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Peñalver2, and Mario Guillermo Leguizamón1⋆

1 Facultad de Ciencias F́ısico Matemáticas y Naturales
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Abstract. It is known that the MinimumWeight Triangulation problem
is NP-hard. Also the complexity of MinimumWeight Pseudo-Triangulation
problem is unknown, suspecting that it is also a NP-hard problem.
Therefore we focused on the development of approximate algorithms to
find high quality triangulations and pseudo-triangulations of minimum
weight. In this work we propose the use of two metaheuristics to solve
these problems: Ant Colony Optimization (ACO) and Simulated Anneal-
ing (SA). For the experimental study we have created a set of instances
for MWT and MWPT problems since no reference to benchmarks for
these problems were found in the literature. Through the experimental
evaluation, we assess the applicability of the ACO and SA metaheuristics
for MWT and MWPT problems. These results are compared with those
obtained from the application of deterministic algorithms for the same
problems (Delaunay Triangulation for MWT and a Greedy algorithm
respectively for MWT and MWPT).

Keywords: Metaheuristics, ACO, SA, Computational Geometry, MWT
and MWPT problems

1 Introduction

Special geometric configurations, such as triangulations and pseudo-triangulations,
are interesting to investigate due to their use in many fields of application, e.g.
computer graphics, scientific visualization, robotics, computer vision, and image
synthesis, rigidity theory and motion planning.

⋆ The authors would like to thank to Research Project Tecnoloǵıas Avanzadas de
Bases de Datos 22/F014 financed by Universidad Nacional de San Luis, San Luis,
Argentina; CONICET-AGENTINA; Instituto de F́ısica Aplicada (INFAP)-UNSL-
CONICET to allow us to use the cluster; and Research Project MTM2008-05043 del
Ministerio de Ciencia e Innovación-España.
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Find globally optimal geometric configurations with respect to the weight,
are difficult to be found by deterministic methods, since no polynomial algorithm
is known. Indeed, the MinimumWeight Triangulation (MWT) and the Minimum
Weight Pseudo-Triangulation (MWPT) problems minimize the sum of the edge
lengths, providing a quality measure for determining how good is a structure.
Mulzer and Rote [10] recently showed that MWT problem is NP-hard. The
complexity of MWPT problem is unknown, suspecting that it is also a NP-hard
problem.

The approximate algorithms arise as alternative candidates for these prob-
lems. These algorithms can obtain approximate solutions to the optimal ones.
They have a simple implementation and they can efficiently find good solutions
for NP-hard optimization problems [9].

This paper is organized as follows. In the next Section, we present the theoret-
ical aspects of MWT and MWPT problem. Following, we describe the ACO and
SA metaheuristics and the proposed algorithms. Next Section, we present the
experimental and statistical study. Last Section is reserved for the conclusions
and future vision.

2 Minimum Weight Triangulation and Pseudo-

Triangulation problems

Let S be a set of points in the plane. A triangulation of S is a partition of the
convex hull of S into triangles whose set of vertices is exactly S. The weight
of a triangulation T is the sum of the Euclidean lengths of all the edges of
T. The triangulation that minimizes this sum is named a Minimum Weight
Triangulation of S and it is denoted by MWT (S).

Let S be a set of points in the plane. A pseudo-triangulation PT of S is a
partition of the convex hull of S into pseudo-triangles whose set of vertices is
exactly S. A pseudo-triangle is a planar polygon that has exactly three convex
vertices, called corners. The weight of a pseudo-triangulation PT is the sum
of the Euclidean lengths of all the edges of PT. The pseudo-triangulation that
minimizes this sum is named a Minimum Weight Pseudo-Triangulation of S and
it is denoted by MWPT (S).

MWT previous results
The MWT problem was first considered by Düppe and Gottschalk [4] who

proposed a greedy algorithm which always adds the shortest edge to the triangu-
lation. Later, Shamos and Hoey [15] suggested using the Delaunay triangulation
as a minimum weight triangulation. Lloyd [8] provided examples which show
that both proposed algorithms usually do not compute the MWT. Many papers
present solutions to problems in the field of Graphical Computation. In 1992, Sen
and Zheng [14] proposed an algorithm using Simulated Annealing. The neigh-
borhood is obtained with a flip in a random edge of the current triangulation. In
1993, Wu and Wainwright [16] use a genetic algorithm where the recombination
and mutation operators are the same (a flip). In the previous mentioned works,
the experimental evaluation is rather poor and they do not describe the quality
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of the obtained solutions. In 2001, Kolingerova and Ferko [7] presented a genetic
optimization, which recombination operator is named DeWall and the mutation
operator makes a flip in the selected individual. The principal weakness of this
method is the time demand. Later, Mulzer and Rote demonstrated in 2006 that
MWT’s construction is a NP-hard problem [10].

MWPT previous results
The concept of pseudo-triangulation was introduced by Pocchiola and Vegter

in [11] on the analogy of the arrangements of pseudo-lines; see [12] for a survey
with many results of pseudo-triangulations. There exists a set of points for which
any triangulation will have weightO(n·wt(M(S))). A natural question is whether
there exist a similar worst-case bounds for pseudo-triangulations. Rote et al. [13]
were those who asked if the MWPT is a NP-hard problem, stimulating the search
of exact or approximate algorithms. Gudmundsson and Levcopoulos [5] consid-
ered the problem of computing a minimum weight pseudo-triangulation of a set
P of n points in the plane, presenting an O(n · logn)-time algorithm that pro-
duces a pseudo-triangulation of weight O(logn.wt(M(P ))) which is shown to be
asymptotically worst-case optimal. That is, there exists a point set P for which
every pseudo-triangulation has weight Ω(logn.wt(M(P ))), where wt(M(P )) is
the weight of a minimum spanning tree of P . Also, they presented a constant fac-
tor approximation algorithm running in cubic time, and they gave an algorithm
that produces a minimum weight pseudo-triangulation of a simple polygon. It
is also worth noticing that to the best knowledge of the authors, there are no
results with applying metaheuristics techniques.

3 Ant Colony Optimization Metaheuristic - ACO

The ACO metaheuristic involves a family of algorithms in which a colony of
artificial ants cooperate in finding good solutions to difficult discrete optimiza-
tion problems. An artificial ant in an ACO algorithm is a stochastic constructive
procedure that incrementally builds a solution by adding opportunely defined
solution components to a partial solution under construction. The ACO meta-
heuristic can be applied to any combinatorial optimization problem for which
a constructive graph can be defined. Each edge (i, j) in the graph represents a
posible path and it has associated two information sources that guide the ant
moves: pheromone trails and heuristic information.

Following we present in detail the specific component of the general ACO
algorithm (function BuildSolutionk) that have to be adapted for MWT and
MWPT problems.

Main components of Algorithm 1:
Initialize: it initializes the parameters: i) τ0 is the initial trail of pheromone

is associated to each edge; ii) K is the quantity of ants of the colony; iii) α and
β are described latter; and iv) C is the maximum number of cycles.

BuildSolutionk : this process begins with a partial empty solution which is
extended at each step by adding a feasible solution component chosen from
the current solution neighbors. The choice of a feasible neighbor is done in a
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Algorithm 1 General-ACO

Initialize
for c ∈ {1, . . . , C} do

for k ∈ {1, . . . ,K} do
BuildSolutionk
EvaluateSolution

end for
SaveBestSolutionSoFar
UpdateTrails

end for
ReturnBestSolution

probabilistic way in every step of the construction, depending on the used ACO
variant. In this work, the selection rule is based on the following probabilistic
model:

Pij =


τα
ij .η

β
ij∑

h∈F (i)

τα
ih.η

β
ih

, j ∈ F (i);

0, otherwise.

(1)

F (i) is the set of feasible points for point i; τij is the pheromone value associated
to edge (i, j); ηij is the heuristic value associated to edge (i, j); and, α and β are
positives parameters for determining the relative importance of the pheromone
with respect to the heuristic information.

UpdateTrails: increases the pheromone level in the promising paths, and is
decreased in other case. First, all the pheromone values are decreased by means
of the evaporation process. The pheromone level is increased when good solutions
appear. The following equation is used:

τij = (1− ρ)τij +∆τij (2)

– ρ ∈ (0, 1] is the factor of persistence of the trail.

– ∆τij =
K∑

k=1

∆kτij is the accumulation of trail, proportional to the quality of

the solutions.

– ∆kτij =

{
Q/Lk, when ant k used edge (i, j);
0, in other case.

– Q is a constant depending of the problem; it usually set to 1.

– Lk is the objective value of the solution k.

In this work, the update of the pheromone trail can be done according to one
of the following criteria: elitist and not elitist. In the elitist case, the best found
solution is used to give an additional reinforcement to the levels of pheromone.
The not elitist one uses the solutions found by all the ants to give an additional
reinforcement to the levels of pheromone.
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The proposed ACO algorithm for MWT (ACO-MWT): BuildSolutionk
works as follows. Each ant builds a triangulation of a given instance P , starting
from an initial random point. At each step, the algorithm adds a new edge (i, j)
if there is no intersection between (i, j) and the edges of the (partial) solution
Sk. In this case, i is a feasible point for j and vice versa. If the current point
has no feasible points, it selects the next reference point according to one of
the following criterions: i) random selection; ii) select the point with the largest
quantity of feasible points; or, iii) select the point with the lowest quantity of
feasible points.

The proposed ACO algorithm for MWPT (ACO-MWPT): each ant in
BuildSolutionk function builds a pseudo-triangulation, starting with one face.
This initial face has the edges obtained by the convex hull of the points set
P , i.e., CH(P ). For the solution construction, each ant performs a process of
partitioning the set P in faces. This process finishes when all faces are pseudo-
triangles without interior points. A face is divided into two faces when it has
interior points or is not a pseudo-triangle. Thus, the partition can be done if i)
there are at least one interior point and two points in the border; or ii) there is
not an interior point, so it uses two points located on the border.

Parameter settings: we used the following parameter values: α = 1; β = 1
and 5; and ρ = 0.10, 0.25, and 0.50. elit = 1 and 0, where 1 means that the trail
is updated in a elitist way; in other case, the updating is done in a not elitist
way. criterion = 1, 2, and 3, is used for selecting a point in the BuildSolutionk
procedure. For criterion = 1 the point is chosen randomly; for criterion = 2, the
chosen point has the largest quantity of feasible points; and for criterion = 3,
the chosen point has the lowest quantity of feasible points. C = 1000. K = 50.

4 Simulated Annealing - SA

Simulated Annealing applied to optimization problems emerges from the work of
S. Kirkpatrick et al. [6] and V. Černý [3]. SA is based on the principles of statis-
tical mechanics whereby the annealing process requires heating and then slowly
cooling a substance to obtain a strong crystalline structure. The SA algorithm
simulates the energy changes in a system subjected to a cooling process until
it converges to an equilibrium state (steady frozen state). For that, SA intro-
duces a control parameter T , called temperature, to determine the probability
of accepting nonimproving solutions (uphill moves). At each iteration, a random
neighbor is generated. The moves that improve the cost function are always
accepted. Otherwise, the neighbor is selected with a given probability that de-
pends on the current temperature. This probability is usually called acceptance
function and it is evaluated according to p(T, x, y) = e−

δ
T where δ = f(y)−f(x).

The basic outline of the General-SA algorithm is illustrated in Algorithm 2.
The algorithm generates an initial solution x ∈ S, which can be randomly

or heuristically constructed, and by initializes the temperature value T0. Being
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Algorithm 2 General-SA

Generate an initial solution x ∈ S
Set the initial temperature T0

k ← 0
while termination condition not met do

i = 1
while i < N(Tk) do

Generate y ∈ N (x) ⊂ S
Evaluate δ = f(y)− f(x)
if δ < 0 then

x← y
else

x← y with probability p(T, x, y) // see the acceptance function
end if
i← i+ 1

end while
k ← k + 1
Decrease temperature Tk

end while

N(Tk the number of iterations for temperature Tk, at each one a new solution
y ∈ N (x) is randomly generated. If y is better than x, then y is accepted as
the current solution. Otherwise (the move from x to y is an uphill move), y
is accepted with a probability computed according to the acceptance function.
Finally, the value of Tk is decreased at each algorithm iteration k. The algorithm
continues this way until the termination condition is met. Therefore, considering
an optimization problem it is necessary to adapt it to the SA scheme, which is
obtained by specifying the following parameters: representation of the solution
space S, objective function f , neighborhood of a solution N (x), initial solution
S0, initial temperature T0, temperature decrement rule R, number of moves at
each temperature N(Tk), and termination condition.

Parameter settings: we describe the parameters for the proposed SA algo-
rithms.

Solution Space S: given a set P of n points in the plane, the solution space
for MWT problem is represented by triangulations and for MWPT problem by
pseudo-triangulations.

Objective function f : the objective function f : S → R assigns to each element
of S a real value. For each Si ∈ S, the function f is defined as the sum of the
Euclidean lengths of the edges of the Si solution.

Initial solution S0: considering the MWPT and MWT problems, and a set
P of n points in the plane, the SA algorithm can start with different initial
solutions.

Initial temperature T0: the initial temperature depends on the number m of
edges in the initial solution and the quality measure that is being considered
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in the problems, i.e., T0 = m × l, where l is the average length of the edges of
solution S0.

Temperature decrement rule R: we use three different types of rules: (i)
Fast Simulated Annealing (Tk+1 = T0

(1+k) ); (ii) Very Fast Simulated Anneal-

ing (Tk+1 = T0

ek
); and (iii) Geometric Decrease (Tk+1 = αTk with α = 0.8, 0.9,

and 0.95).
Number of moves at each temperature N(Tk): we use N(Tk) = Tk to ensure

that the amount of moves is directly proportional to the actual temperature.
Termination condition: the search process is finished when the temperature

is less than or equal to 0.005, i.e., Tf = 0, 005.
Neighborhood of a solution N (x): for each solution Si ∈ S it obtains an

element Sj ∈ S, called neighbor. For MWT and MWPT problems, there are
different neighborhood operators.

Neighborhood for MWT: i) Flip: an edge a is randomly chosen in the
current solution and performs the flip operation on a, whenever possible. If
unable to make the flip, because the edge is illegal, again an edge is chosen at
random and repeat this operation.

ii) Local retriangulation: a vertex u of the current solution is randomly chosen
and all vertices adjacent to u are recovered. Then the polygon that form the
adjacent vertices to u is recovered and the interior of this polygon with the
vertex u is retriangulated. This retriangulation can be done in a random or
greedy way. In the first, the edges of the polygon are inserted at random until
they do not intersect the previously added. In the second way, considering its
length, all the edges are sorted in the polygon and are inserted in that order
until they do not intersect with the previously added.

Neighborhood for MWPT: Considering an adjacent edge e to two neigh-
boring pseudo-triangle, where each endpoint of e is a corner in at least one
of the neighboring pseudo-triangles, since each vertex has at most one convex
angle. Removing an edge e merges the two neighboring pseudo-triangles into
a pseudo-quadrangle. Thus, the six corners of the original two pseudo-triangles
become the four corners of a pseudo-quadrangle. A diagonal is defined for a
pseudo-quadrangle by connecting opposite corners with a shortest path through
the interior. This path coincides with parts of the boundary, except for exactly
one straight edge in the interior. There are two diagonals and each one splits the
pseudo-quadrangle into two pseudo-triangles. The edge-flip for e removes e and
replaces it with the other diagonal [2].

5 Experimental Evaluation and Statistical Analysis

The collections of problem instances were designed by the authors, using an
instance generator with different functions of CGAL Library [1]. To the best
knowledge of the authors there not exist in the literature benchmarking data
publicly available that allow us to compare our proposal with other algorithms.
A collection of 10 instances of size 40/80/120/160/200 were generated; i.e., a to-
tal of 50 problem instances, each one is called LDn-i, the size of the i-instance,

CACIC 2011 - XVII CONGRESO  ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 157



1 ≤ i ≤ 10, is denoted by n. The points are randomly generated, uniformly dis-
tributed with coordinates x, y ∈ [0, 1000]. For implementation purposes, there
are non collinear points. The proposed algorithms were implemented in C lan-
guage and run on BACO parallel cluster under CONDOR batch queuing system.

We analyze the performance of the ACO and SA algorithms for all the combi-
nations over four instances of 40 and 80 points. Then, there are twelve parameter
settings for ACO algorithms, and there are five parameter settings for SA al-
gorithms. For each parameter setting, 30 runs were performed using different
random seeds.

Analyzing MWT Problem
The best results were obtained with SA-MWT algorithm using local retri-

angulation neighborhood operator and decrementing the temperature in a ge-
ometric way (with α = 0.95). Considering the ACO-MWT algorithm and the
smallest obtained weights, the four best parameter settings were selected. The
configuration α = 1, β = 5, ρ = 0.50, and elit = 1 is always in the four selected
ones. Therefore, we compare statistically both algorithms with such parameter
settings.

In Table 1, the best weights and the median values for ACO-MWT and
SA-MWT algorithms, the weights for Delaunay Triangulation (DT) and Greedy
Triangulation (GT) are showed. As the values do not not follow a normal dis-
tribution (using Kolmogorov-Smirnov test) the Kruskal-Wallis test (a nonpara-
metric statistical test) was apply to perform the median comparison in order
to determine if there is significant difference between both algorithms (p-value
column). Generally the values of SA-MWT algorithm are significantly different
from the ACO-MWT ones, except for one case. This does not allow us to assert
that SA-MWT algorithm is better than ACO-MWT algorithm, but shows a high
superiority in performance with respect to the considered instances.

Table 1. Results for MWT problem.

ACO-MWT ACO-MWT SA-MWT SA-MWT
Instance Best Median Best Median p-value DT GT

LD40-1 5493047 5502009 5463745 5477181 3.6784E-12 5666348 5477181

LD40-2 4659553 4664817 4659552 4659552 1.11E-12 4722381 4659552

LD40-3 5502567 5519777 5478923 5489487 2.20E-12 5663032 5489487

LD40-4 5745772 5747745 5746236 5751867 0.5142 6289829 5751867

LD80-1 6242505 6273781 6220029 6231682 1.19E-11 6462038 6231682

LD80-2 7603796 7634061 7572419 7581868 1.63E-12 8081573 7581868

LD80-3 5836037 5865538 5828344 5845506 8.02E-11 6143637 5845506

LD80-4 6217040 6283664 6147234 6147234 1.14E-12 6460311 6147234

Analyzing MWPT Problem
Greedy Pseudo-Triangulation (GPT) algorithm builds a pseudo-triangulation

starting with one face. This face has the edges obtained by the convex hull of
the points set P , i.e., CH(P ). SA2P-MWPT algorithm is an improved version
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of SA-MWPT algorithm, which involves a double pass under certain criteria,
considering the best results obtained in some temperatures. SA2P-MWPT algo-
rithm decrementing the temperature in a geometric way (with α = 0.95) obtain
the best result. With respect to the ACO-MWPT algorithm and the smaller
obtained weights, the four best parameter settings were selected. The config-
uration α = 1, β = 5, ρ = 0.10, and elit = 1 is always in the four selected
ones. Therefore, we compare statistically both algorithms with such parameter
settings.

Table 2 shows the results according to the smallest weights obtained using
ACO-MWPT, SA-MWPT, SA2P-MWPT and GPT algorithm. We performed
the Kolmogorov-Smirnov test to show the sample does not follow a normal dis-
tribution. Therefore we use a non-parametric statistical test to evaluate the algo-
rithms. Kruskal-Wallis test was performed to compare the medians for determin-
ing if there is significant difference between both algorithms (p-value column).
SA2P-MWPT algorithm obtained the best results with respect to others algo-
rithms. Considering ACO-MWPT and SA2P-MWPT algorithms the Kruskal-
Wallis test determined similar performances.

Table 2. Results for MWPT problem.

ACO- ACO- SA- SA- SA2P- SA2P-
Instance MWPT MWPT MWPT MWPT MWPT MWPT p-value GPT

Best Median Best Median Best Median

LD40-1 6115636 6607908 6252359 6907139 4709719 5764730 3.65E-7 5312131

LD40-2 4442710 4757694 5197488 5602824 4812286 5114311 3.17E-11 4292347

LD40-3 5684342 6071705 6017744 7209617 4774148 6182200 0.0625 5794018

LD40-4 5627098 6258985 6133612 6883127 4273332 5856490 0.0003 6245196

LD80-1 7898497 8300956 8428879 10379962 6090317 8740421 0.1008 7458787

LD80-2 9584718 10604489 10197976 12037685 8265211 10206975 0.4965 8931272

LD80-3 8918853 9565227 8265748 10260313 6484145 8365633 5.10E-5 6516103

LD80-4 8004652 9565227 8768465 10473020 6238395 7840248 0.0891 7393297

6 Conclusions

Minimum Weight Triangulation problem is NP-hard and the complexity of Min-
imum Weight Pseudo-Triangulation problem is unknown, suspecting is NP-hard
problem. We proposed approximate algorithms to find high quality geometric
configurations of minimum weight.

In this work, we development the use of two metaheuristics to solve these
problems: Ant Colony Optimization (ACO) and Simulated Annealing (SA), and
deterministic techniques (Delaunay Triangulation for MWT and a Greedy algo-
rithm for MWT and MWPT)respectively.

The set of instances was created since no reference to benchmarks for these
problems were found in the literature.

CACIC 2011 - XVII CONGRESO  ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 159



Considering the experimental evaluation, we assess the applicability of the
ACO and SA metaheuristics for MWT and MWPT problems. Theses perfor-
mances were analyzed nonparametric statistical tests.

Also, these results were compared with those obtained from the application
of deterministic algorithms for the same problems (Delaunay Triangulation for
MWT and a Greedy algorithm respectively for MWT and MWPT).

The statistical analysis showed SA-MWT algorithm has a high superiority in
performance; and for ACO-MWPT and SA2P-MWPT algorithms have similar
performances, although SA2P-MWPT algorithm obtained the best results with
respect to others algorithms.
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