general model both for investigating the structural
properties of landscapes and for evaluating the performance of evolutionary
algorithms. The NK model is based upon the idea of genetic linkage. Each gene in a
genotype makes a contribution towards the fitness contribution of the genotype as a
whole, however, the fitness contribution of each gene may be dependent not only on
its own allele, but also on the alleles of any number of other genes. As the number of
these epistatic connections between genes increases the resulting fitness landscape is
changed from being relatively smooth and predictable to increasingly rugged and
random. The NK model has been used in Biology and Physics [15,16,22,25], in
business environments to model the evolution of organizations [13,17], among others.
In the evolutionary computation fields, the NK model has been used as a benchmark
for evaluating various encoding schemes and genetic operators on evolutionary
algorithms [1,6,12,19]. Thus, it is clear from all this that NK is a problem worth of
study.

The outline of the paper is as follows. Section II focuses in the motivations that
lead us to propose this adaptive approach. Section III presents the outline of the
current implementation of our adaptive algorithm. In Section IV presents a
description of problem used in this work to evaluate the performance of our adaptive
algorithm. In Section V, we present the parameterization used here. In the next
section, we analyze the results from a numerical point of view. Finally, we summarize
the conclusions and discuss several lines for future research in Section VII.

II. Motivation

The present availability of genetic operators for binary representations allows the
possibility of using different degrees of exploration and exploitation in the same
algorithm.

Analyzing the pool of recombination operators available from the literature for
binary representations, there is no clear winner [9]. Each of these recombination
operators is particularly useful for some classes of problems and poor for other
problems. This strengthens our idea of using self-adaptive algorithms, where the
algorithm determines the more adequate operator to apply depending of the state of
the evolutionary process.

The one-point crossover and the uniform crossover are the selected recombination

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 2

operators to be used in this work, because they are the basic recombination operators
applied currently more often in present works. One-point crossover (1X) selects one
crossing point and left segments are exchange, while other segment remains
unchanged. Uniform crossover (UX) exchanges genes rather than segments; it can
combine features regardless their relative location.

One-point crossover is the least disruptive of material, while uniform crossover is
the most disruptive. Also, Booker [4] has noted that, in terms of positional and
distributional bias, both one-point and uniform crossover are considerably different.
Thus, it is natural to allow the GA to explore a relative mixture of these two
operators, the motivation being that different mixtures will represent different
intermediate search characteristics between the two extremes.

In literature, many researchers have proposed various adaptation techniques to
crossover designed to enhance GA's capabilities [8]. Schaffer et al. [18] used a self-
adaptive approach where the points at which crossover is allowed to cut and splice
material, is adapted. The mechanism appends an additional L bits to each individuals,
which is used to determine crossover points at each locus. Spears [21] considered the
use of an extra bit to the end of every individual to self-adapt crossover, but instead of
searching the large space of n-point crossover distributions, it considers only two
forms of crossover, two-point and uniform. Yang [26] proposed a statistics-based
adaptive non-uniform crossover (SANUX), which uses the statistics information of
the alleles in each locus to adaptively calculate the swapping probability of that locus
for crossover operation.

Other works involve the adaptation of the crossover probability instead of
adjusting the selection of the operator to be used. In Srinivas et al. [23], the proposed
adaptive GA varies the crossover probability depending on the fitness values of the
solutions. Each chromosome has its own probability of crossover and mutation.

III. Our Proposed Adaptive Genetic Algorithm

In this section we present the characteristics of the adaptive genetic algorithm
devised, which dynamically adjust the recombination operator during the evolutionary
process (see the structure of the proposed algorithm in Algorithm 1). The algorithm
creates an initial population P of solutions in a random way, and then evaluates
these solutions. After that, the population goes into a cycle where it undertakes
evolution, which means the application of genetic operators, to create offspring.
Finally, each iteration ends by selecting individuals to build up the new population
from the set of (+) existing ones. The best solution is identified as the best
individual ever found which maximizes the fitness function.

The new adaptive proposal consists in the dynamic selection of the recombination
operator that will be applied, taking as criterion the convergence speed. A major
advantage of this adaptive criteria lies in that it is not necessary to set it to any ad-hoc
value, because a dynamical setting of which is the most appropriate one is done
during the search. Also, we focus in reducing the overhead to a minimum, so as to
finally allow savings in the numerical effort which can be used later to solve the

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 3

Algorithm 1 Basic GA
t = 0; {current evaluation}
initialize(P(t));
evaluate(P(t));
 while{(t < maxgenerations) do
 P'(t) = recombinate(P(t));
 P'(t) = mutate(P'(t));
 evaluate (P'(t));
 P(t+1) = select new population from P'(t) P´(t);
 t = t + 1;
 end while

actual optimization problem.
The execution is initialized by randomly choosing a recombination operator. The

criterion to change the recombination operator, used each generation is a function of
the average fitness of the population, which is a possible measure of the convergence
speed. Following the ideas presented in [2], we define f as the difference between
the average fitness values in generation t and t - 1: 1tt fff . We calculate the
average of this difference during k consecutive generations (k=10); the average is
denoted as 10

1t ff . If the difference f decreases at least by a factor of : f k

- f k-1 f k-1 (threshold value [0,1]), it means that the algorithm evolves
slowly and the local exploitation will be increased, hence the algorithm have to apply
a less disruptive recombination operator as the one-point crossover (1X). On the
contrary, if that difference increases by a factor greater than (1-) : f k - f k-1 > (1 -

) f k-1, then the search is proceeding too fast and there exists the possibility of a
quickly lost of diversity, hence the operator to be applied will be the uniform
crossover (UX) in order to promote exploration in next generations. Algorithm 2
describes the basic adaptive pattern. This criterion is inexpensive to measure, since it
checks simple conditions based on information already available in any standard GA,
like the mean fitness.

Algorithm 2 Pattern for our dynamic adaptive criteria
if f k < (1+) f k-1 then

P'(t) = 1X(P(t));
else

P'(t) = UX(P(t));
end if

IV. NK-Landscapes

An NK-landscape is a fitness function f : { 0,1 }N R on binary strings, where N
is the bit string length and K is the number of bits in the string that epistatically
interact with each bit, i.e., K stands for the number of other genes that epistatically
affect the contribution of each gene to the overall fitness value of the string. Each
gene xi, where 1 = xi = N, contributes to the total fitness of the genotype depending

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 4

on the value of its allele and on those of each of the K other genes to which it is
linked. Thus K must fall between 0 and N-1. For K = 0, there are no interaction among
genes and a single-peak landscape is obtained; in the other extreme (for K= N-1), all
genes interact each other in constructing the fitness landscape, so a completely
random landscape is obtained (a maximally rugged landscape). Varying K from 0 to
N-1 gives a family of increasingly rugged multi-peaked landscapes.

The fitness value for the entire genotype is given as the average of the fitness
contribution of each locus fi by:

N

i iiii K
xxxf

N
xf

1
),,(1)(

1
 (1)

where
Kii xx ,

1
Nxxx ii ,,,, 111 are the K genes interacting with gene xi in

the genotype x. The other K epistatic genes could be chosen in any number of ways
from the N genes in the genotype. Kauffman [15] investigated two possibilities:
adjacent neighborhoods, where K genes nearest to gene xi on the chromosome are
chosen, particularly a gene interacts with K/2 left and K/2 right adjacent genes; and
random neighborhoods, where these K other genes are chosen randomly on the
chromosome. In this work we adopted the first type of neighbourhood and considered
circular genotypes to avoid boundary effects. The fitness contribution fi of xi is taken
at random from a uniform distribution [0.0, 1.0] and depends upon its value and those
present in K other genes among the N. Each gene has associated a fitness table,
mapping each of the 2K+1 possible combinations of alleles to a random, real value
number in the range [0,1]. Figure 1 gives an example of the fitness function f4

21 444 ,, xxx associated to gene x4 for N=8 and K=2. Gene x4 is linked to two other

genes, in this case, the gene to both sides,
14x and

24x .

Figure 1. An example of a genotype and a fitness table associated to gene x4 for a
problem with N=8 and K=2.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 5

V. Experimental Setup

In order to observe and compare the effect on performance of the self-adaptive
proposal (GA_Adap), we use the following traditional GAs: (i) a GA running with
UX as recombination operator in traditional fashion, denoted as (GA_UX); (ii) a GA
with one-point crossover, denoted as GA_1X.

In order to perform subsequent comparisons, the whole population of all evaluated
models is composed of 32 individuals. By default, the initial population is randomly
generated. At each iteration, the number of created offspring is 64. The maximum
number of evaluations is fixed to 10000. Each parent is selected by binary tournament
selection. The recombination operator is applied with a probability of 0.60. Bit-flip
mutation is used. Fitness proportional selection is used to build up the next population
from the set of (+) individuals. These parameters (population size, stop criterion,
probabilities, etc.) are chosen after an examination of some values previously used
with success [1], [16].

We conduct our study on NK instances with N=96 bits varying the epistatic
relations from K=0 to K=48 in increments of 4. We use landscapes with adjacent
epistatic patterns among genes. For each combination of N and K we generated 30
random problem instances. Each algorithm was tested with each of these instances.
The algorithms are implemented inside MALLBA [2], a C++ software library
fostering rapid prototyping of hybrid and parallel algorithms. Our computing system
is a cluster of 8 machines with AMD Phenom8450 Triple-core Processor at 2GHz
with 2 GB of RAM, linked by Gigabit, under Linux with 2.6.27-4GB kernel version.

VI. Experimental Analysis

Let us now proceed with the presentation of the results. The quality of a solution is
measured by the percentage gap, i.e., the relative distance to the best solution obtained
by GA_Adap (best_solGA_Adap) and the best solution of each of the other algorithms, as
described in Equation 2.

100
_

_

_

_

AdapGA

iAdapGA
best solbest

GAsolbest
gap (2)

Table 1 presents the performance of each GA version introduced in previous
Section on each problem. Figures in the first two columns stand for the percentage
gap regarding best solutions (column gapbest) and in the last two columns stand for the
gap taking into account mean best solutions (column gapmean). Positive values indicate
superiority of the results obtained by the proposed self-adaptive GA, while negative
values indicate the opposite situation.

From Table 1, it can be seen that the GA_UX’s gapbest is positive for all the
instances, from low to high levels of epistasis, which indicates that the solution
qualities of GA_Adap are higher when compared with GA_UX. From the analysis of
the gapbest’s values for GA_1X, there is not a clear winner; however in 7 of the 12

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 6

Table 1: gap values for traditional GAs
gapbest gapmeanK

GA_1X GA_UX GA_1X GA_UX

0 -0.87 -0.17 0.35 0.53
4 -0.13 1.97 1.79 5.29
8 -6.28 1.59 1.55 4.03
12 0.66 0.66 2.17 3.39
16 0.67 0.65 3.61 6.35
20 0.65 0.64 2.73 4.38
24 0.65 0.67 3.35 4.32
28 0.65 0.64 2.33 3.37
32 -0.64 3.38 1.38 3.32
36 2.18 3.80 2.39 3.12
40 -0.76 6.49 0.85 1.51
44 -1.19 4.08 0.46 1.20
48 0.98 0.63 2.30 1.76

instances the values are positive, for problems with low and high level of epitasis. In
the case of the gapmean values, it is important to note that all gap values for GA_SX
and GA_UX are positive, which means that in average the GA_Adap obtains a pool
of best solutions with higher quality than traditional GAs. The previous observations
stand for the superiority of our proposed adaptive algorithm, which using different
recombination operators along the search contributes positively to the search process
in the landscape. Another issue to emphasize is that the adaptive approach implicitly
helps in minimizing the work involved in the selection of the appropriate
recombination operator to solve the problem.

Figure 2 shows the mean number of generations to reach the best value for the
GA_Adapt and traditional GAs. We can see that GA_Adapt presents a considerable
higher numerical effort than traditional GAs, in order to find their best values. This
observation is corroborated by statistical tests (ANOVA), indicating the significant
differences among the algorithms in all instances (the respective p-values for
ANOVA test are higher than = 0.1, the significance value).

One of the problems that remained to address is to determine whether any
performance improvements were due to the adaptive mechanism, or due to the fact
that their adaptive GA simply used more crossover operators. Consequently, in the
following we concentrate in the adaptive mechanism itself to know if the adaptive
behaviour was responsible for the performance improvement. A further analysis was
done in order to address this issue. Instead of using a traditional GA, a reasonable
study was to also run the GA with both one-point and uniform crossover. In this case,
the algorithm, denoted as GA_Rand, randomly choices the recombination operator to
apply each generation, using a 50/50 coin flips. By comparing the performance of this
GA to the self-adaptive GA, the effect that the adaptive mechanism had on

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 7

0

100

200

300

400

500

600

0 4 8 12 16 20 24 28 32 36 40 44

K

G
en

er
at

io
ns

GA_1X GA_UX GA_Adapt

Figure 2: Mean number of generations to reach the best value for each K value.

Table 2: gap values for GA_Rand
K 0 4 8 12 16 20 24 28 32 36 40 44 48

gapbest -2.1 1.00 2.35 0.66 0.66 0.65 0.68 0.65 2.18 0.64 2.48 -1.1 0.77
gapmean 0.30 1.79 3.39 2.17 5.16 2.62 4.01 2.37 2.58 2.19 0.78 0.46 0.78

performance can be determined. Table 2 shows the gap values of this comparison. It
can be seen that the values are positive, except for instance with K=44.

VII. Conclusions and Future Work

In this paper, we have presented an adaptive evolutionary algorithm to solve the
NK landscapes, which selects the recombination operator to use during the solution of
a problem. The operators considered in this work are the one-point and uniform
crossover, which presents different levels of disruption of genetic material. The
criterion to select which operator to apply is based on the use of a simple measure,
such as the mean population fitness which gives some insides of the evolution
process.

The results in this paper indicate, in general, that the adaptive algorithm appears to
generate good performance results compared with traditional GAs. Analizing the
GA_Adap performance against an algorithm randomly selecting between two
crossover operators, we can see that our proposal was able to find better quality of
solutions for the set of instances, no needing the traditional and costly ad-hoc pre-
tuning of recombination operator.

As a future work, we propose to study more sophisticated criteria for the
adaptation, also possibly including in this process the probability of recombination.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 8

Furthermore, another extension to this work can be the analysis of the effectiveness of
this adaptive approach over other complex problems.

Acknowledgments

We acknowledge the Universidad Nacional de La Pampa and the ANPCYT
(Argentina) from which the authors receive continuous support.

References

[1] H. Aguirre and K. Tanaka. Genetic algorithms on NK-landscapes: Effects of selection,
drift, mutation, and recombination. EvoWorkshops 2003, LNCS 2611, pp. 131-142,
2003.

[2] E. Alba et al. MALLBA: A Library of Skeletons for Combinatorial Optimisation, volume
2400 of LNCS, pages 927–932, 2002.

[3] Z. Bingul. Adaptive genetic algorithms applied to dynamic multiobjective problems.
Applied Soft Computing, vol. 7, pp. 791–9, 2007.

[4] L. B. Booker, Recombination Distributions for Genetic Algorithms. Proc. of the Second
Foundations of Genetic Algorithms Workshop, pp. 29-44, 1992.

[5] D. CH, Z. YF, C. WR. Adaptive probabilities of crossover and mutation in genetic
algorithms based on cloud model. Proc. of 2006 IEEE Information Theory Workshop, pp.
710–713, 2006.

 [6] K. De Jong, M.Potter, and W.M. Spears. Using problem generators to explore the effects
of epistasis. Proc. of the Seventh International Conference on Genetic Algorithms
(ICGA97), 1997.

[7] S.K. De Jong and W.M. Spears, On the virtues of parametrized uniform crossover. Proc.
of Fourth International Conference on Genetic Algorithms, pp. 230–236, 1991.

[8] A.E. Eiben, R. Hinterding and Z. Michalewicz. Parameter control in evolutionary
algorithms. IEEE Transactions on Evolutionary Computation, vol. 3, pp. 124–141, 1999.

[9] L. Eshelman, R. Caruana, and J. Schaffer. Biases in the crossover landscape. Proc. of the
Third International Conference on Genetic Algorithms, pp. 10–19, 1989.

[10] S.C. Ghosh, B.P. Sinha and N. Das. Channel assignment using genetic algorithm based on
geometric symmetry. IEEE Transactions on Vehicular Technology, vol 52, pp. 860–75,
2003.

[11] J. Grefenstette. A User’s guide to GENESIS. Navy Center for Applied Research in
Artificial Intelligence, 1987.

[12] R.B. Heckendorn, S.Rana, and D.L. Whitley. Test function generators as embedded
landscapes. Foundations of Genetic Algorithms 5, pp. 183-198, 1999.

[13] K. Frenken. A fitness landscape approach to technological complexity, modularity, and
vertical disintegration. Structural Change and Economic Dynamics, vol. 17, pp. 288-305,
2006.

[14] S. Kauffman. The Origins of Order: Self-Organization and Selection in Evolution.
Oxford University Press, 1993.

[15] S. A. Kauffman and S. Levin. Towards a general theory of adaptive walks on rugged
landscapes. Journal of Theoretical Biology, vol. 128, pp. 11-45, 1987.

[16] C. Macken and A. Perelson. Protein evolution on rugged landscapes. National Academic

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 9

Science USA, vol. 86, pp. 6191-6195, 1989.
[17] D. Levinthal. Adaptation on rugged landscapes. Management Science, vol. 43, pp. 934-

950, 1997.
[18] J.D. Schaffer, and A. Morishima. An Adaptive Crossover Distribution Mechanism for

Genetic Algorithms. Proc. of the Second International Conference on Genetic Algorithms,
pp. 36-40, 1987.

[19] R.E. Smith and J.E. Smith. New methods for tunable, random landscapes. Foundations of
Genetic Algorithms 6. Morgan Kaufmann, 2001.

[20] W.M. Spears, and K.A. De Jong, On the Virtues of Parameterized Uniform Crossover.
Proc. of the Fourth International Conference on Genetic Algorithms, pp. 230-236, 1991.

[21] W.M. Spears. Adapting Crossover in Evolutionary Algorithms. Proc of the Fourth Annual
Conference on Evolutionary Programming, pp. 367-384, 1995.

[22] A. Stoltzfus. Mutation-biased adaptation in a protein nk model. Molecular Biology and
Evolution, vol. 23(10), pp. 1852-1862, 2006.

[23] M. Srinivas, L.M. Patnaik. Adaptive probabilities of crossover and mutation in genetic
algorithms. IEEE Trans. On Systems, Man and Cybernetics vol. 24, pp. 656-667, 1994.

[24] W. Syswerda, Uniform Crossover in Genetic Algorithms. Proc. of the Third International
Conference on Genetic Algorithms, pp. 2-8, 1989.

[25] J.Welch and D. Waxman. The NK model and population genetics. Journal of Theoretical
Biology, vol. 234(3), pp. 329-340, 2005.

[26] S. Yang, Adaptive Crossover in Genetic Algorithms Using Statistics Mechanism,
Artificial Life VIII, pp. 182-185, 2002.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 10

