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Abstract. Despite the fact that the Khepera II is an experimental plat-
form widely used in the scientific community related to robotics research,
its application to cognitive robotics is not as extensive as it should be.
Particularly, in this field of research, the Khe-DeLP framework has arisen
as an interesting proposal for developing cognitive agents to control real
and simulated Khepera II robots. Although Khe-DeLP allows to work
with multiple robots within the same environment, at present, only non-
intentional communication among them can be achieved in this frame-
work. Therefore, in this work we present extentions to Khe-DeLP to
be able to model simulated scenarios where multiple robots interact by
using explicit communication among them. This new feature improves
Khe-DeLP since any kind of coordination problems can be simulated
within the framework. As concept test, an example is presented which
aims to validate coordinated behaviours of the robots by using the new
communication features included in Khe-DeLP.
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1 Introduction

Research in robotics in the last two decades was significantly influenced by the
behaviour-based approach [3] to Artificial Intelligence (AI), which essentially pos-
tulates that in order to achieve good performance in a situated agent, like a robot,
the agent’s ability to properly react to the external environment should be the
fundamental aspect to be considered. Nowadays, most of AI researchers recog-
nize the importance of reactivity but also it is out of discussion, that this aspect
alone is not enough to create successful situated agents capable of performing
complex tasks. For instance, in scenarios with robots skilled with complex social
interaction capabilities, high-level representation and reasoning is required.

In this context, where the importance of higher level representation and rea-
soning in robotics is recognized, several groups have begun to work on what is
called cognitive robotics. Cognitive robotics intends to capture the application of
logical formalisms and computational models of high-level cognitive functions,
such as planning, to real-world and simulated robots.
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At present, there are available a wide number of low-cost commercial plat-
forms (e.g., LEGO Mindstorms), to experiment with physical robots. Nonethe-
less, fixing the low-level problems that arise when working with these platforms
is a time consuming activity which blurs the high-level problems that cognitive
robotics aims to face. In this way, the use of simulators allows to concentrate
in the particular problem is aimed to solve without taking care of whether the
sensors values are correct or effectors have precision errors. Likewise, often it is
needed to integrate in physical and simulated robots already existing cognitive
tools whose application has been mainly targeted to software agents.

In this respect, Prolog is a programming language which has been effectively
used to develop many applications in the field of cognitive robotics [19, 13, 7, 10, 4]
as well as in general applications within AI [5]. For instance, LEGOLOG [19] is a
system that allows to program LEGO robots by using primitives in Prolog. Be-
sides, it provides a GOLOG interpreter [20], so that the robots can maintain an
explicit world representation and reasoning about different courses of action to
get a particular state of the world. Similarly, in [7, 10] was presented Khe-DeLP,
a framework that provides facilities to program the Khepera II robot [17] with
high-level specifications based on logic programming and argumentation, speci-
fically Defeasible Logic Programming [14].

A key issue of Khe-DeLP, is that allows to work with either real or simu-
lated Khepera II robots. Besides, it provides a Ciao Prolog [6] interface (called
KRolog [9]) which implements all the sensorial and effectorial capabilities of the
Khepera II robot and its extension modules (cameras K213 and K6300, and
gripper). Nevertheless, at present this interface does not provide the communi-
tation primitives of the Khepera II radio extension turret, which implies that in
Khe-DeLP only scenarios with non-intentional communication can be modeled.

By non-intentional communication we mean those scenarios where there is no
specific receiver of the information to be sent, and hence, as no explicit communi-
cation is involved, information is transmitted by modifying the environment [2],
or the visible state of the agents [1]. When working with mobile robots, they
should be able to distinguish among each other from their respective percep-
tions, so as to effectively develop their corresponding activities. Conversely, by
intentional communication we mean those scenarios where specific devices are
used to guarantee the communication from a sender to one o more receivers.

In this way, as communication is a key issue when developing multi-agent
systems, in this paper we present a proposal to extend Khe-DeLP so that
KRolog provides the communication primitives to allow intentional communica-
tion among simulated Khepera II robots. Besides, as concept test, an example
is presented aimed to validate coordinated behaviours of the robots by using the
new communication features included in Khe-DeLP.

The paper is organized as follows: Sect. 2 gives a brief overview of the
Khe-DeLP framework. Then, Sect. 3 shows through a simple example how to
program in Khe-DeLP, the communication among simulated Khepera II robots
by using the new primitives implemented to this end. Finally, Sect. 4 puts for-
ward conclusions and future work.
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2 Khe-DeLP in a nutshell

Khe-DeLP [7, 10] is a layered framework that provides to the Khepera commu-
nity facilities for programming high-level robots’ behaviours using an argumen-
tative approach. In Khe-DeLP lower-level layers hide low-level robot-computer
communication providing a high-order set of predicates to interact with real and
simulated Khepera II robots. Moreover, upper layers are dedicated to cogni-
tive robotics implementations. The most abstract layer in this framework allows
Defeasible Logic Programming (DeLP), which provides support for knowledge
representation and high-level reasoning capabilities. DeLP is based on an argu-
mentative formalism suitable for reasoning in real and dynamic environments,
i.e., scenarios where the information that the robot has about its environment,
is usually incomplete or contradictory.

Besides, Khe-DeLP provides a Ciao Prolog interface, called KRolog. This in-
terface consists of 46 predicates which implement all the sensorial and effectorial
capabilities of the Khepera II robot and its extension modules. In Sect. 3 only
the three predicates explained below are used in the example:1

– move forward distance(+D,-Outb): Makes the robot move forward D mil-
limeters passed as input parameter.

– turn left(+Dg,-Outb):Makes the robot turn left Dg degrees passed as input
parameter.

– turn right(+Dg,-Outb): Makes the robot turn right Dg degrees passed as
input parameter.

All the predicates in KRolog has an output parameter Outb where it is re-
turned a boolean atom to indicate whether the predicate was successfully per-
formed or not. In Fig. 1 KRolog is referred as “Sensorial/Effectorial layer.”

Fig. 1. The Khe-DeLP framework scheme

1 In these predicates, parameters are denoted following the usual notation in Prolog,
where ‘+’ refers to an input parameter while ‘−’ to an output parameter, respectively.
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As stated in the introductory section, in this paper only simulated environ-
ments are considered. In this respect, it is worth mentioning that Khe-DeLP has
been designed to work with the professional 3D simulator called Webots [22],
and hence much of the work reported on Sect. 3 is based on particular features
of this simulator.

3 Programming the Robots Communication

Nowadays, there is a new trend of applications in which the coordinated control
of a robotic system is a key issue. In this respect, collective robotics aims at
designing multi-robot systems to solve problems whose resolutions cannot be
faced by a single robot, or designing such a robot is a costly task [18]. In this
way, having a system composed of simpler robots in terms of design, allows a
better performance in activities like rescue operations, search and exploration,
cooperative object manipulation, among others.

It is worth mentioning that all the above-mentioned activities need to manage
formation control of the robots to perform efficiently. That is why, Example 1
aims to illustrate the communications features of Khe-DeLP, facing this matter.

Example 1. Let us consider the situation depicted in Fig. 2(a) where there are
two simulated Khepera II robots in a square arena of 100 units per side which
is conceptually divided into square cells of 10 units per side each. The leftmost
robot, from now on referred as K0, is the team leader running the program
shown in Fig. 3(a). In this case, K0 program code is very simple since it has
to follow a predetermined path and before executing each action, by calling
the send msg to turret/3 predicate, it sends to K1 (the rightmost robot in
Fig. 2(a)) each command it will execute.

The predicate send msg to turret(+Dest id,+Msg,-Outb) receives as first
input parameter the radio turret ID (an integer in the range 1, . . . , 31)2 to whom
the message will be sent. The message is the second input parameter and must
be enconded as a list of atoms, while the third parameter is used to return a
boolean value as output indicating whether the transmision was succesful or a
failure occured.

For instance, lines (4), (6), (8), (10), (12) (14) and (16) of Fig. 3(a) show
the use of this predicate to communicate to K1 which action it should perform.
That is why, the first argument in all these calls is 1 (K1 has been assigned 1 as
turret ID). Besides, all these calls have as third argument an atom, true in this
case, so that the execution be aborted if any of these predicates cannot trasmit
the message due to a communication failure.

In this particular case, the message to be transmitted as second argument of
the send msg to turret predicate, has been codified with a number to simplify
the example. For instance, when K1 receives number 1 as the command to be
executed, this will imply that a move forward distance(200,Z) command will

2 This limitation in the number of turrets ID is maintained to be consistent with the
number of physical radio turrets that the radio base is able to manage.
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(a) (b)

Fig. 2. Experimental environment

be issued (see lines 23 and 24 of Fig. 3(b), and lines (5), (9), (13) and (17) of
Fig. 3(a)). Similarly, the commands turn right/2 and turn left/2 have been
codified with numbers 2 and 3, respectively (lines (25)-(28) of Fig. 3(b), and
lines (7), (11) and (15) of Fig. 3(a)).

Figure 3(b) shows K1 program code. In the same way that K0, K1 program
also import the Khe-DeLP module (line 1), but K1 program code need to include
other predicates in addition to behave (line 19 in Fig. 3(b)), the predicate which
control the robot’s behaviour. Lines (3) to (9) define the live predicate. Lines
(4) and (9) call predicates to set up and shut down, respectively, the existing
Prolog to Java interface provided in Ciao. Lines (5) and (6) are very important
since they define the predicates receive msg from turret/1 and behave/0 as
concurrent ones. These predicates run in different threads which will communi-
cate among each other by using K1 knowledge base. Indeed, this communication
will be achieved by inserting and deleting the predicate turret input/1 from
K1 knowledge base. Line 2 defines this predicate to be used in such a way. Fi-
nally, line (7) waits that thread with Bid as ID, which is running the behave

predicate to finish its execution, while line (8) releases all the resources assigned
to this thread.

The predicate receive msg from turret(+Server id) (line (11) of Fig. 3(b))
explicitly waits for a message from the team leader to replicate its actions. This
predicate receives as input parameter the Java server ID which is dedicated
to listen messages send to K1. This task is perfomed by calling the predicate
wait for message(+S,-Msg) which invokes predefinite predicates of the Java
to Prolog interface to get the incoming message from Server S. The message
received is returned as a list of atoms in Msg and it is inserted in the knowledge
base (line (13)).
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(1) :-use module(khe delp).

(2)

(3) behave:-

(4) send msg to turret(1,[1],true),
(5) move forward distance(200,true),

(6) send msg to turret(1,[2],true),
(7) turn right(90,true),

(8) send msg to turret(1,[1],true),
(9) move forward distance(200,true),
(10) send msg to turret(1,[3],true),

(11) turn left(90,true),
(12) send msg to turret(1,[1],true),

(13) move forward distance(200,true),
(14) send msg to turret(1,[3],true),
(15) turn left(90,true),

(16) send msg to turret(1,[1],true),
(17) move forward distance(200,true).

(18)

(19)
(20)
(21)
(22)

(23)
(24)

(25)
(26)

(27)
(28)

(a) K0

:-use module(khe delp).

:- concurrent turret input/1.

live:-

java init(’test.SocketServer’,Serv,createSocket( )),
eng call(receive msg from turret(Serv),create,create),

eng call(behave,create,create,Bid),
eng wait(Bid),

eng release(Bid),
java end(Serv,closeSocket( )).

receive msg from turret(S):-
wait for message(S,Msg),

asserta(turret input(Msg)),
receive msg from turret(S).

wait for message(S,Msg):-
java invoke method(S,getMsgFromTurret( )),

java invoke method(S,getValue(Msg)).

behave:-
retract fact nb(turret input([ ,Act])),
execute(Act),

behave.

execute(1):-
move forward distance(200,true).

execute(2):-
turn right(90,true).

execute(3):-

turn left(90,true).

(b) K1

Fig. 3. Robots’ program codes

While the thread running the receive msg from turret predicate is con-
tinuously listening its associated Java Server, in turn, the behave predicate is
expecting that a fact of the kind turret input(Msg) be available in the know-
ledge base (line (20)). When this happens, this fact is deleted from the knowledge
base and the list it had as argument is processed. In this particular example,
processing the argument only consists of ignoring the first element of Msg (which
is the sender ID) and using the second element Act as input argument to the
execute/1 predicate (line 21). After the execution of this action, the follower
waits for a new instruction of the team leader and the process continuous as
already described.

The above-mentioned discussion analysed how communication is achieved
among the robots from a functional view. To complement this view, Fig. 4 shows
how the interaction among the layers of Khe-DeLP is carried out when message
passing occurs. Terminals labelled as K0 and K1 are running the agents modules
depicted in Fig. 3. AsK0 is the team leader, before executing an action, by calling
the predicate send msg to turret the Prolog application connects the controller
of K0 within Webots (arrow 1 in Fig. 4), which in turn triggers the message to
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Fig. 4. Layers’ interaction when message passing occurs within Khe-DeLP

the radio base controller CT (arrow 3). Then controller CK0 is contacted again by
K0 to perform on the simulated robot the action previously passed as a message
(arrow 2). Concurrently, controller CT processes this message and forward it to
the appropriate robot, K1 in this case (arrow 4).

When CK1 receives from CT the action to perform, originally issued by K0,
instead of executing this action on the simulated robot K1, it connects to a Java
Server (belonging to the Interconection layer) to inform to agent module K1 the
message it received. From a conceptual view, CK1 does not execute the action
on K1 given that all the actions to be performed on the robot should be issued
from its respective agent module. Also, it must be noted that in this particular
case the message consists of a primitive action of KRolog which could be carried
out by the controller, but it could also be a high-level action involving further
processing of agent module K1, before sending a robot-specific action to the
controller. In this way, when agent module K1 receives this message (arrow 6)
and process it, then this action is triggered back to CK1 (arrow 7) and it executes
it on the simulated robot K1 (arrow 8).

As it can be noted, the controllers (low-level layer) are in charge of managing
the dynamics on the environment (action execution and message passing) by
modifying the properties of the objetcs (structured as VRML nodes in Webots)
representing the radio base (labelled as T ) and the Khepera II robots.

In the above-described example only two robots were considered, but any po-
tential number of robots can be together passing messages among each other. We
have not analysed yet how the communication overhead increases with respect to
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the number of robots communicating among each other, but as it will be stated
in Sect. 4 we aim to face this issue as future work. To conclude this discussion
it remains to note that Fig. 2(b) shows snapshots of the robots performance as
result of the execution of programs depicted in Fig. 3.

3.1 Implementation issues

Khe-DeLP is delivered as a set of Ciao Prolog modules, thus any Prolog applica-
tion which imports the main module, called khe delp.pl, gets access to all the
primitives of KRolog to programKhepera II robots in a declarative manner. Be-
sides, by importing this module, the high-level services for reasoning and know-
ledge representation provided by DeLP-Server (the interpreter of DeLP) [12] are
also accessed. When working with Webots, the simulator must be executed first
and then each agent module will work with it by the port assigned to each robot.

There is one implementation issue which is worth mentioning. It is concerned
with predicates send msg to turret and receive msg from turret. The com-
municaton primitives of the real Khepera II robot are limited to send 16 bytes
per message. In fact, if messages are shorter then they are padded to get this
amount of bytes. Thus, 16 bytes are always transmited by communication chan-
nels. Besides, as communication channels are usually noisy, data encryption and
decryption is perfomed by the sender and receiver, respectively. In our imple-
mentation, as communication takes place within Webots, reading and writing
internal buffers, thus neither encryption nor decryption of data is carried out.
Moreover, the restriction of transmitting 16 bytes per message is not considered.

In this way, the radio base VRML node created in Webots, like the VRML
node representing the Khepera II radio turret can be used by other applications
running on Webots not depending on Khe-DeLP. Nonetheless, none of these
applications will be able of cross-compiling the codes to be transferred to real
Khepera II robots, as a consequence of not controlling the messages length to
be sent. Data encryption and decryption would not be a problem, since this
is automatically done by the radio turrets of the robots acting as sender and
receiver, respectively.

4 Conclusions and Future work

Communication has been recognised as a very important issue within the field of
research of Computer Science, where a great number of formalisms [16] have been
developed to represent the different features that arise in concurrent systems.
Particularly, when working with robots, communication among them increase
their capacities and effectiveness. Likewise, communication also allows to restate
hypothesis and get a deeper understanding of how interaction mechanisms evolve
in systems, not necessarily artificials [21].

In this respect, the Khe-DeLP framework has been used to develop cognitive
applications where multiple robots cooperatively works by using non-intentional
communication [11, 8]. As stated in the introductory section, Khe-DeLP lacked
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communication primitives so that the Khepera II robots could explicitly com-
municate among each other. Therefore in this work, we have extended Khe-DeLP
by programming the communication support, so that simulated robots be able
of communicating among them in an explicit way. Through a simple example
the new features of Khe-DeLP were presented. Besides, it was described how to
program agent modules to achieve a successful communication among them. Fi-
nally, with the aim of getting a better understanding of why these agent modules
should be programmed as described, it was also discussed how the messages were
managed within Khe-DeLP.

At present, the Webots software used by Khe-DeLP to work with simulated
robots is the only propietary platform, because both Ciao and DeLP-Server like
the KRobot class3 are freely-available technologies. Thus, as long-term future
work, it is intended to modify Khe-DeLP to work with an open-source simulator
as well.

As future short-term work it is planned to make experimental studies to eva-
luate how the communication overhead increases with respect to the number of
robots communication among each other, within the framework. Moreover, it is
also intended to program the necessary support so that intentional communica-
tion experiments can be performed with real Khepera II robots. In opposition
to the current implementation, when this stage be performed, the low-level layer
will have to control that messages conform the restrictions of the physical com-
munication channels.
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bre 2004)

19. Levesque, H.J., Pagnucco, M.: Legolog: Inexpensive experiments in cognitive
robotics. In: 2nd International Cognitive Robotics Workshop. pp. 104–109. Berlin,
Germany (August 2000)

20. Levesque, H.J., Reiter, R., Lesperance, Y., Lin, F., Scherl, R.B.: GOLOG: A Logic
Programming Language for Dynamic Domains. Journal of Logic Programming
31(1-3), 59–83 (1997)

21. Lipson, H.: Evolutionary robotics: Emergence of communication. Current Biology
17(9), 330–332 (2007)

22. Michel, O.: Webots: Professional mobile robot simulation. Journal of Advanced
Robotics Systems 1(1), 39–42 (2004)

CACIC 2011 - XVII CONGRESO  ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 210




