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Abstract. This work presents the application of parallel computing
techniques using Graphic Processing Units to improve the efficiency of
scheduling heuristics for heterogeneous computing systems. The exper-
imental evaluation of the proposed methods demonstrates that a sig-
nificant reduction on the computing times can be attained, allowing to
tackle large scheduling scenarios in reasonable execution times.
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1 Introduction

In the last fifteen years, distributed computing environments have been increas-
ingly used to solve complex problems. Nowadays, a common platform for dis-
tributed computing usually comprises a heterogeneous collection of computers.
This class of infrastructures includes grid computing and cloud computing envi-
ronments, where a large set of heterogeneous computers with diverse character-
istics are combined to provide pervasive on demand and cost-effective processing
power, software, and access to data, for solving many kinds of problems [8,19].

A key problem when using such heterogeneous computing (HC) environments
consists in finding a scheduling strategy for a set of tasks to be executed. The
goal is to assign the computing resources by satisfying some efficiency criteria,
usually related to the total execution time or resource utilization [4,14]. The het-
erogeneous computing scheduling problem (HCSP) became specially important
due to the popularization of heterogeneous distributed computing systems [5,9].

Traditional scheduling problems are NP-hard [10], thus classic exact meth-
ods are only useful for solving problem instances of very reduced size. Heuris-
tics methods are able to get efficient schedules in reasonable times, but they
still require long execution times when solving large instances of the scheduling
problem. These execution times (i.e., in the order of an hour) can be extremely
high for performing on-line scheduling in realistic HC infrastructures.

High performance computing techniques can be applied to reduce the execu-
tion times required to perform the scheduling. The massively parallel hardware
in Graphic Processor Units (GPU) has been successfully applied to speed up the
computations required to solve problems in many application areas [12], showing
an excellent relationship between cost and computing power [17].
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The main contribution of this work is the development of parallel imple-
mentations on GPU for two classic scheduling heuristics, namely Min-Min and
Sufferage [13]. The experimental evaluation of the proposed parallel methods
demonstrates that a significant reduction on the computing times can be at-
tained when using the parallel GPU hardware. This performance improvement
allows solving large scheduling scenarios in reasonable execution times.

The manuscript is structured as follows. Next section introduces the HCSP
mathematical formulation, and the heuristics studied in this work. A brief in-
troduction to GPU computing is presented in Section 3. Section 4 describes
the GPU implementations of the Min-Min and Sufferage heuristics. The exper-
imental evaluation of the proposed methods is reported in Section 5, where the
efficiency results are also analyzed. Finally, Section 6 summarizes the conclusions
of the research and formulates the main lines for future work.

2 Heterogeneous computing scheduling

This section presents the HCSP and its mathematical formulation. It also pro-
vides a description of the class of list scheduling heuristics, and describes the
Min-Min and Sufferage methods parallelized in this work.

2.1 HCSP formulation

An HC system is composed of many computers, also called processors or ma-
chines, and a set of tasks to be executed on the system. A task is the atomic
unit of workload, so it cannot be divided into smaller chunks, nor interrupted
after it is assigned to a machine. The execution times of any individual task vary
from one machine to another, so there will be competition among tasks for using
those machines able to execute them in the shortest time.

Scheduling problems mainly concern about time, trying to minimize the time
spent to execute all tasks. The most usual metric to minimize in this model is
the makespan, defined as the time spent from the moment when the first task
begins execution to the moment when the last task is completed [14].

The following formulation presents the mathematical model for the HCSP
aimed at minimizing the makespan:

– given an HC system composed of a set of machines P = {m1, . . . ,mM}
(dimension M), and a collection of tasks T = {t1, . . . , tN} (dimension N) to
be executed on the system,

– let there be an execution time function ET : T ×P → R+, where ET (ti,mj)
is the time required to execute the task ti in the machine mj ,

– the goal of the HCSP is to find an assignment of tasks to machines (a function
f : TN → PM ) which minimizes the makespan, defined in Equation 1.

max
mj∈P

∑
ti∈T :

f(ti)=mj

ET (ti,mj) (1)
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In the previous HCSP formulation all tasks can be independently executed,
disregarding the execution order. This kind of applications frequently appears
in many lines of scientific research, specially in Single-Program Multiple-Data
applications used for multimedia processing, data mining, parallel domain de-
composition of numerical models for physical phenomena, etc. The independent
tasks model also arises when different users submit their (obviously indepen-
dent) tasks to execute in grid computing and volunteer-based computing infras-
tructures -such as TeraGrid, WLCG, Berkeley’s BOINC, Xgrid, etc. [2]-, where
non-dependent applications using domain decomposition are very often submit-
ted for execution. Thus, the relevance of the HCSP version faced in this work is
justified due to its significance in realistic distributed HC and grid environments.

2.2 List scheduling heuristics

The class of list scheduling heuristics comprises many deterministic scheduling
methods that work by assigning priorities to tasks based on a particular criterion.
After that, the list of tasks is sorted in decreasing priority and each task is
assigned to a processor, regarding the task priority and the processor availability.
Algorithm 1 presents the generic schema of a list scheduling method.

Algorithm 1 Schema of a list scheduling algorithm.

1: while tasks left to assign do
2: determine the most suitable task according to the chosen criterion
3: for each task to assign, each machine do
4: evaluate criterion (task, machine)
5: end for
6: assign the selected task to the selected machine
7: end while

Since the pioneering work by Ibarra and Kim [11], where the first algorithms
following the generic schema in Algorithm 1 were introduced, many list schedul-
ing techniques have been proposed to provide easy methods for tasks-to-machines
scheduling. This class of methods has also often been employed in hybrid algo-
rithms, with the objective of improving the search of metaheuristic approaches
for the HCSP and related scheduling problems.

The simplest list scheduling heuristics use a single criterion to perform the
tasks-to-machines assignment. Among others, this category includes: Minimum
Execution Time (MET), which considers the tasks sorted in an arbitrary order,
and assigns them to the machine with lower ET for that task, regardless of the
machine availability; Opportunistic Load Balancing (OLB), which considers the
tasks sorted in an arbitrary order, and assigns them to the next machine that
is expected to be available, regardless of the ET for each task on that machine;
and Minimum Completion Time (MCT), which tries to combine the benefits of
OLB and MET by considering the set of tasks sorted in an arbitrary order and
assigning each task to the machine with the minimum ET for that task.
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Trying to overcome the inefficacy of these simple heuristics, other methods
takes into account more complex and holistic criteria to perform the task map-
ping. This work focuses on two of the most effective heuristics in this class:

– Min-Min starts with a set U of all unmapped tasks, calculates the MCT
for each task in U for each machine, and assigns the task with the minimum
overall MCT to the best machine. The mapped task is removed from U , and
the process is repeated until all tasks are mapped. Min-Min improves upon
MCT by considering all the unmapped tasks and by updating the machine
availability for every assignment. It computes balanced schedules and allows
finding smaller makespan values than other heuristics, since more tasks are
expected to be assigned to the machines that can complete them the earliest.

– Sufferage identifies in each iteration step the task that if it is not assigned
to a certain host, it will suffer the most. The sufferage value is computed as
the difference between the best MCT of the task and its second-best MCT.
Sufferage gives precedence to those tasks with high sufferage value, assigning
them to the machines that can complete them at the earliest time.

The computational complexity of both Min-Min and Sufferage heuristics is
O(N3), where N is the number of tasks to schedule. When solving large instances
of the HCSP, large execution times are required to perform the task-to-machine
assignment (i.e. several minutes for a problem instance with 10.000 tasks). In this
context, parallel computing techniques can be applied to reduce the execution
times required to find the schedules.

GPU computing has been used to parallelize many algorithms in diverse re-
search areas. However, to the best of our knowledge, there have been no previous
proposals of applying GPU parallelism to list scheduling heuristics.

3 GPU computing

GPUs were originally designed to exclusively perform the graphic processing
in computers, allowing the Central Process Unit (CPU) to concentrate in the
remaining computations. Nowadays, GPUs have a considerably large comput-
ing power, provided by hundreds of processing units with reasonable fast clock
frequencies. In the last ten years, GPUs have been used as a powerful parallel
hardware architecture to achieve efficiency in the execution of applications.

GPU programming and CUDA. Ten years ago, when GPUs were first used to
perform general-purpose computation, they were programmed using low-level
mechanism such as the interruption services of the BIOS, or by using graphic
APIs such as OpenGL and DirectX [6]. Later, the programs for GPU were devel-
oped in assembly language for each card model, and they had very limited porta-
bility. So, high-level languages were developed to fully exploit the capabilities of
the GPUs. In 2007, NVIDIA introduced CUDA [16], a software architecture for
managing the GPU as a parallel computing device without requiring to map the
data and the computation into a graphic API.
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CUDA is based in an extension of the C language, and it is available for
graphic cards GeForce 8 Series and superior. Three software layers are used in
CUDA to communicate with the GPU (see Fig. 1): a low-level hardware driver
that performs the CPU-GPU data communications, a high-level API, and a set of
libraries such as CUBLAS for linear algebra and CUFFT for Fourier transforms.

Fig. 1. CUDA architecture.

For the CUDA programmer, the GPU is a computing device which is able to
execute a large number of threads in parallel. A specific procedure to be executed
many times over different data can be isolated in a GPU-function using many
execution threads. The function is compiled using a specific set of instructions
and the resulting program is loaded in the GPU. The GPU has its own DRAM,
and the data are copied from the DRAM of the GPU to the RAM of the host
(and viceversa) using optimized calls to the CUDA API.

The CUDA architecture is built around a scalable array of multiprocessors,
each one of them having eight scalar processors, one multithreading unit, and a
shared memory chip. The multiprocessors are able to create, manage, and exe-
cute parallel threads, with reduced overhead. The threads are grouped in blocks
(with up to 512 threads), which are executed in a single multiprocessor, and the
blocks are grouped in grids. When a CUDA program calls a grid to be executed
in the GPU, each one of the blocks in the grid is numbered and distributed to
an available multiprocessor. When a multiprocessor receives a block to execute,
it splits the threads in warps, a set of 32 consecutive threads. Each warp exe-
cutes a single instruction at a time, so the best efficiency is achieved when the
32 threads in the warp executes the same instruction. Each time that a block
finishes its execution, a new block is assigned to the available multiprocessor.

The threads access the data using three memory spaces: a shared memory
used by the threads in the block; the local memory of the thread; and the global
memory of the GPU. Minimizing the access to the slower memory spaces (the
local memory of the thread and the global memory of the GPU) is a very im-
portant feature to achieve efficiency. On the other side, the shared memory is
placed within the GPU chip, thus it provides a faster way to store the data.
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4 Implementations of Min-Min and Sufferage on GPU

The GPU architecture is better suited to the Single Instruction Multiple Data
execution model for parallel programs. Thus, GPUs provide an ideal platform
for executing algorithms that use the domain decomposition strategy, especially
when they execute the same instruction set for each element of the domain.

The generic schema for a list scheduling heuristic in Algorithm 1 shows that
both Min-Min and Sufferage apply the same strategy: for each unassigned task
the criteria are evaluated on all machines and the task that best meets the
criteria is selected and assigned to the machine which generates the minimum
MCT. Clearly, this schema is an ideal case for applying a domain decomposition
to generate a parallel version of the heuristics.

The Min-Min and Sufferage implementations on GPU designed in this work
perform in parallel the evaluation of the criteria proposed by each heuristic. For
each unassigned task, the evaluation of the criteria for all machines is made in
parallel on the GPU, building a vector that stores the identifier of the task,
the best value obtained for the criteria, and the machine to get that value. The
indicators in the vector are then processed in the reduction phase to obtain
the best value that meets the criteria, and then the best pair (task,machine)
is assigned. It is worth noting that the processing of the indicators to obtain
the optimum value of each step is also performed using the GPU. A graphical
schema of the parallel algorithm is presented in Fig. 2.

Fig. 2. Parallel strategy on GPU for Min-Min and Sufferage.

In the implementations proposed in this work, one task is assigned to each
thread of the GPU. Each thread evaluates the criteria for the set of machines
and stores the resulting value in a vector, the thread identifier, and the machine
to which the task should be assigned. Later, the reduction phase searches the
value that better satisfies the criteria.
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A specific data representation was used to accelerate the execution of the
sequential heuristics, in order to perform a fair comparison with the execution
times of the GPU implementations: they use a data matrix where each row rep-
resents a task and each column represents a machine. Thus, when performing the
processing for tasks (rows), the entries are loaded to the cache of the processing
core, allowing a faster way to access the data.

For parallel algorithms running on GPU, loading the data matrix in the same
way reduces the computational efficiency. Adjacent threads would access to the
data stored in contiguous rows, but these are not stored contiguously, thus they
cannot be stored in shared memory. When the data matrix is loaded so that
each column represent a task and each row represent a machine, two adjacent
threads in GPU access to the data stored in contiguous columns. These data
are stored in contiguous memory locations, so they can be loaded in the shared
memory, allowing to perform a faster data access for each thread, and therefore
improving the execution of the parallel algorithm on GPU.

Preliminary experiments were also performed using a strategy of domain
decomposition that divides the data by machines rather than by tasks, but this
option was finally discarded due to scalability issues as the problem size increases.

5 Experimental analysis

5.1 HCSP scenarios

No standardized benchmarks or test suites for the HCSP have been proposed
in the related literature [18]. Researchers have often used the suite of twelve
instances proposed by Braun et al. [3], following the expected time to compute
(ETC) performance estimation model by Ali et al. [1].

In order to study the efficiency of the GPU implementations as the prob-
lem instances grow, the experimental analysis consider a test suite of large-
dimension HCSP instances, randomly generated to test the scalability of the
proposed methods. This test suite was designed following the methodology by
Ali et al. [1] The set includes the 96 medium-sized HCSP instances with dimen-
sion (tasks×machines) 1024×32, 2048×64, 4096×128 and 8192×256 previously
solved using an evolutionary algorithm [15], and new large dimension HCSP in-
stances with dimensions 16384×512, 32768×1024, and 65536×2048, specifically
created to evaluate the GPU implementations presented in this work.

These dimensions are much larger than those of the popular benchmark by
Braun et al. [3] and they better model present distributed HC and grid sys-
tems. The problem instances and the generator program are publicly available
to download at http://www.fing.edu.uy/inco/grupos/cecal/hpc/HCSP.

5.2 Development and execution platform

The scheduling heuristics were implemented in C, using the standard stdlib

library. The experimental analysis was performed on a Dell PowerEdge (Quad-
Core Xeon E5530 at 2.4 GHz, 48 GB RAM, 8 MB cache), with CentOS Linux
5.4 and a NVidia Tesla C1060 GPU (240 cores at 1.33 GHz, 4GB RAM) [7].
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5.3 Experimental results

This section reports the results obtained when applying the parallel GPU im-
plementations of the list scheduling heuristics for each of the HSCP instances
tackled in this paper.

Solution quality. Since the proposed parallel implementations do not modify
the algorithmic behavior of the MinMin and Sufferage heuristics, the makespan
results obtained with the GPU implementations are exactly the same than those
obtained with the sequential versions for all the studied HCSP instances. The
makespan values obtained for each problem scenario tackled are reported in the
HCSP website http://www.fing.edu.uy/inco/grupos/cecal/hpc/HCSP.

Execution times. Table 1 compares the execution times (in seconds) of the se-
quential and parallel versions on GPU of the studied heuristics. The time results
in Table 1 correspond to the average values for all the HCSP instances solved for
each problem dimension studied, and the comparison is performed considering
the optimized sequential algorithms using the specialized data representation
described in Section 4. The speedup values in Table 1 summarize the acceler-
ation when using the GPU implementation with respect to the sequential one,
by computing the quotient between the execution times of the sequential and
parallel implementations.

dimension
Min-Min Sufferage

sequential parallel speedup sequential parallel speedup

1024×32 0.07 5.35 0.01 0.11 5.41 0.02
2048×64 0.39 5.53 0.07 0.59 5.51 0.11
4096×128 2.32 6.15 0.38 3.60 6.16 0.58
8192×256 16.27 9.90 1.64 22.54 9.97 2.26
16384×512 114.06 30.06 3.79 149.61 30.34 4.93
32768×1024 815.56 183.82 4.44 1012.16 184.57 5.48
65536×2048 6249.18 1214.86 5.14 6825.84 1235.13 5.53

Table 1. Execution times and speedups for the GPU implementations.

The results in Table 1 show that significant improvements on the execution
times of Min-Min and Sufferage are obtained when using the GPU implemen-
tations for problem instances with more than 8.000 tasks. When solving the
low-dimension problem instances, the GPU implementations were unable to out-
perform the execution times of the sequential Min-Min and Sufferage, mainly due
to the overhead introduced by the threads creation and management, and the
use of the GPU memory. However, when solving larger problem instances that
model realistic grid scenarios, significant improvements in the execution times
are achieved, specially for the 65536×2048 problem instances.

Fig. 3 presents a graphical summary of the speedup values for the GPU
implementations for each problem dimension faced.
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Fig. 3. Speedup of the GPU implementations.

The evolution of the speedup values in Fig. 3 indicates that reasonable
accelerations are obtained for the HCSP instances with dimension 8192×256,
16384×512, 32768×1024, and 65536×2048. The best speedup values were ob-
tained for the two largest problem dimensions, with a maximum of 5.14 for the
parallel Min-Min implementation on GPU and 5.53 for the parallel Sufferage
implementation on GPU. Since the Sufferage heuristic performs an additional
computation to evaluate the sufferage value for each task in every iteration step,
the speedup values obtained with the parallel Sufferage implementation on GPU
are slightly larger than the ones obtained for the parallel Min-Min implementa-
tion on GPU.

The previously commented results indicate that the parallel implementation
of list scheduling heuristics in GPU provides promising reductions in the execu-
tion times when solving large instances of the scheduling problem.

6 Conclusions and future work

This article studied the development of parallel implementations in GPU for two
of the most effective list scheduling heuristics algorithms, namely Min-Min and
Sufferage, for scheduling in heterogeneous computing environments.

Both algorithms were developed using CUDA, following a simple domain
decomposition approach that allows scaling to solve very large dimension prob-
lem instances. The experimental evaluation solved HCSP instances with up to
65536 tasks and 2048 machines, a dimension far more larger than the previously
proposed in the related literature.

The experimental results demonstrated that the parallel implementations of
Min-Min and Sufferage on GPU provide significant accelerations over the time
required by the sequential implementations when solving large instances of the
HCSP. These parallel implementations allow tackling large scheduling scenarios
in reasonable execution times.
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The main line for future work is related with improving the proposed GPU
implementations, mainly by studying the management of the memory accessed
by the threads. In this way, the computational efficiency of the heuristics on
GPU can be further improved, allowing to develop even more efficient parallel
implementations. We are working in this topic right now.
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