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Abstract. The problem of finding a minimum area polygonization for
a given set of points in the plane, Minimum Area Polygonization
(MAP) is NP-hard. Due to the complexity of the problem we aim at the
development of algorithms to obtain approximate solutions. In this work,
we suggest different strategies in order to minimize the polygonization
area. We propose algorithms to search for approximate solutions for MAP
problem. We present an experimental study for a set of instances for
MAP problem.
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1 Introduction

Computational Geometry offers a formal framework to give solutions to geomet-
ric problems involving geometric structures. Geometric structures play impor-
tant roles in several application areas, e.g., image processing, pattern recogni-
tion, computer graphics, geographic information system, computer-aided design
and manufacturing (CAD/CAM), among others. In further relation to geomet-
ric structures, Computational Geometry includes NP-hard problems as well as
problems for which efficient algorithms for their solution have not been found.
In either case it is necessary, however, to provide efficient techniques to read-
ily obtain good quality solutions. In particular, optimization problems related
to some particular geometric structures, such as polygonizations are interest-
ing for researchers due to their use in many fields of applications, e.g., pattern
recognition and image reconstruction [1],[4].
A polygonal chain is an ordered sequence of points p0,p1,. . . ,pn−1 with n>3
together with the set of line segments e0=p0p1, e1=p1p2,. . . ,en=pn−2pn−1 de-
nominated edges. The polygonal chain is closed if the first and the last point
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are connected by a line segment. The polygonal chain is simple if the only inter-
section of edges are those at common endpoints of consecutive edges. A simple
closed polygonal chain divides the plane in two regions, an unbounded one de-
nominated the exterior region, and a bounded one, the interior. A simple polygon
is a simple closed polygonal chain together with its interior. A simple polygo-
nization for a given set of points is a simple polygon whose vertices are precisely
that set of points. A simple polygonization for a given set of points is a simple
polygon whose vertices are precisely that set of points.
For a given set of points in the plane, a simple polygonization always exists
unless all the points happen to be collinear. In general, the number of different
simple polygonizations for a set of n points is known to be exponential in n [7].
However, the number of polygonizations to be obtained can be affected by the
geometric properties of the set of points to be polygonized, e.g. if the points in
the set are in convex position, the number of polygonization is only one, the
convex hull.
A related problem to polygonizations is the paradigm of combinatorial opti-
mization, the Traveling Salesman Problem(TSP) [9]. In the geometric version,
the problem is to find the shorter closed route connecting a given set of points
in the plane. This route must be a simple polygonization with shortest perime-
ter. While classic Euclidean TSP deals with finding a polygonization with the
shorter perimeter, our concern is to find a simple polygonization minimizing an-
other basic geometric measure: the enclosed area. This problem is denominated
Minimum Area Polygonization (MAP). It is defined as follows.

Minimum Area Polygonization (MAP): Given a finite set S of points in the
Euclidean plane, find the simple polygonization with minimum area among all
the simple polygonizations with vertices in S.

In 2000, Fekete [8] proved that to find a minimum or maximum area polygo-
nization for a given set of points in the plane is NP-hard. In the same article, it
has been demonstrated: i) for a set P of n points a simple polygon of more than
half the area of the convex hull of P CH(P ), can be found in time O(n log n),
and ii) for 0 < ε < 1/3 it is NP-hard to decide whether a set P of points allows
a simple polygon of area of more than (2/3 + ε) CH(P ).
In this work, we focused our attention in finding a simple polygonization with
minimum area for a given set of points in the plane. Due to the complexity of
the problem we aim at the development of algorithms to obtain approximate so-
lutions. We propose different strategies in order to minimize the polygonization
area. This paper is organized as follows. In section 2, the algorithm used for the
construction of a polygonization for a given set of points is described. The strate-
gies used in order to minimize the polygonization area are also introduced. In
section 3, the proposed algorithms to search for approximate solutions for MAP
problem are introduced. The experimental design and results are described in
section 4. Finally, some conclusions are exposed in section 5.
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2 Constructing Simple Polygonizations

In this section, we describe the algorithm used for the construction of a polygo-
nization for a given set of points. The strategies used during the construction in
order to minimize the polygonization area are also introduced.
The algorithm for the construction of a polygonization is based in the heuristic
SteadyGrowth, proposed by Auer and Held for the generation of random poly-
gons [2]. Given a set S of points in the plane, in the initial phase the algorithm
selects three points pi, pj, pk ∈ S, such that no other point of S lies within the
triangle formed by pi, pj, pk. After that, in each phase, the algorithm builds a
polygon Pk, adding one feasible point p ∈ S. A point p is feasible if no remain-
ing points of S - {p} lie in the interior of the convex hull CH(Pk ∪ {p}) and
there is at least one edge of Pk completely visible from p. In order to add the
feasible point to the solution, an edge (pj, pk) from the set of visible edges must
be selected and replaced with the edges (pj, p) and (p, pk). This algorithm is
illustrated below.

Algorithm 1 BuildPolygonization
Pk ← BuildInitialTriangle(S)
S ← S - {p / p ∈ Pk}
while (S 6= ∅) do

FP ← FeasiblePoints(S)
p ← SelectFeasiblePoint(FP)
VE ← VisibleEdges(p, Pk)
(pj , pk) ← SelectEdge(VE)
AddPointSolution(p, (pj ,pk), Pk)
S ← S - {p}

end while

The main components of the algorithm BuildPolygonization are described:

– BuildInitialTriangle(S): returns a triangle formed by pi,pj,pk ∈ S.
– FeasiblePoints(S): returns the set of feasible points p ∈ S.
– SelectFeasiblePoint(FP): returns a feasible point p ∈ S.
– VisibleEdges(p,Pk): returns the set of edges of Pk completely visible from p.
– SelectEdge(VE): returns an edge (pj,pk)∈ V E.

For the construction of the solutions of MAP problem we use the algorithm
BuildPolygonization. In order to minimize the polygonization area, we apply
different criteria for: the selection of the points in the initial triangle, the selec-
tion of the next feasible point to be added and the selection of the edge to be
replaced.
The initial triangle points are selected according to either of the following crite-
ria:

– RandomTriangle(RT ): the three points are randomly selected.
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– RandomGreedyTriangle(RGT ): the first point is randomly selected and the
other two are the nearest ones to the first point selected.

The feasible point is selected according to either of the following criteria:

– RandomPoint(RP ): of the set of feasible points, one is randomly selected.
– GreedyPoint(GP ): of the set of feasible points, the nearest one to the current

polygon Pk is selected.

The edge is selected according to the next criteria:

– GreedyEdge(GE): of the set of visible edges, we select the edge together with
the feasible point already chosen adding the minimum area.

An additional criterion involving the selection of a point and edge is proposed:

– GreedyArea(GAr): of the set of feasible points, the point together with the
visible edge adding the minimum area are selected.

The combination of the different criteria presented above results in six different
strategies:

– A1: for the construction of the initial triangle RGT criterion is applied. GP
is used for the selection of a point and GE for the selection of an edge.

– A2: for the construction of the initial triangle RGT is applied. RP is used
for the selection of a point and GE for the selection of an edge.

– A3: for the construction of the initial triangle RGT is used. Then, the GAr
criterion is applied.

– A4: for the construction of the initial triangle RT is applied. GP is used for
the selection of a point and GE for the selection of an edge.

– A5: for the construction of the initial triangle the RT is applied. RP is used
for the selection of a point and GE for the selection of an edge.

– A6: for the construction of the initial triangle the RT is used. Then, GAr
criterion is applied.

3 Searching Approximate Solutions for MAP Problem

In this section, the proposed algorithms to search for approximate solutions for
MAP problem are introduced.

3.1 A Greedy Algorithm for MAP Problem (Greedy-MAP)

A greedy algorithm is an algorithm that follows the heuristic of making the
locally optimal choice at each stage expecting to find the global optimum. We
have implemented a greedy algorithm Greedy-MAP for the construction of poly-
gonizations. We use BuildPolygonization algorithm according to the following
greedy strategy: for the construction of the initial triangle, of all the feasible
triangles formed by points in S, the triangle with minimum area is selected. In
the next steps, of the set of feasible points, the point together with the visible
edge adding the minimum area are selected.
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3.2 Random Search (RS-MAP)

We propose a simple algorithm to search for approximate solutions for MAP
problem. The algorithm RS-MAP is a random search over the space of feasible
solutions. For every instance of each collection a certain number of solutions are
constructed using BuildPolygonization algorithm with the six different strate-
gies explained in section 2. In each case, the solution that minimizes the poly-
gonization area is selected.

3.3 Ant Colony Optimization (ACO-MAP)

As exposed before, the MAP problem is NP-hard. Metaheuristics techniques are
especially well suited for this kind of problems when approximate high quality
solutions need to be obtained. A metaheuristic is a general algorithmic frame-
work which can be adapted to different optimization problems with minor ad-
justments [3] [10]. Ant Colony Optimization (ACO) is a metaheuristic inspired
by the behavior of real ants colonies. The ACO metaheuristic involves a family
of algorithms based on a colony of artificial ants, that is simple computational
agents that work cooperatively finding good solutions to difficult optimization
problems [6]. ACO algorithms are essentially construction algorithms: in each
iteration, every ant constructs a solution for the problem traveling on a construc-
tion graph. Every edge in the graph represents possible steps for the ant. An edge
has associated two kinds of information to guide the ant movement: Heuristic
information and artificial pheromone trail information. Heuristic information,
ηpq, measures the heuristic preference of moving from node p to node q. This in-
formation is not modified by the ants during the algorithm. Artificial pheromone
trail information, τpq, measures the ”learned desirability” of the movement from
node p to node q. This information is modified during the algorithm depending
on the solutions found by the ants. Next, a general ACO algorithm is illustrated.

Algorithm 2 GeneralACO
Initialize
for c=1 until C do do

for k=1 until K do do
BuildSolutionk
EvaluateSolution

end for
SaveBestSolutionSoFar
UpdateTrails

end for
ReturnBestSolution

The main components of the algorithm GeneralACO are described:

– Initialize: this process initializes the parameters of the algorithm. The ini-
tial trail of pheromone associated to each edge, τ0 . It is an small positive
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value, the same for all edges. The weights defining the proportion in which
the heuristic information will be affected, β. The pheromone trails in the
probabilistic transition rule, α. The quantity of ants of the colony K and the
maximum number of cycles C .

– BuildSolutionk : this process begins with a partial solution. In each step of
the construction, the solution is extended adding a feasible solution compo-
nent selected from the current solution neighbors. The selection of a feasible
neighbor is done in a probabilistic way, according to the ACO variant used.
In this work, the selection rule for the solutions construction is based on the
following probabilistic model:

Pij(k) =


ταij .η

β
ij∑

h∈F (pi)
ταih.η

β
ih

, j ∈ F(pi);

0, otherwise.
(1)

- F(pi) is the set of feasible points for point pi.
- τij is the pheromone value associated to edge (pi, pj).
- ηij = 1/dij is the heuristic value associated to edge (pi, pj). dij is the

euclidean distance between pi and pj .
- α y β are positives parameters. They define the relative importance of the

pheromone with respect to the heuristic information.

– EvaluateSolution: evaluates and saves the best solution found by the ant k
in the current cycle.

– SaveBestSolutionSoFar : saves the best solution found for all cycles so far.
– UpdateTrails: modifies the pheromone level in the promising paths. First, all

the pheromone values are decreased by means of the process of evaporation.
Then, the pheromone level is increased when good solutions appear. The
following equation is used:

τij = (1− ρ)τij +∆τij (2)

- ρ ∈ (0, 1] is the factor of persistence of the trail.

- ∆τij =
NroAnts∑
k=1

∆kτij is the accumulation trail, proportional to the quality

of the solutions.

- ∆kτij =
{

1/Lk, if ant k used edge pi, pj ;
0, otherwise

- Lk is the objective value of the solution k .

Pheromone evaporation avoids a fast convergence of the algorithm. This way of
forgetting allows the exploration of new areas of the search space. The update of
the pheromone trail is done according to either of the following criteria: elitist
and not elitist. In the elitist case, the best found solution is used to give an
additional reinforcement to the levels of pheromone. The not elitist one uses the
solutions found by all the ants to give an additional reinforcement to the levels
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of pheromone.
We propose ACO-MAP, an ACO algorithm to find approximate solutions for
MAP problem. In the proposed ACO algorithm BuildSolutionk process in Algo-
rithm 2 utilizes BuildPolygonization algorithm explained in the previous section.
BuildSolutionk builds a solution according to the following criteria: the points
of initial triangle and the next feasible point to be added are randomly selected.
The edge to be replaced is chosen according to equation 1.

4 Experimental Design and Results

When evaluating approximate algorithms, it is usually necessary to consider a
large amount of data to evaluate them. It is required to test their performance
for a large number of practical and relevant data. For our experimental study,
we need to consider large planar sets of points, in general position and randomly
generated. As far as the authors are concerned, there do not exist collections of
instances for benchmarking purposes for MAP problem. According to that, we
have generated an input data set that includes six collections of general position
set of points with 40, 80, 100, 120, 160 and 200 points respectively. Every collec-
tion contains 10 instances which results in a total of 60 instances of the problem.
Each instance is called LPn i where n denotes the size of the i-instance, with
i between 1 and 10. The points of each instance are randomly generated and
uniformly distributed. For each point (x,y), the coordinates x and y are in the
interval [0, 9999]. In this work, we consider that a set of points in the plane is
to be in general position only if no three of them lie on the same straight line.
Therefore, all the instances were pre-processed for assuring non collinear points.
The initial experimental phase is presented next. The experimental results ob-
tained from the proposed algorithms Greedy-MAP, RS-MAP and ACO-MAP are
showed. We compare their performance over four instances of the LP40, LP80
and LP100 collections.
First, we analyze the performance of the RS-MAP algorithm. For every instance
of each collection 1000 solutions were constructed using different random seeds.
We use BuildPolygonization algorithm with the six strategies presented in sec-
tion 2. Table 1 shows the best areas obtained from each strategy. As we can
observe, A3 obtains the better solutions for all the instances of collections LP80
and LP100. With the exception of instance LP100 3. For the instances of collec-
tion LP40 the better areas are obtained from different strategies.
Next, we analyze the performance of the ACO-MAP algorithm. The ACO algo-

rithm proposed are represented by an Ant System (AS), a particular instance of
the class of ACO algorithms [5]. We used the following parameter values: α=1;
β=1 and 5; ρ=0.10, 0.25, and 0.50; elitism=1 and 0, where 1 means that the trail
is updated in an elitist way; in the other case, the updating is done in a not elitist
way. The number of cycles, C is 1000; the number of ants, K is 50. For each pa-
rameter setting, 30 runs using different random seeds were performed. For each
instance, the experiments were done with the twelve parameter setting, accord-
ing to combinations of parameters presented. We obtain average, median, best,
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Table 1. RS-MAP: best results for instances of collections LP40, LP80 and LP100

Instance A1 A2 A3 A4 A5 A6

LP40 1 16913767 14247604 14970807 17033176 16142866 15809710

LP40 2 21718233 17397129 19308453 17638831 17833915 16682123

LP40 3 12724842 12397361 15467802 14463436 15590652 15786309

LP40 4 15732311 14107508 14637508 17588575 13855953 13858624

LP80 1 15334777 13861116 12656857 15397954 14046638 13681373

LP80 2 18525955 18303625 15400620 19120798 18140867 16007601

LP80 3 13765710 14063122 12149490 11796302 13146207 12873346

LP80 4 15827350 15496821 14129195 14348388 15841027 14608346

LP100 1 18839948 16843730 14913968 15795024 17983478 17140705

LP100 2 16977174 15003050 14524855 16201088 15467078 14763797

LP100 3 17660485 15242272 14841126 16442687 14288550 15238502

LP100 4 16188099 15313679 14228908 16902207 15472613 14565310

and standard deviation values, considering the objective function (area). Each
parameter setting is denoted by (β-ρ-elit). For all cases α=1 so it is not shown.
Table 2 shows the best results for instances of collection LP40, LP80 and LP100.

Table 2. ACO-MAP: best results for instances of collections LP40, LP80 and LP100

Instance Par.Setting BestArea Average StdDev

LP40 1 5-0.50-0 13407676 15772361 924860

LP40 2 5-0.50-0 16878114 18652494 813821

LP40 3 1-0.25-0 14191890 18111581 1047062

LP40 4 5-0.50-0 13782235 15312044 489332

LP80 1 5-0.50-1 15644003 17278058 549557

LP80 2 1-0.50-1 18267612 22007953 1009033

LP80 3 5-0.50-1 15457009 17508622 650806

LP80 4 1-0.50-0 17353796 20734511 1010593

LP100 1 5-0.25-1 20645166 23834001 783239

LP100 2 5-0.50-1 18694220 20810168 676606

LP100 3 5-0.25-1 19418940 20709942 597942

LP100 4 5-0.50-0 18014838 20092936 615742

For collection LP40 the best parameter settings are the same for LP40 1,
LP40 2 and LP40 4 instances. The best parameter setting for LP40 3 are not
equal to the other sets. The best results were obtained giving more relevance to
the heuristic information and updating the trails in a not elitist way. Most of the
smaller areas were obtained using configurations with β=5, ρ=0.50 and elit=0.
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For collection LP80 the best parameter settings are the same for LP80 1 and
LP80 3 instances. The LP80 2 and LP80 4 instances share the same parameter
setting with each other except for the elitism parameter. The best results were
obtained updating the trails in an elitist way. The smaller areas were obtained
using configurations with β between 1 and 5, ρ=0.50 and elit=1.
For collection LP100 the best parameter settings are the same for LP100 1 and
LP100 3 instances. Between LP100 2 and LP100 4 instances the best parame-
ter settings are different only for the elitism parameter. The best results were
obtained updating the trails with an elitist way and giving more relevance to
the heuristic information. The smaller areas were obtained using configurations
with β=5, ρ between 0.25 and 0.50 and elit=1.
To the best knowledge of the authors, there do not exist benchmarks publicly
available for MAP problem that allow us to compare our results. Table 3 shows
the best areas obtained from the proposed algorithms. The results obtained from
Greedy-MAP algorithm are presented in the first column of the table. The second
and third column shows the best areas obtained from RS-MAP and ACO-MAP
algorithms. As we can observe in table 3, for collection LP40 in only two in-
stances the smaller areas were obtained from ACO-MAP. For all instances of
collections LP80 and LP100 the smaller areas were obtained from RS-MAP. Al-
though, the results obtained from RS-MAP seem to be the most promising, it is
required to contrast them with more experimental results obtained from other
techniques. These results obtained from RS-MAP could be used as a bench-
mark. Metaheuristic techniques have proved to be very well behaved in solving
NP-hard problems. So, a further study about the behavior of the ACO algorithm
is necessary regarding the performance observed for the larger instances. This
initial experimental study provides preliminary results that will guide future
experimentation.

Table 3. Comparison of best results obtained from Greedy-MAP, RS-MAP and ACO-
MAP.

Instance Greedy-MAP RS-MAP ACO-MAP

LP40 1 24153933 14247604 13407676

LP40 2 24016120 16682123 16878114

LP40 3 21197963 12397361 14191890

LP40 4 18749234 13855953 13782235

LP80 1 18465063 12656857 15644003

LP80 2 24920432 15400620 18267612

LP80 3 13932867 12149490 15457009

LP80 4 16112604 14129195 17353796

LP100 1 23183435 14913968 20645166

LP100 2 18163151 14524855 18694220

LP100 3 16049978 14841126 19418940

LP100 4 17156672 14228908 18014838
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5 Conclusion

In this work, we proposed algorithms to obtain approximate solutions for Mini-
mum Area Polygonization problem for planar sets of points. We have generated
collections of instances for the experimental evaluation. This is another contri-
bution of this work because of there are not available collections of instances for
benchmarking purposes for MAP problem. We performed an initial experimental
study and we obtained preliminary results that will guide future experimenta-
tion. This experimental stage gave us information for future research concerning
to improve the performance of the ACO algorithm. Actually, we are working
in the experimental design with the whole collection of instances generated. In
addition, we aim to carry out an statistical analysis, in order to determine the
best approach for the proposed problem. As a future work, we intend to adapt
and implement other metaheuristics to solve the proposed problem.
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